OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S4 — Jul. 2, 2012
  • pp: A452–A464
« Show journal navigation

Optical absorption enhancement in a hybrid system photonic crystal – thin substrate for photovoltaic applications

Jeronimo Buencuerpo, Luis E. Munioz-Camuniez, Maria L. Dotor, and Pablo A. Postigo  »View Author Affiliations


Optics Express, Vol. 20, Issue S4, pp. A452-A464 (2012)
http://dx.doi.org/10.1364/OE.20.00A452


View Full Text Article

Acrobat PDF (2260 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A hybrid approach for light trapping using photonic crystal nanostructures (nanorods, nanopillars or nanoholes) on top of an ultra thin film as a substrate is presented. The combination of a nanopatterned layer with a thin substrate shows an enhanced optical absorption than equivalent films without patterning and can compete in performance with nanostructured systems without a substrate. The designs are tested in four relevant materials: amorphous silicon (a-Si), crystalline silicon (Si), gallium arsenide (GaAs) and indium phosphide (InP). A consistent enhancement is observed for all of the materials when using a thin hybrid system (300 nm) even compared to the non patterned thin film with an anti-reflective coating (ARC). A realistic solar cell structure composed of a hybrid system with a layer of indium tin oxide (ITO) an ARC and a back metal layer is performed, showing an 18% of improvement for the nanostructured device.

© 2012 OSA

1. Introduction

Solar cells based on thin or ultra thin films have potential advantages like a reduction in the amount of absorbing material and a better extraction of the photogenerated carriers. Light trapping techniques may help to reduce the total thickness of the layers involved without losing efficiency in the absorption of light. Periodic nanostructured surfaces like photonic crystals have been demonstrated to improve optical absorption and consequently ultimate efficiency [1

1. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009). [CrossRef] [PubMed]

5

5. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010). [CrossRef] [PubMed]

]. Some of those works present simulations of completely patterned or nanostructured systems, like nanoholes (NHoles) or nanopillars (NPillars) without a substrate [1

1. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009). [CrossRef] [PubMed]

, 4

4. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009). [CrossRef] [PubMed]

, 5

5. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010). [CrossRef] [PubMed]

]. In contrast we have focused our work on the use of a nanostructured layer (either NHoles or NPillars) on top of a thin substrate. This hybrid approach presents several advantages: 1) from a technological point of view, the substrate provides a more robust mechanical support for the nanostructured layer 2) the etched thickness is reduced compared to a totally nanostructured layer, i.e. without a substrate 3) the substrate helps to improve the absorption of light coupled to it by the photonic crystal layer 4) there is an anti-reflection effect due to the nanopatterning [6

6. Y. Liu, S. H. Sun, J. Xu, L. Zhao, H. C. Sun, J. Li, W. W. Mu, L. Xu, and K. J. Chen, “Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells,” Opt. Express 19(S5Suppl 5), A1051–A1056 (2011). [CrossRef] [PubMed]

, 7

7. P. A. Postigo, M. Kaldirim, I. Prieto, L. J. Martínez, M. L. Dotor, M. Galli, and L. C. Andreani, “Enhancement of solar cell efficiency using two-dimensional photonic crystals,” Proc. SPIE 7713, 771307(2010). [CrossRef]

] and 5) the modes inside the photonic crystal are also hybrid (not pure TE or TM) due to the broken symmetry [8

8. L. J. Martinez, A. R. Alija, P. A. Postigo, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, and P. Viktorovitch, “Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice,” Opt. Express 16(12), 8509–8518 (2008). [CrossRef] [PubMed]

, 9

9. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).

] increasing the total number of available modes of incident light [10

10. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]

]. During the revision of the present work we became aware of the publication of [11

11. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012). [CrossRef] [PubMed]

] where a periodic system on top of a substrate is also used.

The proposed photonic crystals (PCs) are composed of nanorods (NRods) for a one dimensional (1D) case and NPillars or NHoles for two dimensional (2D) systems (Fig. 1
Fig. 1 Hybrid systems composed of (a) 1D photonic crystal of NRods on top of a thin film substrate (b) and (c) 2D photonic crystal structures of NPillars and NHoles, respectively, on top of a thin film substrate.
). The total thickness of the nanostructured and substrate layers has been always kept to less than 1 µm. The change in absorption has been studied with the variation of the total thickness of the hybrid system. Normal and oblique incidence have been also tested. The ultimate efficiencies of nanopatterned systems have been compared to thin film (TF) with and without a single ARC layer. Finally, a realistic case of a solar cell device composed of an absorbing nanostructured layer, an ARC, an ITO electrode and a back metal layer has been compared to the non patterned case.

For the photonic crystal layer, a square symmetry has been chosen with the same lattice parameter for all the structures, a = 450 nm, which provides a good value when the useful part of the solar spectrum is taken in account [1

1. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009). [CrossRef] [PubMed]

, 2

2. S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express 18(5), 4260–4274 (2010). [CrossRef] [PubMed]

]. The width of the NRods (D) and the diameter of the NPillars and NHoles (d) are 225 nm in both cases, being a reasonable compromise between performance and current techniques of fabrication. The nanopatterning of the surface means less amount of absorbing material than in the case of a non-structured system, which should be taken into account to compare the different systems. In the present work we have not focus our interest in obtaining an optimized design, but instead on the exploration of the hybrid photonic crystal-substrate system for relevant photovoltaic materials (Si, a-Si, GaAs, InP) with a realistic geometry and with the addition of an ARC layer.

2. Theory and numerical methods

We have calculated the absorption spectra from an incident flux of planar waves with energies ranging from 1 eV to 4 eV (1240 nm to 310 nm). Reflection (R) and transmission (T) is simulated and the absorption (A) is obtained as A = 1-T-R. For the different structures and materials we have calculated the ultimate efficiency [12

12. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]

] defined as:
η=0λgI(λ)A(λ)λλgdλ0I(λ)dλ
(1)
Where λg is the wavelength of the semiconductor bandgap I(λ) is ASTM G-173 direct and circumsolar solar spectrum [13

13. “Solar Spectral Irradiance: ASTM G-173,Standard tables for reference solar spectral irradiances: direct normal and circumsolar” http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html.

]. For a perfect absorber (PA),A(λ)=1, the ultimate efficiencies are ηPA,GaAs=0.45 for GaAs, ηPA,InP=0.46 for InP, ηPA,Si=0.48 for Si and ηPA,a-Si=0.46 for a-Si. We define the PC filling factor in 1D systems as ff1D=D/a, and for 2D systems as ff2D=π(d/2)2/a2. The corresponding filling factors wereffNRods=0.5, ffNHoles=0.8 and ffNPillars=0.2 for for NRods, NHoles and NPillars respectively. The dielectric functions of the absorbing materials have been taken from [14

14. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

]. We have modeled the optical properties of the nanostructured solar cells using a three-dimensional finite difference time domain (3D-FDTD) method [17

17. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]

]. A grid of 5 nm was chosen, and 100 frequencies from 1 to 4 eV were calculated. For a faster calculation we have fitted the complex dielectric permittivity of the material to a Lorentz model:
ε(ω)=ε+n=1Nsnωn2ωnω2iωΓn
(2)
We have used four resonances (N=4), and we have split the spectra to fit more precisely to the experimental data. The Lorentzian fit was done for GaAs, InP and Si. For a-Si and the rest of the materials we have used directly the values taken from [14

14. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

]. In Fig. 2
Fig. 2 Dielectric permittivity of GaAs, InP and Si. The fitted curves for real part (blue line), and imaginary part (red line), are shown. The crosses are the data taken from [14] interpolated with 100 points. The dashed lines separate independent fittings regions. Four zones for InP, GaAs, and ten for Si. The data out of this zones were simulated using the cross points.
the fits are shown along the data taken from [14

14. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

].

In the following, the absorptions of a Lambertian absorber (LA) [15

15. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982). [CrossRef]

] using the more general approach of Ref [16

16. M. A. Green, “Lambertian light trapping in textured solar cells and light emitting diodes analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002). [CrossRef]

] are also displayed for comparison with the nanostructured layers.

3. Results

3.1 1D systems

We have studied 1D systems because they may be easier to fabricate than 2D structures and may offer a similar performance. For 1D systems it is necessary to calculate the light incident with s and p polarizations [1

1. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009). [CrossRef] [PubMed]

,2

2. S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express 18(5), 4260–4274 (2010). [CrossRef] [PubMed]

]. We have tested our structures using an unpolarized source, mixing the two polarizations with a randomly time dependent phase between them. The 1D structure is composed of in-plane contained NRods with a height h = 150 nm over a thin film substrate of the same material and height. Figures 3
Fig. 3 Absorption for 1D nanostructured systems of NRods for the different absorbing materials (blue line) compared to the non-patterned TF 300nm thick (green line). The black line (dashed) corresponds to the LA of 300 nm.
and 4
Fig. 4 Reflection for 1D nanostructured systems of NRods for the different absorbing materials simulated (blue line) compared to the non-patterned TF 300nm-thick (green line).
show the absorption and reflection calculated for the 1D systems using GaAs, InP, Si, a-Si and a 300nm-thick TF for comparison.

3.2 2D systems

2D photonic systems without any substrate have been tested in [4

4. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009). [CrossRef] [PubMed]

, 5

5. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010). [CrossRef] [PubMed]

]. The thicknesses in both cases were about ten times higher than in this work. Those systems have been shown to present a better coupling with light than non patterned structures [10

10. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]

]. As in the 1D case, our 2D system is composed of NHoles or NPillars with a thickness h = 150 nm which are on top of a substrate with the same thickness and material than the nanostructured layer. Figures 5
Fig. 5 Absorption for 2D nanostructured systems of NHoles (blue line) NPillars (green line) and a TF 300nm-thick of the same material (red line). The black line (dashed) corresponds to the LA of 300 nm.
and 6
Fig. 6 Reflection for 2D nanostructured systems of NHoles (blue line) NPillars (green line) and a TF 300nm-thick of the same material (red line).
show the absorption and reflection calculated for the 2D systems and for the 300nm-thick TF.

Table 1

Table 1. Table of Ultimate Efficiencies (η) for the 1D and 2D Nanopatterned Hybrid Systems and the Non-Patterned Thin Film with and without an Optimized ARC.

table-icon
View This Table
| View All Tables
shows the ultimate efficiencies obtained for the nanopatterned systems described above and for the different materials used. The absorption of the non-patterned TF with a thickness of 300 nm is shown for comparison. We have included the case of the non-patterned TF with a single layer ARC optimized in thickness between 0 and 300 nm to maximize the ultimate efficiency. For the silicon-based systems the ARC material was SiO2 (80 nm for Si and 80 nm for a-Si) and for the systems based on III-V semiconductors we used Si3N4 (60 nm for GaAs and 70 nm for InP). As a figure of comparison we define the increment in the efficiencies normalized to the PA for the case with and without an ARC, respectively, as: Δη1=(ηpatternedηTF)/ηPA, Δη2=(ηpatternedηTF+ARC)/ηPA where ηpatterned is the efficiency of the nanopatterned material, ηTF is the efficiency of the non-patterned structure with the same amount of absorbing material, ηTF+ARC is the efficiency with the ARC, and ηPA is the ultimate efficiency for the perfect absorber. The values for the figures of comparison Δη1and Δη2 are given for the system with the highest enhancement (i.e. ηpatterned=ηNPillars). From the obtained values, it is remarkable that a persistent enhancement for all of the nanopatterned systems is present despite they do not include any ARC layer.

From Table 1 we can conclude that, at least for the simulated materials, the systems with a higher enhancement in the absorption use NPillars, although the difference with the NRod (1D-case) is not very high. Despite the NHoles do not show a higher enhancement than NPillars for the direct bandgap materials, for crystalline Si the calculated enhancement is equal for both. In order to explore the effect of the thickness in our 2D systems we have evaluated the absorption of NPillars and NHoles systems for the following cases: i) 150 nm PC + 150 nm TF substrate ii) 300 nm PC + 300 nm TF substrate iii) 500 nm PC + 500 nm TF substrate. Thicknesses above one micron are close to the perfect absorption limit for III-V semiconductors, so we have kept the calculation below that value. The results are displayed in Fig. 7
Fig. 7 Absorption for the evolution in thickness for NHoles and NPillars. i) 150 nm PC + 150 nm TF (blue line) ii) 300 nm PC + 300 nm TF (green line) and iii) 500 nm PC + 500 nm TF (red line). Dashed lines correspond to LA with the same thicknesses (black 300 nm, grey 600 nm, light grey 1 micron).
and Fig. 8
Fig. 8 Reflection for the evolution in thickness for NHoles and NPillars. i) 150 nm PC + 150 nm TF (blue line) ii) 300 nm PC + 300 nm TF (green line) and iii) 500 nm PC + 500 nm TF (red line).
.

When increasing equally the thickness of both the nanopatterned layer and the substrate, the NHoles do not show further improvement for high energies, whereas the NPillars do. Also, the difference between enhancements of the absorption for the two systems is not constant with the change in the thickness. This marks a different behavior between the two systems (NHoles and NPillars). The ultimate efficiencies for Si, GaAs and InP (a-Si is not considered for the short diffusion length of the minority carriers) are shown in Table 2

Table 2. Evolution of ultimate efficiency versus thickness for the simulated materials. The values of the figures of comparison Δη1and Δη2 correspond to the system with the highest enhancement. i) 150 nm PC + 150 nm TF ii) 300 nm PC + 300 nm TF and iii) 500 nm PC + 500 nm TF .

table-icon
View This Table
| View All Tables
.

In general, the structures based on NPillars seem to have higher efficiencies than the ones based in NHoles, so we have calculated their performance against light in non-normal incidence to clarify if this enhancement disappears with the angle. We have used the same parameters as above and GaAs as the absorbing material, which we expect to behave in a similar way than the rest of the materials with high absorption. We have set the p polarization parallel to the Y direction of the square symmetry of the pattern. The system is illuminated for angles of 0°(normal incidence), 15°, 30°, and 45°.

The results are displayed in Fig. 9
Fig. 9 Absorption for nanopatterned GaAs (NPillars 150 nm high) on a GaAs substrate (150 nm thick) for oblique incidence and for s, p polarizations, 0°(blue line), 15°(green line), 30°(red line), 45°(cyan line).
and Fig. 10
Fig. 10 Reflection for nanopatterned GaAs (NPillars 150 nm high) on a GaAs substrate (150 nm thick) for oblique incidence and for s, p polarizations.0°(blue line), 15°(green line), 30°(red line), 45°(cyan line).
. The enhancement in the ultimate efficiency does not show a drastic decrease when changing the incidence. For example, at 45°the ultimate efficiency decays only to 0.30 whereas at normal incidence is 0.33. A similar behaviour has been obtained for NHoles with an ultimate efficiency of 0.27 for normal incidence, which decays to 0.25 at 45°.

3.3 Enhancement factor in the weak absorption limit

As it has been explained on [15

15. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982). [CrossRef]

], the enhancement factor limit 4n2 is valid for light trapping in bulk solar cells with low intrinsic absorption and when using geometric optics. The last assumption is not satisfied by our systems because of the sub-wavelength size of the nanopatterning. Nevertheless, it may be useful to compare those systems with the Lambertian absorber (LA), as shown in Figs. 3, 5 and 7.

Figure 11
Fig. 11 Absorption enhancement factor for the three different thickness of 300nm (blue), 600nm (green) and 1000nm (red) and for the case of Si with NHoles (left) and NPillars (right). The black, dashed line corresponds to the Lambertian absorber.
show that the absorptions for all of the nanopatterned systems are above the Lambertian limit. We attribute that to a photonic light trapping regime. In a similar way this behavior has been described in [10

10. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]

], where thin film systems can overtake the Lambertian limit. As energies increase, the enhancement factor decreases, which is expected as the extinction coefficient increases and diverges from the weak absorption regime. As it has been previously described [11

11. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012). [CrossRef] [PubMed]

] another figure of comparison can be used by defining a ratio between the absorptions, Lambertian or Photonic, and the single pass absorption (Asp=1exp(αd)). This has been calculated for the thinnest system (2h = 300 nm) and all of the materials (GaAs, InP, Si and a-Si) as Fig. 12
Fig. 12 Enhancement in absorption for 2D systems, NHoles (blue line), NPillars (green line) and LA (black dashed line).
shows.

3.4 An a-Si solar cell with ARC and back metal contact

We have simulated a simple case of a device composed of an a-Si layer which is nanostructured in half of its thickness, and an ARC composed by a SiO2 layer that completely covers the nanopatterned surface, planarizing it. The optimized thickness of the ARC is obtained for 80 nm above the nanopattern, as shown in Fig. 13
Fig. 13 Solar cell with (a) and without (b) pattern. The thickness of the ARC layer is s = 80 nm above the nanopattern. The system with NHoles is equivalent.
.

We have finally added a back metal contact formed by a perfect metal. Figure 14
Fig. 14 Reflection and absorption for the patterned solar cell with NHoles (blue line), NPillars (green line) and the non-patterned solar cell structure (red line).
shows the absorption and reflection for the patterned and non-patterned device.

The ultimate efficiency for the non-patterned device is η=0.33 whereas for both the NPillars and NHoles are η=0.39. Both types of nanostructures show higher absorptions than the thin film, but surprisingly there is no difference using NHoles or NPillars, contrary to what is obtained without the ARC layer (Table 1). When normalized to the maximum efficiency for a perfect absorber, the ultimate efficiency (ηpatterned/ηPA) for the hybrid system is 85%, whereas for the thin film is 72%, which means an increment (Δη) of 13%.

3.5 An a-Si solar cell with ARC, ITO electrode and back metal contact

An approach to a more realistic model has been done including a transparent conductive oxide (ITO) layer with a complex refractive index taken from [19

19. K. von Rottkay, M. Rubin, and N. Ozer, “Optical indices of tin-doped indium oxide and tungsten oxide electrochromic coatings” Mater. Res. Soc. Symp. Proc. 403, 551 (1995).

]. The layer is used as electrode for collecting the carriers (Fig. 15
Fig. 15 Solar cell with (a) and without (b) pattern. The thickness of the ARC layer is s´ = 180 nm above the nanopattern, and the hITO=150 nm. The system with NHoles is equivalent.
). A typical thickness for ITO to collect efficiently the carriers is about 150-200 nm, which is not an optimal design as ARC. Therefore, a second layer of SiO2 is included as an ARC coating. A local optimization of the thickness has been made for the ITO and SiO2 layers, obtaining hITO=150 nm (range of optimization was 150 to 200 nm) and = 180 nm for the SiO2 (range of optimization from 0 to 600 nm). The NHoles and NPillars are filled or immersed with SiO2, with the contact on top. The absorption was calculated excluding absorption from the ITO. Therefore, the ultimate efficiencies were calculated using only the absorption of the semiconductor layer. Results are displayed in Fig. 16
Fig. 16 Reflection and absorption for the patterned solar cell with NHoles (blue line), NPillars (green line) and the non-patterned solar cell structure (red line).
.

The non-patterned system presents a high oscillation in the reflection and absorption, due to the thin film, that does not appear in the nanostructured ones. This was also observed in the system with SiO2 and a metal and shows the capacity of the nanostructured layer to smooth such modulations. The ultimate efficiency for the non-patterned device is η=0.29 (63% normalized to the perfect absorber), for NPillars is η=0.36 (i.e. 80%) and for the NHoles is η=0.37 (i.e. 82%). This means a relative increment of 17% and 19%, respectively, for the hybrid systems.

4. Conclusion

We have calculated the ultimate efficiencies of thin hybrid systems composed of a photonic crystal (nanopillars and nanoholes in 2D and nanorods in 1D) on top of a substrate. We have demonstrated that the hybrid system that shows a highest enhancement is always the thinnest system (300 nm) even if an ARC is included. This happens for the four materials used (a-Si, crystalline Si, GaAs and InP). Above that thickness a divergence in the ultimate efficiency appears between materials with direct and indirect bandgap showing that direct bandgap systems with an ARC can be similar in efficiency as nanopatterned systems. In this case, a final optimization depending on the thickness of both substrate and nanopattern will be needed for each material. A realistic case of a solar cell with a-Si, an absorbing ITO layer, an ARC and a back metal contact shows an enhancement of 18% respect to the cell without patterning. Modulations of absorption and reflection in the non patterned thin film disappear when the photonic crystal is included. For the thinnest systems (300nm) the efficiencies of nanopillars are higher than nanoholes when direct gap materials are used. For Si and for the realistic case of the a-Si solar cell with (or without) ITO and an ARC layer, nanopillars and nanoholes show almost the same efficiencies.

Acknowledgments

We acknowledge financial support by MICINN (grants ENE2009-14481-C02-02, CSD2006-0004, Innpacto IPT-2011-1467- 420000), and CAM (S2009/ENE-1477).

References and links

1.

Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express 17(16), 14312–14321 (2009). [CrossRef] [PubMed]

2.

S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express 18(5), 4260–4274 (2010). [CrossRef] [PubMed]

3.

I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Opt. Express 17, 191102 (2009).

4.

C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17(22), 19371–19381 (2009). [CrossRef] [PubMed]

5.

S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett. 10(3), 1012–1015 (2010). [CrossRef] [PubMed]

6.

Y. Liu, S. H. Sun, J. Xu, L. Zhao, H. C. Sun, J. Li, W. W. Mu, L. Xu, and K. J. Chen, “Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells,” Opt. Express 19(S5Suppl 5), A1051–A1056 (2011). [CrossRef] [PubMed]

7.

P. A. Postigo, M. Kaldirim, I. Prieto, L. J. Martínez, M. L. Dotor, M. Galli, and L. C. Andreani, “Enhancement of solar cell efficiency using two-dimensional photonic crystals,” Proc. SPIE 7713, 771307(2010). [CrossRef]

8.

L. J. Martinez, A. R. Alija, P. A. Postigo, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, and P. Viktorovitch, “Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice,” Opt. Express 16(12), 8509–8518 (2008). [CrossRef] [PubMed]

9.

J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).

10.

Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]

11.

A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express 20, A224–A244 (2012). [CrossRef] [PubMed]

12.

W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n Junction Solar Cells,” J. Appl. Phys. 32(3), 510–519 (1961). [CrossRef]

13.

“Solar Spectral Irradiance: ASTM G-173,Standard tables for reference solar spectral irradiances: direct normal and circumsolar” http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html.

14.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).

15.

E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982). [CrossRef]

16.

M. A. Green, “Lambertian light trapping in textured solar cells and light emitting diodes analytical solutions,” Prog. Photovolt. Res. Appl. 10(4), 235–241 (2002). [CrossRef]

17.

A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun. 181(3), 687–702 (2010). [CrossRef]

18.

K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys. 101(6), 063105–063112 (2007). [CrossRef]

19.

K. von Rottkay, M. Rubin, and N. Ozer, “Optical indices of tin-doped indium oxide and tungsten oxide electrochromic coatings” Mater. Res. Soc. Symp. Proc. 403, 551 (1995).

OCIS Codes
(040.5350) Detectors : Photovoltaic
(160.5298) Materials : Photonic crystals
(310.6845) Thin films : Thin film devices and applications

ToC Category:
Photovoltaics

History
Original Manuscript: December 16, 2011
Revised Manuscript: April 24, 2012
Manuscript Accepted: April 26, 2012
Published: May 10, 2012

Citation
Jeronimo Buencuerpo, Luis E. Munioz-Camuniez, Maria L. Dotor, and Pablo A. Postigo, "Optical absorption enhancement in a hybrid system photonic crystal – thin substrate for photovoltaic applications," Opt. Express 20, A452-A464 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S4-A452


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Park, E. Drouard, O. El Daif, X. Letartre, P. Viktorovitch, A. Fave, A. Kaminski, M. Lemiti, and C. Seassal, “Absorption enhancement using photonic crystals for silicon thin film solar cells,” Opt. Express17(16), 14312–14321 (2009). [CrossRef] [PubMed]
  2. S. Zanotto, M. Liscidini, and L. C. Andreani, “Light trapping regimes in thin-film silicon solar cells with a photonic pattern,” Opt. Express18(5), 4260–4274 (2010). [CrossRef] [PubMed]
  3. I. Prieto, B. Galiana, P. A. Postigo, C. Algora, L. J. Martínez, and I. Rey-Stolle, “Enhanced quantum efficiency of Ge solar cells by a two-dimensional photonic crystal nanostructured surface,” Opt. Express17, 191102 (2009).
  4. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express17(22), 19371–19381 (2009). [CrossRef] [PubMed]
  5. S. E. Han and G. Chen, “Optical absorption enhancement in silicon nanohole arrays for solar photovoltaics,” Nano Lett.10(3), 1012–1015 (2010). [CrossRef] [PubMed]
  6. Y. Liu, S. H. Sun, J. Xu, L. Zhao, H. C. Sun, J. Li, W. W. Mu, L. Xu, and K. J. Chen, “Broadband antireflection and absorption enhancement by forming nano-patterned Si structures for solar cells,” Opt. Express19(S5Suppl 5), A1051–A1056 (2011). [CrossRef] [PubMed]
  7. P. A. Postigo, M. Kaldirim, I. Prieto, L. J. Martínez, M. L. Dotor, M. Galli, and L. C. Andreani, “Enhancement of solar cell efficiency using two-dimensional photonic crystals,” Proc. SPIE7713, 771307(2010). [CrossRef]
  8. L. J. Martinez, A. R. Alija, P. A. Postigo, J. F. Galisteo-López, M. Galli, L. C. Andreani, C. Seassal, and P. Viktorovitch, “Effect of implementation of a Bragg reflector in the photonic band structure of the Suzuki-phase photonic crystal lattice,” Opt. Express16(12), 8509–8518 (2008). [CrossRef] [PubMed]
  9. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, N.J., 1995).
  10. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  11. A. Bozzola, M. Liscidini, and L. C. Andreani, “Photonic light-trapping versus Lambertian limits in thin film silicon solar cells with 1D and 2D periodic patterns,” Opt. Express20, A224–A244 (2012). [CrossRef] [PubMed]
  12. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n Junction Solar Cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  13. “Solar Spectral Irradiance: ASTM G-173,Standard tables for reference solar spectral irradiances: direct normal and circumsolar” http://rredc.nrel.gov/solar/spectra/am1.5/ASTMG173/ASTMG173.html .
  14. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  15. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  16. M. A. Green, “Lambertian light trapping in textured solar cells and light emitting diodes analytical solutions,” Prog. Photovolt. Res. Appl.10(4), 235–241 (2002). [CrossRef]
  17. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  18. K. R. Catchpole and M. A. Green, “A conceptual model of light coupling by pillar diffraction gratings,” J. Appl. Phys.101(6), 063105–063112 (2007). [CrossRef]
  19. K. von Rottkay, M. Rubin, and N. Ozer, “Optical indices of tin-doped indium oxide and tungsten oxide electrochromic coatings” Mater. Res. Soc. Symp. Proc. 403, 551 (1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited