OSA's Digital Library

Energy Express

Energy Express

  • Editor: Bernard Kippelen
  • Vol. 20, Iss. S5 — Sep. 10, 2012
  • pp: A622–A629
« Show journal navigation

Nonimaging optics in luminescent solar concentration

B. D. Markman, R. R. Ranade, and N. C. Giebink  »View Author Affiliations


Optics Express, Vol. 20, Issue S5, pp. A622-A629 (2012)
http://dx.doi.org/10.1364/OE.20.00A622


View Full Text Article

Acrobat PDF (3569 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Light trapped within luminescent solar concentrators (LSCs) is naturally limited in angular extent by the total internal reflection critical angle, θcrit, and hence the principles of nonimaging optics can be leveraged to increase LSC concentration ratio by appropriately reshaping the edges. Here, we use rigorous ray-tracing simulations to explore the potential of this concept for realistic LSCs with compound parabolic concentrator (CPC)-tapered edges and show that, when applied to a single edge, the concentration ratio is increased by 23% while maintaining >90% of the original LSC optical efficiency. Importantly, we find that CPC-tapering all of the edges enables a significantly greater intensity enhancement up to 35% at >90% of the original optical efficiency, effectively enabling two-dimensional concentration through a cooperative, ray-recycling effect in which rays rejected by one CPC are accepted by another. These results open up a significant opportunity to improve LSC performance at virtually no added manufacturing cost by incorporating nonimaging optics into their design.

© 2012 OSA

1. Introduction

Optical concentration is a powerful strategy for improving the economics of photovoltaic solar energy conversion because it dramatically reduces the cell area needed to generate a given amount of power. The advent of nonimaging optics by Winston and associates over 30 years ago pushed geometric optical concentrators (e.g. those based on lenses or mirrors) to the so-called sine limit [1

1. R. Winston, Selected Papers on Nonimaging Optics (SPIE, New York, NY, 1995).

5

5. J. Chaves, Introduction to Nonimaging Optics (CRC Press, New York, NY, 2008).

], which describes a fundamental tradeoff between acceptance angle (θacc) and concentration ratio (CR) given by CR ≤ (1/sin θacc)2. This relationship requires that all passive concentrators track the Sun in order to achieve high concentration (CR > 100), which is a disadvantage due to the added expense of the tracking system and the high sensitivity of concentrator throughput on tracking error [4

4. J. J. O'Gallagher, Nonimaging Optics in Solar Energy (Morgan & Claypool, 2008).

].

Luminescent solar concentrators (LSCs) operate differently by absorbing sunlight and re-emitting it at longer wavelength within the confines of a transparent slab, where the majority (~75%) is trapped by total internal reflection and absorbed by solar cells located at the edges [6

6. M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012). [CrossRef]

8

8. W. G. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators--a review of recent results,” Opt. Express 16(26), 21773–21792 (2008). [CrossRef] [PubMed]

]. Thermodynamically, LSCs can surpass the sine limit because entropy is produced in the Stoke’s shift, consideration of which leads to a theoretical maximum CR > 100 for typical LSC dye molecules [9

9. E. Yablonovitch, “Thermodynamics of the fluorescent planar concentrator,” J. Opt. Soc. Am. 70(11), 1362–1363 (1980). [CrossRef]

11

11. R. Winston, C. Wang, and W. Zhang, “Beating the optical Liouville theorem (How does geometrical optics know the second law of thermodynamics?),” Proc. SPIE 7423, 742309, 742309-3 (2009). [CrossRef]

]. Despite their extraordinary potential, experimental LSC concentration ratios to date are about an order of magnitude lower [7

7. A. Goetzberger, “Fluorescent Solar Energy Concentrators: Principle and Present State of Development,” in High-Efficient Low-Cost Photovoltaics: Recent Developments, V. H. R. G. A. Petrova-Koch, ed. (2009), pp. 159–176.

,12

12. A. Goetzberger and V. Wittwer, “Fluorescent planar collector-concentrators—a review,” Sol. Cells 4(1), 3–23 (1981). [CrossRef]

,13

13. D. J. Farrell and M. Yoshida, “Operating regimes for second generation luminescent solar concentrators,” Prog. Photovolt. Res. Appl. 20(1), 93–99 (2012). [CrossRef]

], though recent developments have demonstrated paths for improvement [14

14. J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun. 2, 343 (2011). [CrossRef] [PubMed]

16

16. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008). [CrossRef] [PubMed]

]. In the following, we explore the opportunity to improve LSC performance by incorporating elements from the field of nonimaging optics [1

1. R. Winston, Selected Papers on Nonimaging Optics (SPIE, New York, NY, 1995).

5

5. J. Chaves, Introduction to Nonimaging Optics (CRC Press, New York, NY, 2008).

] into their design.

2. Nonimaging optics in luminescent concentration

The potential for geometric improvement of LSC concentration ratio was noted early on [17

17. A. Goetzberger and O. Schirmer, “Second-stage concentration with tapers for fluorescent solar collectors,” Appl. Phys. (Berl.) 19(1), 53–58 (1979). [CrossRef]

] and follows directly from the “brightness theorem,” which states that the radiance of light (W/sr/m2) cannot be increased by a passive optical system [4

4. J. J. O'Gallagher, Nonimaging Optics in Solar Energy (Morgan & Claypool, 2008).

]. Loosely, this means that the product of geometric and angular optical extent must remain fixed (or decrease), and that an ideal concentrator transforms light with limited angular extent at its input to fill the full 2π steradian half-space at its output [2

2. R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic, New York, NY, 2005).

,3

3. W. T. Welford and R. Winston, High Collection Non-Imaging Optics (Academic, New York, 1989).

].

Since the angular extent of luminescence reaching the edges of an LSC is naturally restricted by total internal reflection to be outside the critical angle, θcrit, its output intensity (W/m2) can in principle be increased by a factor β = 1/sin(90 − θcrit) with no loss of throughput assuming concentration in one transverse dimension, by appropriately tapering its edges. Most LSCs are made of fluorescent acrylic plastic with a refractive index n ~1.5 and thus there exists potential for ~34% increase in concentration ratio that is essentially free to implement since it only involves changing the mold in which the plastic is cast.

A modest additional intensity increase can also be realized by increasing the refractive index of the tapered LSC edges [17

17. A. Goetzberger and O. Schirmer, “Second-stage concentration with tapers for fluorescent solar collectors,” Appl. Phys. (Berl.) 19(1), 53–58 (1979). [CrossRef]

], however, the added complexity and expense of such an effort arguably outweighs its benefit and therefore is not considered here.

3. CPC-enhanced luminescent concentrators

The trough compound parabolic concentrator (CPC) [1

1. R. Winston, Selected Papers on Nonimaging Optics (SPIE, New York, NY, 1995).

5

5. J. Chaves, Introduction to Nonimaging Optics (CRC Press, New York, NY, 2008).

] is a well-known nonimaging optical element that achieves the 1D sine limit for rays propagating within a plane, and thus is well suited for use as the edge-profile of an LSC. We have investigated the performance of LSCs with CPC-tapered edges through ray-tracing simulation performed using Zemax optical modeling software. Figure 1(a)
Fig. 1 (a) Physical layout of a typical ray-tracing simulation for a conventional luminescent concentrator. Incident light is indicated by blue rays and luminescence by green rays. (b) Radiant intensity distribution of light reaching the edge of a conventional LSC as indicated by the side-view schematic above. Sagittal (S) and transverse (T) angles are defined according the inset of (a) for the cell highlighted in red. (c) Tapering the edge into a compound parabolic concentrator (CPC) geometry as shown in the wireframe side-view above transforms the radiant intensity distribution in (b) to fill the full 2π steradian half-space.
shows the physical layout of a typical simulation for the case of a 100 x 100 x 2 mm LSC composed of dye-doped poly(methyl methacrylate), or acrylic plastic. Light incident normally on the LSC (blue rays) is absorbed and then re-emitted isotropically (green rays) with unity photoluminescent quantum yield and random polarization, with all Fresnel reflections properly accounted for. Those rays trapped within the slab are guided toward perfectly absorbing solar cells located at the edges.

As coherence is justifiably neglected on the LSC length scales treated here, the only influence of wavelength in these simulations is through the LSC absorption spectrum and refractive index dispersion. For the sake of clarity in presenting our results, the simulations here are thus restricted to monochromatic incident (λi = 550 nm) and re-emitted (λem = 650 nm) wavelengths, which are typical for LSC dyes [16

16. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008). [CrossRef] [PubMed]

,18

18. B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008). [CrossRef]

,19

19. L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt. 48(2), 212–220 (2009). [CrossRef] [PubMed]

]. We choose an absorption length, Labs = 2 mm for incident light and parameterize reabsorption loss at λem via the self-absorption (SA) ratio [16

16. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008). [CrossRef] [PubMed]

], defined as the self-absorption length, Lsa, at the emission wavelength divided by Labs. Each simulation is carried out using 5x105 rays, with variation of less than 0.2% between nominally identical simulation runs.

Figure 1(b) shows the radiant intensity distribution (W/sr), relative to the cell normal for a conventional LSC as a function of its sagittal and transverse angles (see Fig. 1(a)). As expected, the distribution does not include angles that correspond to less than the LSC critical angle (θcrit ~42°), evidenced by the “missing” portions at the top and bottom of the circle. However, as shown in Fig. 1(c), tapering the same edge to form a trough CPC with an acceptance angle, θacc = 48°, reduces the output aperture and expands the distribution to fill the full 2π steradian half-space admitted by the solar cell. Note that the CPC faces must be coated with a reflective metal layer (aluminum here, 94% reflectance at normal incidence) to redirect rays impinging below the local critical angle; angle-dependent Fresnel reflection losses are accounted for.

Figure 2(a)
Fig. 2 (a) Intensity increase realized for a 2 mm thick, quasi-1 dimensional CPC LSC relative to its conventional LSC counterpart calculated as a function of the acceptance angle and CPC length. As noted by the dashed green line, there is a limiting “natural” CPC length dependent upon on acceptance angle that is enforced to prevent the CPC edges from closing back in on one another at the input aperture; shorter lengths reflect a truncated CPC. The CPC input aperture is locked to the LSC edge thickness and thus the output aperture varies with CPC length. (b) Relative intensity (left-hand axis) and optical efficiency (right-hand axis) obtained for a “natural” length CPC LSC [e.g. following the green dashed line in (a)] as a function of acceptance angle. The inset illustrates the quasi-1 dimensional approximation used in these calculations, where the LSC is long and narrow with absorbing side faces to eliminate rays propagating significantly outside the sagittal plane.
explores the intensity (or equivalently concentration ratio) enhancement, β, relative to the original LSC that results from this angular transformation as a function of the CPC acceptance angle and its length, LCPC, defined in Fig. 1(c). We begin by treating the special case of a quasi-1D CPC LSC, which is long and narrow with perfectly absorbing transverse sides as depicted in the inset of Fig. 2(b). This arrangement filters out rays propagating in the transverse plane to approximate the case of a CPC LSC that operates predominantly in one dimension for rays incident in the sagittal plane.

In Fig. 2(a), beginning at θacc = 90°, which is equivalent to no CPC at all, the intensity increases with decreasing acceptance angle and reaches an initial plateau with β = 1.23 at θacc = 48°. Stated more directly, at this point, the CPC LSC requires ~20% less solar cell area than the original LSC to absorb the same amount of light.

Figure 3(b) explores the results obtained for a 100 x 100 x 5 mm LSC with truncated CPC edges. Compound parabolic concentrators are often shortened from their natural length to reduce their size and expense at the cost of a slight decrease in concentration ratio [2

2. R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic, New York, NY, 2005).

4

4. J. J. O'Gallagher, Nonimaging Optics in Solar Energy (Morgan & Claypool, 2008).

]. A side effect of such truncation is that the CPC begins to collect light incident outside its nominal range of acceptance angles. This has important implications for the efficiency of ray-recycling in LSCs with low reabsorption according to Fig. 3(b), which shows that ηopt remains above 90% down to a new, secondary threshold θacc ~25°. The corresponding concentration ratio enhancement at this point reaches β = 1.35 for an LSC with no reabsorption, and remains above 30% for SA = 243 (blue dash-dotted line), which is readily achieved through energy transfer among different chromophores [16

16. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008). [CrossRef] [PubMed]

]. To be explicit, in this case, the CPC LSC is operating at 90% of the original LSC efficiency with a 1.5x reduction in solar cell area, leading to an overall 1.35x intensity increase on the cells. Alternatively, one could instead arrange to maintain the same overall power output as the original LSC by increasing the CPC LSC facial collection area (i.e. the area over which sunlight is incident) by approximately 11%.

4. Ray-recycling effects

Ray-recycling among CPCs at different edges of an LSC effectively enables 2D geometric concentration because light arriving with transverse angles outside the acceptance of one CPC is rejected and transformed through reflection to be within the acceptance of another, thereby enabling the use of smaller θacc than would be possible for the purely 1D situation (i.e. Fig. 2). Figure 4(a) shows this process qualitatively, where rays are emitted uniformly from a line source standing near the right-hand edge of a θacc = 40° CPC LSC at constant polar angle, θem = 55° (relative to the normal of the LSC faces) and varying azimuth, ϕ. Rays incident toward the right-hand CPC edge at small azimuth (red and blue rays) are within its nominal acceptance angle and are directly collected, whereas those incident at wide azimuth (green rays) are rejected by the right-hand CPC and collected by the top CPC.

Figure 4(b) shows this behavior from a more quantitative standpoint for ray bundles at different polar emission angles in a natural length CPC LSC with θacc = 40°. Starting at θacc = 50°, which corresponds to the nominal CPC acceptance threshold, rays are rejected by the right CPC for ϕ > 10° and only begin being recycled by the top CPC when ϕ exceeds ~75°. The “gap” between CPC rejection on the right and recollection on the top indicates emission angle combinations (i.e. θem, ϕ) at which light is not transformed through reflection from one CPC into the acceptance of another. This gap narrows as θem increases to 55° and closes completely at θem = 60°, at which point the majority of rays rejected at the right edge are recycled at the top edge. Note that the left and bottom edges also make a small recycling contribution, though these have been omitted for clarity.

As inferred from Fig. 3(b) and demonstrated in Fig. 4(c), truncated edge-CPCs have a greater capacity for ray-recycling due to their relaxed acceptance criteria. Here, even rays at θem = 45°—outside the nominal 45° CPC acceptance angle—are accepted at the right and top edges with reasonable efficiency. As in Fig. 2(b), the azimuth gap between rejection at the right edge and recollection at the top edge narrows with increasing θem, however in this case, a significant portion of the recycling (up to 40%) also takes place at the left and bottom edges (not shown). Thus, by increasing the likelihood of acceptance beyond θacc at any one edge, truncation significantly improves ray-recycling efficiency among all of the edges together, resulting in the high ηopt observed for small θacc in Fig. 3(b). Based on the interplay between θacc and rejection/recollection azimuth, it is likely that further improvement is possible through an optimal combination of LSC shape (e.g. square, triangle, etc.), CPC acceptance angle, and truncation length.

5. Conclusion

In conclusion, we have shown that incorporating nonimaging optics into LSC design can increase concentration ratio by 30% or more at little to no expense. We have identified a ray-recycling effect among nominally one-dimensional edge-CPCs that effectively enables two-dimensional concentration, thereby surpassing the 1D sine limit. More broadly, new LSC designs based on surface-mounted solar cell arrays [14

14. J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun. 2, 343 (2011). [CrossRef] [PubMed]

] are likely to benefit from the integration of nonimaging optical elements, and in particular, LSCs with highly directional luminescence [15

15. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–702 (2011). [CrossRef]

,21

21. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity,” Appl. Phys. Lett. 98(8), 081103 (2011). [CrossRef]

] stand to benefit enormously from nonimaging designs that leverage their low angular extent emission into high output intensity.

Acknowledgments

The authors thank Tom Giebink for help in preparing the figures.

References and links

1.

R. Winston, Selected Papers on Nonimaging Optics (SPIE, New York, NY, 1995).

2.

R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic, New York, NY, 2005).

3.

W. T. Welford and R. Winston, High Collection Non-Imaging Optics (Academic, New York, 1989).

4.

J. J. O'Gallagher, Nonimaging Optics in Solar Energy (Morgan & Claypool, 2008).

5.

J. Chaves, Introduction to Nonimaging Optics (CRC Press, New York, NY, 2008).

6.

M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater. 2(1), 12–35 (2012). [CrossRef]

7.

A. Goetzberger, “Fluorescent Solar Energy Concentrators: Principle and Present State of Development,” in High-Efficient Low-Cost Photovoltaics: Recent Developments, V. H. R. G. A. Petrova-Koch, ed. (2009), pp. 159–176.

8.

W. G. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators--a review of recent results,” Opt. Express 16(26), 21773–21792 (2008). [CrossRef] [PubMed]

9.

E. Yablonovitch, “Thermodynamics of the fluorescent planar concentrator,” J. Opt. Soc. Am. 70(11), 1362–1363 (1980). [CrossRef]

10.

G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater. 21(2-3), 99–111 (1990). [CrossRef]

11.

R. Winston, C. Wang, and W. Zhang, “Beating the optical Liouville theorem (How does geometrical optics know the second law of thermodynamics?),” Proc. SPIE 7423, 742309, 742309-3 (2009). [CrossRef]

12.

A. Goetzberger and V. Wittwer, “Fluorescent planar collector-concentrators—a review,” Sol. Cells 4(1), 3–23 (1981). [CrossRef]

13.

D. J. Farrell and M. Yoshida, “Operating regimes for second generation luminescent solar concentrators,” Prog. Photovolt. Res. Appl. 20(1), 93–99 (2012). [CrossRef]

14.

J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun. 2, 343 (2011). [CrossRef] [PubMed]

15.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics 5(11), 694–702 (2011). [CrossRef]

16.

M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science 321(5886), 226–228 (2008). [CrossRef] [PubMed]

17.

A. Goetzberger and O. Schirmer, “Second-stage concentration with tapers for fluorescent solar collectors,” Appl. Phys. (Berl.) 19(1), 53–58 (1979). [CrossRef]

18.

B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron. 14(5), 1312–1322 (2008). [CrossRef]

19.

L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt. 48(2), 212–220 (2009). [CrossRef] [PubMed]

20.

J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt. 18(18), 3090–3110 (1979). [CrossRef] [PubMed]

21.

N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity,” Appl. Phys. Lett. 98(8), 081103 (2011). [CrossRef]

OCIS Codes
(350.6050) Other areas of optics : Solar energy
(080.4298) Geometric optics : Nonimaging optics

ToC Category:
Solar Concentrators

History
Original Manuscript: June 1, 2012
Revised Manuscript: July 2, 2012
Manuscript Accepted: July 4, 2012
Published: July 10, 2012

Citation
B. D. Markman, R. R. Ranade, and N. C. Giebink, "Nonimaging optics in luminescent solar concentration," Opt. Express 20, A622-A629 (2012)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-20-S5-A622


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Winston, Selected Papers on Nonimaging Optics (SPIE, New York, NY, 1995).
  2. R. Winston, J. C. Minano, and P. Benitez, Nonimaging Optics (Elsevier Academic, New York, NY, 2005).
  3. W. T. Welford and R. Winston, High Collection Non-Imaging Optics (Academic, New York, 1989).
  4. J. J. O'Gallagher, Nonimaging Optics in Solar Energy (Morgan & Claypool, 2008).
  5. J. Chaves, Introduction to Nonimaging Optics (CRC Press, New York, NY, 2008).
  6. M. G. Debije and P. P. C. Verbunt, “Thirty years of luminescent solar concentrator research: Solar energy for the built environment,” Adv. Energy Mater.2(1), 12–35 (2012). [CrossRef]
  7. A. Goetzberger, “Fluorescent Solar Energy Concentrators: Principle and Present State of Development,” in High-Efficient Low-Cost Photovoltaics: Recent Developments, V. H. R. G. A. Petrova-Koch, ed. (2009), pp. 159–176.
  8. W. G. van Sark, K. W. J. Barnham, L. H. Slooff, A. J. Chatten, A. Büchtemann, A. Meyer, S. J. McCormack, R. Koole, D. J. Farrell, R. Bose, E. E. Bende, A. R. Burgers, T. Budel, J. Quilitz, M. Kennedy, T. Meyer, C. M. Donegá, A. Meijerink, and D. Vanmaekelbergh, “Luminescent solar concentrators--a review of recent results,” Opt. Express16(26), 21773–21792 (2008). [CrossRef] [PubMed]
  9. E. Yablonovitch, “Thermodynamics of the fluorescent planar concentrator,” J. Opt. Soc. Am.70(11), 1362–1363 (1980). [CrossRef]
  10. G. Smestad, H. Ries, R. Winston, and E. Yablonovitch, “The thermodynamic limits of light concentrators,” Sol. Energy Mater.21(2-3), 99–111 (1990). [CrossRef]
  11. R. Winston, C. Wang, and W. Zhang, “Beating the optical Liouville theorem (How does geometrical optics know the second law of thermodynamics?),” Proc. SPIE7423, 742309, 742309-3 (2009). [CrossRef]
  12. A. Goetzberger and V. Wittwer, “Fluorescent planar collector-concentrators—a review,” Sol. Cells4(1), 3–23 (1981). [CrossRef]
  13. D. J. Farrell and M. Yoshida, “Operating regimes for second generation luminescent solar concentrators,” Prog. Photovolt. Res. Appl.20(1), 93–99 (2012). [CrossRef]
  14. J. Yoon, L. Li, A. V. Semichaevsky, J. H. Ryu, H. T. Johnson, R. G. Nuzzo, and J. A. Rogers, “Flexible concentrator photovoltaics based on microscale silicon solar cells embedded in luminescent waveguides,” Nat Commun.2, 343 (2011). [CrossRef] [PubMed]
  15. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Resonance-shifting to circumvent reabsorption loss in luminescent solar concentrators,” Nat. Photonics5(11), 694–702 (2011). [CrossRef]
  16. M. J. Currie, J. K. Mapel, T. D. Heidel, S. Goffri, and M. A. Baldo, “High-efficiency organic solar concentrators for photovoltaics,” Science321(5886), 226–228 (2008). [CrossRef] [PubMed]
  17. A. Goetzberger and O. Schirmer, “Second-stage concentration with tapers for fluorescent solar collectors,” Appl. Phys. (Berl.)19(1), 53–58 (1979). [CrossRef]
  18. B. C. Rowan, L. R. Wilson, and B. S. Richards, “Advanced material concepts for luminescent solar concentrators,” IEEE J. Sel. Top. Quantum Electron.14(5), 1312–1322 (2008). [CrossRef]
  19. L. R. Wilson and B. S. Richards, “Measurement method for photoluminescent quantum yields of fluorescent organic dyes in polymethyl methacrylate for luminescent solar concentrators,” Appl. Opt.48(2), 212–220 (2009). [CrossRef] [PubMed]
  20. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt.18(18), 3090–3110 (1979). [CrossRef] [PubMed]
  21. N. C. Giebink, G. P. Wiederrecht, and M. R. Wasielewski, “Strong exciton-photon coupling with colloidal quantum dots in a high-Q bilayer microcavity,” Appl. Phys. Lett.98(8), 081103 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited