## An optimized photon pair source for quantum circuits |

Optics Express, Vol. 21, Issue 12, pp. 13975-13985 (2013)

http://dx.doi.org/10.1364/OE.21.013975

Acrobat PDF (1061 KB)

### Abstract

We implement an ultrafast pulsed type-II parametric down conversion source in a periodically poled KTP waveguide at telecommunication wavelengths with almost identical properties between signal and idler. As such, our source resembles closely a pure, genuine single mode photon pair source with indistinguishable modes. We measure the joint spectral intensity distribution and second order correlation functions of the marginal beams and find with both methods very low effective mode numbers corresponding to a Schmidt number below 1.16. We further demonstrate the indistinguishability as well as the purity of signal and idler photons by Hong-Ou-Mandel interferences between signal and idler and between signal/idler and a coherent field, respectively. Without using narrowband spectral filtering, we achieve a visibility for the interference between signal and idler of 94.8% and determine a purity of more than 80% for the heralded single photon states. Moreover, we measure raw heralding efficiencies of 20.5% and 15.5% for the signal and idler beams corresponding to detector-loss corrected values of 80% and 70%.

© 2013 OSA

## 1. Introduction

1. E. Knill, R. Laflamme, and G.
J. Milburn, “A scheme for efficient quantum computation
with linear optics,” Nature **409**, 46–52 (2001) [CrossRef] [PubMed] .

5. A. B. U’Ren, C. Silberhorn, K. Banaszek, and I.
A. Walmsley, “Efficient conditional preparation of
high-fidelity single photon states for fiber-optic quantum networks,” Phys.
Rev. Lett. **93**, 093601 (2004) [CrossRef] .

8. K. Laiho, K. N. Cassemiro, and C. Silberhorn,
“Producing high fidelity single photons with optimal brightness via waveguided
parametric down-conversion,” Opt. Express **17**, 22823–22837 (2009) [CrossRef] .

9. A. Zavatta, S. Viciani, and M. Bellini,
“Quantum-to-classical transition with single-photon-added coherent states of
light,” Science **306**, 660–662 (2004) [CrossRef] [PubMed] .

11. E. Bimbard, N. Jain, A. MacRae, and A.
I. Lvovsky, “Quantum-optical state engineering up to the
two-photon level,” Nature Photon. **4**, 243–247 (2010) [CrossRef] .

12. W. P. Grice, A. B. U’Ren, and I.
A. Walmsley, “Eliminating frequency and space-time
correlations in multiphoton states,” Phys. Rev. A **64**, 063815 (2001) [CrossRef] .

14. P. P. Rohde, W. Mauerer, and C. Silberhorn,
“Spectral structure and decompositions of optical states, and their
applications,” New J. Phys. **9**, 91 (2007) [CrossRef] .

## 2. Theory

### 2.2. Source characterization

#### Hong Ou Mandel interference between signal and idler

26. C. K. Hong, Z. Y. Ou, and L. Mandel,
“Measurement of subpicosecond time intervals between two photons by
interference,” Phys. Rev. Lett. **59**, 2044–2046 (1987) [CrossRef] [PubMed] .

6. T. Pittman, B. Jacobs, and J. Franson,
“Heralding single photons from pulsed parametric down-conversion,”
Optics Communications **246**, 545–550 (2005) [CrossRef] .

27. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I.
A. Walmsley, “Conditional preparation of single photons
using parametric downconversion: a recipe for purity,” New J. Phys. **10**, 093011 (2008) [CrossRef] .

28. F. W. Sun and C. W. Wong,
“Indistinguishability of independent single photons,” Phys.
Rev. A **79**, 013824 (2009) [CrossRef] .

29. M. Avenhaus, M. V. Chekhova, L. A. Krivitsky, G. Leuchs, and C. Silberhorn,
“Experimental verification of high spectral entanglement for pulsed waveguided
spontaneous parametric down-conversion,” Phys. Rev. A **79**, 043836 (2009) [CrossRef] .

31. P. Kolenderski and W. Wasilewski,
“Derivation of the density matrix of a single photon produced in parametric
down-conversion,” Phys. Rev. A **80**, 015801 (2009) [CrossRef] .

#### Joint spectral intensity and second order correlation function

## 3. Experimental results

### 3.1. Experimental setup

*f*-spectrometer, consisting of two gratings, two lenses and one slit in the center, all separated by the focal length of the lenses. The width of the spectrum can be narrowed by reducing the width of the slit. Additionally, the slit is tilted, effectively reducing the resolution of the spectrometer, to produce Gaussian spectral shapes rather than square-like shapes. The spectrum of both, pump and reference beams, is measured and monitored by an optical spectrum analyzer (OSA).

35. A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn,
“Realistic g(2) measurement of a PDC source with single photon detectors in the
presence of background,” Phys. Status Solidi **8**, 1216–1219 (2011) [CrossRef] .

36. D.
N. Klyshko, “Utilization of vacuum fluctuations as an
optical brightness standard,” Sov. J. Quantum Electron. **7**, 591–595 (1977) [CrossRef] .

38. D. Achilles, C. Silberhorn, and I.
A. Walmsley, “Direct, loss-tolerant characterization of
nonclassical photon statistics,” Phys. Rev. Lett. **97**, 043602 (2006) [CrossRef] [PubMed] .

### 3.2. Spectral measurements

39. M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn,
“Fiber-assisted single-photon spectrograph,” Opt.
Lett. **34**, 2873 (2009) [CrossRef] [PubMed] .

### 3.3. Interference measurements

8. K. Laiho, K. N. Cassemiro, and C. Silberhorn,
“Producing high fidelity single photons with optimal brightness via waveguided
parametric down-conversion,” Opt. Express **17**, 22823–22837 (2009) [CrossRef] .

*g*

^{(2)}(0) values. Compared to other PDC sources without narrowband filtering, Mosley et. al [18

18. P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I.
A. Walmsley, “Heralded generation of ultrafast single
photons in pure quantum states,” Phys. Rev. Lett. **100**, 133601 (2008) [CrossRef] [PubMed] .

43. R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu,
“High-visibility non-classical interference between intrinsically pure heralded
single photons and photons from a weak coherent field,” Phys. Rev.
A **83**, 031805 (2011) [CrossRef] .

### 3.4. Source brightness

^{9}(photon pairs)/J or 3.8 × 10

^{11}(photon pairs)/(J × m), if taken per unit crystal length and pump energy. Taking into account that all photons are generated in a single mode, the source brightness is extremely high, even for low pump powers. For a mean photon number per pulse of 0.1 in the signal beam, the required cw equivalent power at a repetition rate of 1MHz is only 33

*μ*W. By using the full available power in our setup of 2.5mW (2.5nJ per pulse), we are able to reach a mean photon number of approximately 80 photon pairs per pulse. This high number is due to the single mode character of our source and much higher than is expected for a multimode source with the same photon pair generation efficiency.

## 4. Conclusion

*g*

^{(2)}, JSI and interference with a reference beam reveal a purity of above 80%. In order to reach a desirable mean photon number around 0.1 photon pairs per pulse, pump energies as low as 33pJ are required, which significantly simplifies the simultaneous operation of several sources. Our source can be easily combined with identical sources or other optical fields and constitutes a step towards the feasibility of more complex quantum circuits or networks.

## Acknowledgment

## References and links

1. | E. Knill, R. Laflamme, and G.
J. Milburn, “A scheme for efficient quantum computation
with linear optics,” Nature |

2. | T. C. Ralph,
“Quantum optical systems for the implementation of quantum information
processing,” Rep. Prog. Phys. |

3. | J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I.
A. Walmsley, “Boson sampling on a photonic
chip,” Science |

4. | M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White,
“Photonic boson sampling in a tunable circuit,”
Science |

5. | A. B. U’Ren, C. Silberhorn, K. Banaszek, and I.
A. Walmsley, “Efficient conditional preparation of
high-fidelity single photon states for fiber-optic quantum networks,” Phys.
Rev. Lett. |

6. | T. Pittman, B. Jacobs, and J. Franson,
“Heralding single photons from pulsed parametric down-conversion,”
Optics Communications |

7. | A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller,
“Quantum state reconstruction of the single-photon fock state,”
Phys. Rev. Lett. |

8. | K. Laiho, K. N. Cassemiro, and C. Silberhorn,
“Producing high fidelity single photons with optimal brightness via waveguided
parametric down-conversion,” Opt. Express |

9. | A. Zavatta, S. Viciani, and M. Bellini,
“Quantum-to-classical transition with single-photon-added coherent states of
light,” Science |

10. | K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki,
“Photon subtracted squeezed states generated with periodically poled
KTiOPO4,” Opt. Express |

11. | E. Bimbard, N. Jain, A. MacRae, and A.
I. Lvovsky, “Quantum-optical state engineering up to the
two-photon level,” Nature Photon. |

12. | W. P. Grice, A. B. U’Ren, and I.
A. Walmsley, “Eliminating frequency and space-time
correlations in multiphoton states,” Phys. Rev. A |

13. | A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M.
G. Raymer, “Generation of pure-state single-photon
wavepackets by conditional preparation based on spontaneous parametric
downconversion,” Laser Phys. |

14. | P. P. Rohde, W. Mauerer, and C. Silberhorn,
“Spectral structure and decompositions of optical states, and their
applications,” New J. Phys. |

15. | T. B. Pittman and J.
D. Franson, “Violation of bells inequality with photons
from independent sources,” Phys. Rev. Lett. |

16. | P. R. Tapster and J.
G. Rarity, “Photon statistics of pulsed parametric
light,” J. Mod. Opt. |

17. | A. M. Brańczyk, T. C. Ralph, W. Helwig, and C. Silberhorn,
“Optimized generation of heralded fock states using parametric
down-conversion,” New J. Phys. |

18. | P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I.
A. Walmsley, “Heralded generation of ultrafast single
photons in pure quantum states,” Phys. Rev. Lett. |

19. | A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn,
“Highly efficient single-pass source of pulsed single-mode twin beams of
light,” Phys. Rev. Lett. |

20. | O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I.
A. Walmsley, “Tailored photon-pair generation in optical
fibers,” Phys. Rev. Lett. |

21. | J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express21, 13522–13532 (2011) [CrossRef] . |

22. | T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller,
“Generation of degenerate, factorizable, pulsed squeezed light at telecom
wavelengths,” Opt. Express |

23. | M. Tanida, R. Okamoto, and S. Takeuchi,
“Highly indistinguishable heralded single-photon sources using parametric down
conversion,” Opt. Express |

24. | C. K. Law, I. A. Walmsley, and J.
H. Eberly, “Continuous frequency entanglement: Effective
finite hilbert space and entropy control,” Phys. Rev. Lett. |

25. | A. Eckstein, “Mastering quantum light pulses with nonlinear waveguide interactions,” Ph.D. thesis, Naturwis-senschaftliche Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg (2012). |

26. | C. K. Hong, Z. Y. Ou, and L. Mandel,
“Measurement of subpicosecond time intervals between two photons by
interference,” Phys. Rev. Lett. |

27. | P. J. Mosley, J. S. Lundeen, B. J. Smith, and I.
A. Walmsley, “Conditional preparation of single photons
using parametric downconversion: a recipe for purity,” New J. Phys. |

28. | F. W. Sun and C. W. Wong,
“Indistinguishability of independent single photons,” Phys.
Rev. A |

29. | M. Avenhaus, M. V. Chekhova, L. A. Krivitsky, G. Leuchs, and C. Silberhorn,
“Experimental verification of high spectral entanglement for pulsed waveguided
spontaneous parametric down-conversion,” Phys. Rev. A |

30. | W. Wasilewski, P. Kolenderski, and R. Frankowski,
“Spectral density matrix of a single photon measured,” Phys.
Rev. Lett. |

31. | P. Kolenderski and W. Wasilewski,
“Derivation of the density matrix of a single photon produced in parametric
down-conversion,” Phys. Rev. A |

32. | K. N. Cassemiro, K. Laiho, and C. Silberhorn,
“Accessing the purity of a single photon by the width of the HongOuMandel
interference,” New J. Phys. |

33. | R.
J. Glauber, “The quantum theory of optical
coherence,” Phys. Rev. |

34. | A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn,
“Probing multimode squeezing with correlation functions,” New
J. Phys. |

35. | A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn,
“Realistic g(2) measurement of a PDC source with single photon detectors in the
presence of background,” Phys. Status Solidi |

36. | D.
N. Klyshko, “Utilization of vacuum fluctuations as an
optical brightness standard,” Sov. J. Quantum Electron. |

37. | J. G. Rarity, K. D. Ridley, and P.
R. Tapster, “Absolute measurement of detector quantum
efficiency using parametric downconversion,” Appl. Opt. |

38. | D. Achilles, C. Silberhorn, and I.
A. Walmsley, “Direct, loss-tolerant characterization of
nonclassical photon statistics,” Phys. Rev. Lett. |

39. | M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn,
“Fiber-assisted single-photon spectrograph,” Opt.
Lett. |

40. | B. Brecht and C. Silberhorn,
“Characterizing entanglement in pulsed parametric down-conversion using chrono-cyclic
wigner functions,” Phys. Rev. A |

41. | X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu,
“Fiber-based source of photon pairs at telecom band with high temporal coherence and
brightness for quantum information processing,” Opt. Lett. |

42. | H. Takesue and B. Miquel,
“Entanglement swapping using telecom-band photons generated in
fibers,” Opt. Express |

43. | R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu,
“High-visibility non-classical interference between intrinsically pure heralded
single photons and photons from a weak coherent field,” Phys. Rev.
A |

**OCIS Codes**

(190.4390) Nonlinear optics : Nonlinear optics, integrated optics

(230.7380) Optical devices : Waveguides, channeled

(270.0270) Quantum optics : Quantum optics

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: April 26, 2013

Revised Manuscript: May 22, 2013

Manuscript Accepted: May 23, 2013

Published: June 3, 2013

**Citation**

Georg Harder, Vahid Ansari, Benjamin Brecht, Thomas Dirmeier, Christoph Marquardt, and Christine Silberhorn, "An optimized photon pair source for quantum circuits," Opt. Express **21**, 13975-13985 (2013)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-13975

Sort: Year | Journal | Reset

### References

- E. Knill, R. Laflamme, and G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature409, 46–52 (2001). [CrossRef] [PubMed]
- T. C. Ralph, “Quantum optical systems for the implementation of quantum information processing,” Rep. Prog. Phys.69, 853–898 (2006). [CrossRef]
- J. B. Spring, B. J. Metcalf, P. C. Humphreys, W. S. Kolthammer, X.-M. Jin, M. Barbieri, A. Datta, N. Thomas-Peter, N. K. Langford, D. Kundys, J. C. Gates, B. J. Smith, P. G. R. Smith, and I. A. Walmsley, “Boson sampling on a photonic chip,” Science339, 798–801 (2012). [CrossRef] [PubMed]
- M. A. Broome, A. Fedrizzi, S. Rahimi-Keshari, J. Dove, S. Aaronson, T. C. Ralph, and A. G. White, “Photonic boson sampling in a tunable circuit,” Science339, 797–798 (2012).
- A. B. U’Ren, C. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93, 093601 (2004). [CrossRef]
- T. Pittman, B. Jacobs, and J. Franson, “Heralding single photons from pulsed parametric down-conversion,” Optics Communications246, 545–550 (2005). [CrossRef]
- A. I. Lvovsky, H. Hansen, T. Aichele, O. Benson, J. Mlynek, and S. Schiller, “Quantum state reconstruction of the single-photon fock state,” Phys. Rev. Lett.87, 050402 (2001). [CrossRef] [PubMed]
- K. Laiho, K. N. Cassemiro, and C. Silberhorn, “Producing high fidelity single photons with optimal brightness via waveguided parametric down-conversion,” Opt. Express17, 22823–22837 (2009). [CrossRef]
- A. Zavatta, S. Viciani, and M. Bellini, “Quantum-to-classical transition with single-photon-added coherent states of light,” Science306, 660–662 (2004). [CrossRef] [PubMed]
- K. Wakui, H. Takahashi, A. Furusawa, and M. Sasaki, “Photon subtracted squeezed states generated with periodically poled KTiOPO4,” Opt. Express15, 3568–3574 (2007). [CrossRef] [PubMed]
- E. Bimbard, N. Jain, A. MacRae, and A. I. Lvovsky, “Quantum-optical state engineering up to the two-photon level,” Nature Photon.4, 243–247 (2010). [CrossRef]
- W. P. Grice, A. B. U’Ren, and I. A. Walmsley, “Eliminating frequency and space-time correlations in multiphoton states,” Phys. Rev. A64, 063815 (2001). [CrossRef]
- A. B. U’Ren, C. Silberhorn, K. Banaszek, I. A. Walmsley, R. Erdmann, W. P. Grice, and M. G. Raymer, “Generation of pure-state single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion,” Laser Phys.15, 146 (2005).
- P. P. Rohde, W. Mauerer, and C. Silberhorn, “Spectral structure and decompositions of optical states, and their applications,” New J. Phys.9, 91 (2007). [CrossRef]
- T. B. Pittman and J. D. Franson, “Violation of bells inequality with photons from independent sources,” Phys. Rev. Lett.90, 240401 (2003). [CrossRef] [PubMed]
- P. R. Tapster and J. G. Rarity, “Photon statistics of pulsed parametric light,” J. Mod. Opt.45, 595–604 (1998). [CrossRef]
- A. M. Brańczyk, T. C. Ralph, W. Helwig, and C. Silberhorn, “Optimized generation of heralded fock states using parametric down-conversion,” New J. Phys.12, 063001 (2010). [CrossRef]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, P. Wasylczyk, A. B. U’Ren, C. Silberhorn, and I. A. Walmsley, “Heralded generation of ultrafast single photons in pure quantum states,” Phys. Rev. Lett.100, 133601 (2008). [CrossRef] [PubMed]
- A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Highly efficient single-pass source of pulsed single-mode twin beams of light,” Phys. Rev. Lett.106, 013603 (2011). [CrossRef] [PubMed]
- O. Cohen, J. S. Lundeen, B. J. Smith, G. Puentes, P. J. Mosley, and I. A. Walmsley, “Tailored photon-pair generation in optical fibers,” Phys. Rev. Lett.102, 123603 (2009). [CrossRef] [PubMed]
- J. B. Spring, P. S. Salter, B. J. Metcalf, P. C. Humphreys, M. Moore, N. Thomas-Peter, M. Barbieri, X.-M. Jin, N. K. Langford, W. S. Kolthammer, M. J. Booth, and I. A. Walmsley, “On-chip low loss heralded source of pure single photons,” Opt. Express 21, 13522–13532 (2011). [CrossRef]
- T. Gerrits, M. J. Stevens, B. Baek, B. Calkins, A. Lita, S. Glancy, E. Knill, S. W. Nam, R. P. Mirin, R. H. Hadfield, R. S. Bennink, W. P. Grice, S. Dorenbos, T. Zijlstra, T. Klapwijk, and V. Zwiller, “Generation of degenerate, factorizable, pulsed squeezed light at telecom wavelengths,” Opt. Express19, 24434–24447 (2011). [CrossRef] [PubMed]
- M. Tanida, R. Okamoto, and S. Takeuchi, “Highly indistinguishable heralded single-photon sources using parametric down conversion,” Opt. Express20, 15275 (2012). [CrossRef] [PubMed]
- C. K. Law, I. A. Walmsley, and J. H. Eberly, “Continuous frequency entanglement: Effective finite hilbert space and entropy control,” Phys. Rev. Lett.84, 5304–5307 (2000). [CrossRef] [PubMed]
- A. Eckstein, “Mastering quantum light pulses with nonlinear waveguide interactions,” Ph.D. thesis, Naturwis-senschaftliche Fakultät der Friedrich-Alexander-Universität Erlangen-Nürnberg (2012).
- C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59, 2044–2046 (1987). [CrossRef] [PubMed]
- P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008). [CrossRef]
- F. W. Sun and C. W. Wong, “Indistinguishability of independent single photons,” Phys. Rev. A79, 013824 (2009). [CrossRef]
- M. Avenhaus, M. V. Chekhova, L. A. Krivitsky, G. Leuchs, and C. Silberhorn, “Experimental verification of high spectral entanglement for pulsed waveguided spontaneous parametric down-conversion,” Phys. Rev. A79, 043836 (2009). [CrossRef]
- W. Wasilewski, P. Kolenderski, and R. Frankowski, “Spectral density matrix of a single photon measured,” Phys. Rev. Lett.99, 123601 (2007). [CrossRef] [PubMed]
- P. Kolenderski and W. Wasilewski, “Derivation of the density matrix of a single photon produced in parametric down-conversion,” Phys. Rev. A80, 015801 (2009). [CrossRef]
- K. N. Cassemiro, K. Laiho, and C. Silberhorn, “Accessing the purity of a single photon by the width of the HongOuMandel interference,” New J. Phys.12, 113052 (2010). [CrossRef]
- R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev.130, 2529–2539 (1963). [CrossRef]
- A. Christ, K. Laiho, A. Eckstein, K. N. Cassemiro, and C. Silberhorn, “Probing multimode squeezing with correlation functions,” New J. Phys.13, 033027 (2011). [CrossRef]
- A. Eckstein, A. Christ, P. J. Mosley, and C. Silberhorn, “Realistic g(2) measurement of a PDC source with single photon detectors in the presence of background,” Phys. Status Solidi8, 1216–1219 (2011). [CrossRef]
- D. N. Klyshko, “Utilization of vacuum fluctuations as an optical brightness standard,” Sov. J. Quantum Electron.7, 591–595 (1977). [CrossRef]
- J. G. Rarity, K. D. Ridley, and P. R. Tapster, “Absolute measurement of detector quantum efficiency using parametric downconversion,” Appl. Opt.26, 4616–4619 (1987). [CrossRef] [PubMed]
- D. Achilles, C. Silberhorn, and I. A. Walmsley, “Direct, loss-tolerant characterization of nonclassical photon statistics,” Phys. Rev. Lett.97, 043602 (2006). [CrossRef] [PubMed]
- M. Avenhaus, A. Eckstein, P. J. Mosley, and C. Silberhorn, “Fiber-assisted single-photon spectrograph,” Opt. Lett.34, 2873 (2009). [CrossRef] [PubMed]
- B. Brecht and C. Silberhorn, “Characterizing entanglement in pulsed parametric down-conversion using chrono-cyclic wigner functions,” Phys. Rev. A87, 053810 (2013). [CrossRef]
- X. Li, L. Yang, L. Cui, Z. Y. Ou, and D. Yu, “Fiber-based source of photon pairs at telecom band with high temporal coherence and brightness for quantum information processing,” Opt. Lett.33, 593 (2008). [CrossRef] [PubMed]
- H. Takesue and B. Miquel, “Entanglement swapping using telecom-band photons generated in fibers,” Opt. Express17, 10748–10756 (2009). [CrossRef] [PubMed]
- R.-B. Jin, J. Zhang, R. Shimizu, N. Matsuda, Y. Mitsumori, H. Kosaka, and K. Edamatsu, “High-visibility non-classical interference between intrinsically pure heralded single photons and photons from a weak coherent field,” Phys. Rev. A83, 031805 (2011). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.