OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 12 — Jun. 17, 2013
  • pp: 14548–14554
« Show journal navigation

A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit

Xiang Zhang, Zhi Li, Jianjun Chen, Song Yue, and Qihuang Gong  »View Author Affiliations


Optics Express, Vol. 21, Issue 12, pp. 14548-14554 (2013)
http://dx.doi.org/10.1364/OE.21.014548


View Full Text Article

Acrobat PDF (3306 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An asymmetric T-shape nanoslit in a metal film is proposed to act as an efficient dichroic surface-plasmon-polariton (SPP) splitter, which is composed of a single nanoslit in immediate contacting with two nanogrooves with different widths. Simulations show that, due to the interferences of SPPs in the upper part of the asymmetric T-shape nanoslit, the generated SPPs propagating to the left and right directions on the front metal surface can be manipulated nearly independently by altering the right and left groove widths, respectively. Based on such effects, a dichroic SPP splitter is demonstrated and the splitting wavelengths can easily be adjusted. High splitting ratios of 31:1 and 1:12 at splitting wavelengths of 680 nm and 884 nm are numerically presented with a device’s lateral dimension of only 1200 nm. Further experimental results match the simulations well.

© 2013 OSA

1. Introduction

Surface plasmon polaritons (SPPs) are electromagnetic waves that propagate along metal-dielectric interface and are coupled to the free electrons in the metal. They may be exploited to realize highly integrated photonic circuits [1

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

3

3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008). [CrossRef]

], owing to the capability to miniaturize the sizes of photonic devices into subwavelength scales. However, before such applications coming true, it is essential to generate SPPs effectively and flexibly. For instance, unidirectional SPP launchers have attracted great research interest [4

4. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007). [CrossRef]

10

10. S. B. Raghunathan, C. H. Gan, T. van Dijk, B. Ea Kim, H. F. Schouten, W. Ubachs, P. Lalanne, and T. D. Visser, “Plasmon switching: observation of dynamic surface plasmon steering by selective mode excitation in a sub-wavelength slit,” Opt. Express 20(14), 15326–15335 (2012). [CrossRef] [PubMed]

], which can excite SPPs to a unique propagation direction. Furthermore, bidirectional dichroic SPP splitters have also been proposed [11

11. Q. Q. Gan, B. S. Guo, G. F. Song, L. H. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90(16), 161130 (2007). [CrossRef]

15

15. X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102(9), 091110 (2013). [CrossRef]

], which are capable of generating and splitting SPPs at two different wavelengths into opposite directions. For example, by adding two gratings with different periods on the opposite sides of a nanoslit, SPPs at two different wavelengths corresponding to the grating periods can be guided into desired directions [11

11. Q. Q. Gan, B. S. Guo, G. F. Song, L. H. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90(16), 161130 (2007). [CrossRef]

, 12

12. Q. Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett. 35(24), 4181–4183 (2010). [CrossRef] [PubMed]

]. However, these additional gratings increase the device size significantly (>10 μm), which are undesired for high density integration. A compact SPP splitter was realized by coating an asymmetric nanoslit with a dielectric film [13

13. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Ultracompact surface-plasmon-polariton splitter based on modulations of quasicylindrical waves to the total field,” J. Appl. Phys. 109(7), 073102 (2011). [CrossRef]

]. The shortcoming is the greatly decreased SPP propagation length and device flexibility due to the dielectric film coating. Utilizing different SPP reflecting properties of nanogrooves with different dimensions, a simple plasmonic structure consisting of a pair of parallel nanogrooves with different widths was also suggested to act as a dichroic SPP splitter [14

14. J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat Commun 2, 525 (2011). [CrossRef] [PubMed]

]. But the splitting ratios (defined as the ratio between the launched SPP intensities to the two opposite directions) are quite low, which are only 1:2 and 3:1 at the two splitting wavelengths. Recently, another design of SPP splitter has been proposed, which is based on a composite cavity structure [15

15. X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102(9), 091110 (2013). [CrossRef]

]. However, the measured splitting ratios (1:5 and 6:1) are much lower than numerical predictions (1:24 and 23:1), because the high fabricating accuracy required by this complex composite structure was not easy to satisfy in the real experiment.

In this letter, we propose to utilize an asymmetric T-shape nanoslit to realize a compact dichroic SPP splitter. T-shape nanoslits have been used in some plasmonic studies such as plasmon-induced transparency [16

16. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012). [CrossRef] [PubMed]

], nanofocusing [17

17. J. J. Chen, C. Wang, G. W. Lu, W. Q. Li, J. H. Xiao, and Q. H. Gong, “Highly efficient nanofocusing based on a T-shape micro-slit surrounded with multi-slits,” Opt. Express 20(16), 17734–17740 (2012). [CrossRef] [PubMed]

], electromagnetic enhancement [18

18. Z. W. Zeng and H. T. Liu, “Electromagnetic enhancement by a T-shaped metallic nanogroove: impact of surface plasmon polaritons and other surface waves,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1669–1675 (2012). [CrossRef]

] and multiband plasmonic absorber [19

19. Y. X. Cui, K. H. Fung, J. Xu, S. L. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012). [CrossRef] [PubMed]

]. This structure is relatively easy to fabricate and does not require a quite high fabricating accuracy. Here, we show that, because of the SPP interferences in the asymmetric T-shape nanoslit, the intensities of the SPPs generated to the left and right directions can be manipulated nearly independently by changing the right and left groove widths, respectively. Based on such effects, a dichroic SPP splitter with high splitting ratios of 31:1 and 1:12 at splitting wavelengths of 680 nm and 884 nm are numerically presented with a structure’s lateral dimension of only 1200 nm. Moreover, further experimental results match well with the simulations.

2. Analyses and simulations

The proposed asymmetric T-shape nanoslit is schematically shown in Fig. 1(a)
Fig. 1 (a) Schematic of the proposed asymmetric T-shape structure and geometrical parameters. (b) Schematic diagram of the generation progress of the left-going SPPs.
, consisting of a conventional nanoslit (width of wslit) in immediate contacting with two nanogrooves of different widths (wG1 and wG2) in a 450-nm-thick gold film. When p-polarized light (magnetic vector parallel to the slit) illuminates the structure from the back side with normal incidence, eigenmodes in the lower-part nanoslit are excited and such modes can generate two SPPs propagating along the bottom of the two nanogrooves in opposite directions. These SPPs are reflected by the two metal walls at the edges of the T-shape nanoslit, and will interfere with each other. This means that the upper part of the asymmetric structure acts as a SPP cavity. SPPs in the cavity also partly scatter into SPPs propagating along the front metal surface at the two metal walls. Basically, the intensities of the left-going and right-going SPPs on the front metal surface are proportional to the total intensities of the left-going and right-going SPPs in the cavity, respectively. Considering the left-going SPPs in the cavity, they mainly come from the interference between two components. One is the directly excited left-going SPPs from the lower nanoslit, and the other is the directly excited right-going SPPs from the lower nanoslit after being reflected by the right metal wall, as schematically shown in Fig. 1(b). The phase difference between these two interfering components can be expressed as:
Φ=φ0+ksppwG2+φr+ksppwG2+φt=φ0+φr+φt+2ksppwG2
(1)
Here, φ0 denotes the initial phase difference between the directly generated left-going and right-going SPPs by the lower nanoslit; ksppwG2 represents the propagating phase shift of the right-going SPPs from being excited to the right metal wall, with kspp being the SPP wave vector on the single gold-air interface [1

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

]; φr denotes the SPP reflection phase shift at the right metal wall; the second ksppwG2 is the propagating phase shift of the reflected SPPs from the right metal wall to the central nanoslit; and φt represents the SPP transmission phase shift across the central nanoslit. When Ф is equal to even or odd multiples of π, constructive or destructive interference occurs. The interference period referring to wG2 should be equal to half of the SPP wavelength, λspp /2, with λspp = 2π/kspp. If we fix other parameters and only allow the two groove widths wG1 and wG2 to be changed, only the last term (2ksppwG2) in Eq. (1) will get changed. According to Eq. (1), we can manipulate the intensity of the total left-going SPPs in the cavity and subsequently the SPP intensity to the left on the front metal surface simply by altering the right groove width wG2. Similarly, because of the symmetry of the proposed T-shape structure, it can be deduced that the intensity of the right-going SPPs on the front metal surface can be manipulated by changing the left groove width wG1. Since the SPP intensities to the left and right directions on the front surface can be controlled nearly independently by altering wG2 and wG1, the proposed asymmetric T-shape nanoslit may work as a dichroic SPP splitter if only we adjust wG1 and wG2 to ensure that destructive interferences occur at different wavelengths for the left-going and right-going SPPs. For instance, at the splitting wavelength to the right direction, we can choose a proper wG2 to make Ф equal to odd multiples of π. Then, the left-going SPPs are effectively suppressed due to the destructive interference, while the right-going SPPs are not with a different wG1. Therefore, SPPs mostly propagate to the right direction at this wavelength. Similar SPP splitting behavior to the left direction at a different wavelength can be obtained by choosing a proper wG1. Through such a way, a dichroic SPP splitter can be realized.

One thing should be pointed out is that, in the above analysis, SPP reflections are considered for only once for simplification, which corresponds to a first-order approximation. This simplification is reasonable considering the low SPP reflectance at a shallow metal wall [15

15. X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102(9), 091110 (2013). [CrossRef]

]. Although multiple reflections of SPPs do introduce higher-order corrections to the results, the main conclusions of the above analysis are not affected. Another simplification is that only SPPs are consider, whereas the electromagnetic fields radiated by the nanoslit can be viewed as a combination of SPPs and quasi-cylindrical waves (CWs) within short distances. Because the wave vector of CWs is nearly the same as that of SPPs on the single gold-air interface [13

13. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Ultracompact surface-plasmon-polariton splitter based on modulations of quasicylindrical waves to the total field,” J. Appl. Phys. 109(7), 073102 (2011). [CrossRef]

], CWs almost do not affect the phase differences in the interferences but only affect the absolute field amplitudes. Therefore, the above simplified model can predict the main properties of the proposed T-shape structure, which is well verified by the following rigorous numerical simulation results.

3. Experimental results

Experimentally, the asymmetric T-shape nanoslit was fabricated using a focused ion beam (FIB) in a 450-nm-thick gold film which was evaporated on a glass substrate with a 30-nm-thick titanium adhesion layer. At first, a 20-μm-long nanoslit (width of 180 nm) was etched through the gold film by using a relatively long FIB etching time. Then, two 10-μm-long nanogrooves with different widths were etched partly into the gold film together by using a relatively short FIB etching time. The two nanogrooves are in immediate contact with the lower half of the single nanoslit, forming the T-shape structure. Hence, the upper-half single nanoslit acts as an in-chip reference and the lower-half structure is the proposed SPP splitter. Figure 3(a)
Fig. 3 (a) SEM image of the experimental structure. (b) Measured splitting ratios (scatters) of the proposed SPP splitter at different wavelengths and corresponding simulation results (lines). Typical CCD images displaying the scattered light signals from the nanoslit and the decoupling gratings at the splitting wavelengths of (c) λ = 700 nm and (d) λ = 880 nm.
shows a scanning electron microscope (SEM) image of the experimental structure. Two gratings with periods of 800 nm lying symmetrically on the two sides of the slit with a distance of 15 μm are designed to scatter SPPs. So the far-field detected scattered signals can give a direct measurement on the relative intensities of the evanescent SPPs. The measured geometrical parameters are about: wG1 = 420 nm, wG2 = 600 nm, wslit = 180 nm and h = 150 nm.

4. Conclusion

In summary, we have proposed a dichroic SPP splitter by using an asymmetric T-shape nanoslit. Simulations and experiments demonstrated that such structure was capable of generating and splitting SPPs of two different wavelengths to opposite directions, which was a direct result of SPP interferences in the asymmetric T-shape nanoslit. High splitting ratios (ηL/ηR) of 13:1 at λ = 700 nm and 1:12 at λ = 880 nm were experimentally achieved with a splitter’s lateral dimension of only 1200 nm, which were in good accordance with the simulations. Moreover, the proposed dichroic SPP splitter showed good flexibility in adjusting the splitting wavelengths and was easy to fabricate. So such a compact device with high performance may have wide applications in highly integrated plasmonic circuits.

Acknowledgments

This work was supported by the National Basic Research Program of China (Grant Nos. 2009CB930504, 2010CB923200, and 2013CB328704) and the National Natural Science Foundation of China (Grant Nos. 11121091, 11134001, and 11204018).

References and links

1.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

2.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]

3.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008). [CrossRef]

4.

F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys. 3(5), 324–328 (2007). [CrossRef]

5.

G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett. 9(1), 327–331 (2009). [CrossRef] [PubMed]

6.

I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express 17(9), 7228–7232 (2009). [CrossRef] [PubMed]

7.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett. 97(4), 041113 (2010). [CrossRef]

8.

A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett. 11(10), 4207–4212 (2011). [CrossRef] [PubMed]

9.

Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett. 12(9), 4853–4858 (2012). [CrossRef] [PubMed]

10.

S. B. Raghunathan, C. H. Gan, T. van Dijk, B. Ea Kim, H. F. Schouten, W. Ubachs, P. Lalanne, and T. D. Visser, “Plasmon switching: observation of dynamic surface plasmon steering by selective mode excitation in a sub-wavelength slit,” Opt. Express 20(14), 15326–15335 (2012). [CrossRef] [PubMed]

11.

Q. Q. Gan, B. S. Guo, G. F. Song, L. H. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett. 90(16), 161130 (2007). [CrossRef]

12.

Q. Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett. 35(24), 4181–4183 (2010). [CrossRef] [PubMed]

13.

J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Ultracompact surface-plasmon-polariton splitter based on modulations of quasicylindrical waves to the total field,” J. Appl. Phys. 109(7), 073102 (2011). [CrossRef]

14.

J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat Commun 2, 525 (2011). [CrossRef] [PubMed]

15.

X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett. 102(9), 091110 (2013). [CrossRef]

16.

J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett. 12(5), 2494–2498 (2012). [CrossRef] [PubMed]

17.

J. J. Chen, C. Wang, G. W. Lu, W. Q. Li, J. H. Xiao, and Q. H. Gong, “Highly efficient nanofocusing based on a T-shape micro-slit surrounded with multi-slits,” Opt. Express 20(16), 17734–17740 (2012). [CrossRef] [PubMed]

18.

Z. W. Zeng and H. T. Liu, “Electromagnetic enhancement by a T-shaped metallic nanogroove: impact of surface plasmon polaritons and other surface waves,” IEEE J. Sel. Top. Quantum Electron. 18(6), 1669–1675 (2012). [CrossRef]

19.

Y. X. Cui, K. H. Fung, J. Xu, S. L. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express 20(16), 17552–17559 (2012). [CrossRef] [PubMed]

20.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: April 10, 2013
Revised Manuscript: May 25, 2013
Manuscript Accepted: May 29, 2013
Published: June 11, 2013

Citation
Xiang Zhang, Zhi Li, Jianjun Chen, Song Yue, and Qihuang Gong, "A dichroic surface-plasmon-polariton splitter based on an asymmetric T-shape nanoslit," Opt. Express 21, 14548-14554 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-12-14548


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  3. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008). [CrossRef]
  4. F. López-Tejeira, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, T. W. Ebbesen, J. R. Krenn, I. P. Radko, S. I. Bozhevolnyi, M. U. González, J. C. Weeber, and A. Dereux, “Efficient unidirectional nanoslit couplers for surface plasmons,” Nat. Phys.3(5), 324–328 (2007). [CrossRef]
  5. G. Lerosey, D. F. P. Pile, P. Matheu, G. Bartal, and X. Zhang, “Controlling the phase and amplitude of plasmon sources at a subwavelength scale,” Nano Lett.9(1), 327–331 (2009). [CrossRef] [PubMed]
  6. I. P. Radko, S. I. Bozhevolnyi, G. Brucoli, L. Martín-Moreno, F. J. García-Vidal, and A. Boltasseva, “Efficient unidirectional ridge excitation of surface plasmons,” Opt. Express17(9), 7228–7232 (2009). [CrossRef] [PubMed]
  7. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Efficient unidirectional generation of surface plasmon polaritons with asymmetric single-nanoslit,” Appl. Phys. Lett.97(4), 041113 (2010). [CrossRef]
  8. A. Baron, E. Devaux, J. C. Rodier, J. P. Hugonin, E. Rousseau, C. Genet, T. W. Ebbesen, and P. Lalanne, “Compact antenna for efficient and unidirectional launching and decoupling of surface plasmons,” Nano Lett.11(10), 4207–4212 (2011). [CrossRef] [PubMed]
  9. Y. Liu, S. Palomba, Y. Park, T. Zentgraf, X. Yin, and X. Zhang, “Compact magnetic antennas for directional excitation of surface plasmons,” Nano Lett.12(9), 4853–4858 (2012). [CrossRef] [PubMed]
  10. S. B. Raghunathan, C. H. Gan, T. van Dijk, B. Ea Kim, H. F. Schouten, W. Ubachs, P. Lalanne, and T. D. Visser, “Plasmon switching: observation of dynamic surface plasmon steering by selective mode excitation in a sub-wavelength slit,” Opt. Express20(14), 15326–15335 (2012). [CrossRef] [PubMed]
  11. Q. Q. Gan, B. S. Guo, G. F. Song, L. H. Chen, Z. Fu, Y. J. Ding, and F. J. Bartoli, “Plasmonic surface-wave splitter,” Appl. Phys. Lett.90(16), 161130 (2007). [CrossRef]
  12. Q. Q. Gan and F. J. Bartoli, “Bidirectional surface wave splitter at visible frequencies,” Opt. Lett.35(24), 4181–4183 (2010). [CrossRef] [PubMed]
  13. J. J. Chen, Z. Li, S. Yue, and Q. H. Gong, “Ultracompact surface-plasmon-polariton splitter based on modulations of quasicylindrical waves to the total field,” J. Appl. Phys.109(7), 073102 (2011). [CrossRef]
  14. J. S. Liu, R. A. Pala, F. Afshinmanesh, W. Cai, and M. L. Brongersma, “A submicron plasmonic dichroic splitter,” Nat Commun2, 525 (2011). [CrossRef] [PubMed]
  15. X. Zhang, Z. Li, J. Chen, H. Liao, S. Yue, and Q. Gong, “A submicron surface-plasmon-polariton dichroic splitter based on a composite cavity structure,” Appl. Phys. Lett.102(9), 091110 (2013). [CrossRef]
  16. J. Chen, Z. Li, S. Yue, J. Xiao, and Q. Gong, “Plasmon-induced transparency in asymmetric T-shape single slit,” Nano Lett.12(5), 2494–2498 (2012). [CrossRef] [PubMed]
  17. J. J. Chen, C. Wang, G. W. Lu, W. Q. Li, J. H. Xiao, and Q. H. Gong, “Highly efficient nanofocusing based on a T-shape micro-slit surrounded with multi-slits,” Opt. Express20(16), 17734–17740 (2012). [CrossRef] [PubMed]
  18. Z. W. Zeng and H. T. Liu, “Electromagnetic enhancement by a T-shaped metallic nanogroove: impact of surface plasmon polaritons and other surface waves,” IEEE J. Sel. Top. Quantum Electron.18(6), 1669–1675 (2012). [CrossRef]
  19. Y. X. Cui, K. H. Fung, J. Xu, S. L. He, and N. X. Fang, “Multiband plasmonic absorber based on transverse phase resonances,” Opt. Express20(16), 17552–17559 (2012). [CrossRef] [PubMed]
  20. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited