OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15237–15246
« Show journal navigation

Theoretical and experimental investigation of direct detection optical OFDM transmission using beat interference cancellation receiver

S. Alireza Nezamalhosseini, Lawrence R. Chen, Qunbi Zhuge, Mahdi Malekiha, Farokh Marvasti, and David V. Plant  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15237-15246 (2013)
http://dx.doi.org/10.1364/OE.21.015237


View Full Text Article

Acrobat PDF (772 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically and experimentally evaluate a beat interference cancellation receiver (BICR) for direct detection optical orthogonal frequency-division multiplexing (DD-OFDM) systems that improves the spectral efficiency (SE) by reducing the guard band between the optical carrier and the optical OFDM signal while mitigating the impact of signal-signal mixing interference (SSMI). Experimental results show that the bit-error-rate (BER) is improved by about three orders of magnitude compared to the conventional receiver after 320 km single-mode fiber (SMF) transmission for 10 Gb/s data with a 4-QAM modulation using reduced guard band single-sideband OFDM (RSSB-OFDM) signal with 1.67 bits/s/Hz SE.

© 2013 osa

1. Introduction

The fast growth of Internet applications such as voice, video, and gaming has lead to a huge demand on the bandwidth of optical networks. To satisfy this increasing demand, extensive research has been conducted to increase the spectral efficiency (SE) both in access [1

1. N. Cvijetic, “OFDM for next-generation optical access networks,” IEEE J. Lightw. Technol. 30(4), 384–398 (2012) [CrossRef] .

] and core fiber optic networks [2

2. Peter J. Winzer, “High-spectral-efficiency optical modulation formats,” IEEE J. Lightw. Technol. 30(24), 3824–3835 (2012) [CrossRef] .

]. Optical orthogonal frequency division multiplexing (OOFDM) has gained much attention as one of the attractive candidates for future optical communication systems [3

3. J. Armstrong, “OFDM for optical communications,” IEEE J. Lightw. Technol. 27(3), 189–204 (2009) [CrossRef] .

]. Moreover, it has been shown that chromatic dispersion (CD) and polarization mode dispersion (PMD) in single-mode fiber (SMF) systems could be compensated electrically using digital signal processor (DSP) at the receiver [4

4. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightw. Technol. 26(1), 196–203 (2008) [CrossRef] .

,5

5. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008) [CrossRef] [PubMed] .

]. OOFDM systems can be classified into two categories according to their underlying techniques and applications: Coherent OFDM (CO-OFDM) [6

6. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?,” J. Optical Networking 7(3), 234–255 (2008) [CrossRef] .

], and Direct Detection OFDM (DD-OFDM) [4

4. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightw. Technol. 26(1), 196–203 (2008) [CrossRef] .

].

In DD-OFDM, the optical single-sideband OFDM (SSB-OFDM) has been proposed since it can overcome the inherent CD-induced fading problem associated with double-sideband (DSB) transmission [4

4. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightw. Technol. 26(1), 196–203 (2008) [CrossRef] .

]. Generally, the transmitted OFDM signal is recovered by detecting the carrier and signal mixing products [12

12. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006) [CrossRef] [PubMed] .

] in a square-law PD. However, this desired mixing product is affected by the signal-signal mixing interference (SSMI). Several methods have been proposed to minimize the penalty due to SSMI. In offset SSB-OFDM (OSSB-OFDM) [12

12. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006) [CrossRef] [PubMed] .

], a sufficient guard band (GB) is allocated between the optical carrier and the OOFDM signal such that the SSMI and desired RF spectra are nonoverlapping. The minimum GB should be equal to the bandwidth of OOFDM signal; therefore, the SE is half of that in the CO-OFDM system. In order to increase the SE, the GB should be reduced or even eliminated. However, in this case the system performance is degraded due to SSMI. Several methods have been proposed to address this issue [13

13. I. V. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006) [CrossRef] [PubMed] .

15

15. Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,”IEEE Photon. Technol. Lett. 22(11), 736–738 (2010) [CrossRef] .

]. It is worth mentioning that improving the SE in DD-OFDM systems results in the electronic components’ bandwidth requirements relaxation at both the transmitter and receiver. This leads to reduce required PD bandwidth, ADC and DAC sampling rates. In addition, for wavelength-division multiplexing SSB-OFDM (WDM-SSB-OFDM) systems [16

16. D. Qian, J. Yu, J. Hu, L. Zong, L. Xu, and T. Wang, “10 Gbit/s WDM-SSB-OFDM transmissions over 1000 km SSMF using conventional DFB lasers and direct-detection,” Electronic Letter 44(3), 223–225 (2008) [CrossRef] .

] where several SSB-OFDM signals are transmitted over different wavelengths, the aggregate per-fiber capacity can be increased.

In [17

17. W. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in European Conference and Exhibition on Optical Communication(ECOC2010), paper Tu.4.A.2 [CrossRef] .

], a beat interference cancellation receiver (BICR) that mitigates SSMI in Reduced GB SSB-OFDM (RSSB-OFDM) systems where the GB is less than the bandwidth of the OOFDM signal was proposed. This BICR is relatively simple since it requires only one optical filter and one balanced receiver in the front end without the need for careful polarization management. The impact of filter parameters (e.g., order, bandwidth) on the system performance was assessed using numerical simulations. Furthermore, system tolerance to both phase noise and PMD can be improved using the BICR. In this paper, the working principle of the BICR is analyzed in detail taking into account all the linear impairments from the transmitter to the receiver. Moreover, the BICR is experimentally verified by transmitting 10 Gb/s data with 4-quadrature amplitude modulation (4-QAM) using RSSB-OFDM signals over 320 km SMF. The experimental results reveal that the bit-error-rate (BER) is improved by three orders of magnitude compared to the conventional receiver when a fourth-order super-Gaussian filter is used.

2. System model

Fig. 1 Principle model for SSB-OFDM systems.

If the fiber nonlinearity remains sufficiently low, the optical fiber can be modeled as a linear system (HCD(f)). Hence, the signal, and the added amplified spontaneous emission (ASE) noise by erbium-doped-fiber-amplifiers (EDFAs) can be assumed independent. Therefore, the received signal at the PD can be represented as [11

11. W. Peng, B. Zhang, K. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” IEEE J. Lightw. Technol. 27(24), 5723–5735 (2009) [CrossRef] .

]
r(t)=HTF(f0)ej(2πf0t+ϕ(t))+βej(2π(f0+mBN)t+ϕ(t))k=0N1akHTF(f0+(m+k)BN)ej2πkBNt+nASE(t),
(2)
where HTF(f) = HO(f)HT(f)HCD(f) denotes the overall transfer function from the transmitter to the receiver, and nASE(t) represents the ASE noise as complex circular AWGN. We denote the frequency responses of the optical fiber, and optical filters as HCD(f), and HO(f), respectively. At the receiver, the PD is modeled as an ideal square-law device [20

20. G. Einarsson, Principles of Lightwave Communications.New York: McGraw-Hill, 1996.

] with quantum efficiency equal to one. Therefore, the resultant photocurrent after the PD can be expressed as follows
q(t)=|r(t)|2=|HTF(f0)|2+2βRe{ej2πmBNtk=0N1akH^TF(m+k,0)ej2πkBNt}+β2k1=0N1k2=0N1ak1ak2*H^TF(m+k1,m+k2)ej2π(k1k2)BNt+nSABN(t)+nAABN(t)+nCABN(t),
(3)
where * represents the complex conjugate and Re{x} denotes the real value of x. In the rest of the paper, for simplicity, Ĥx(n, m) is defined as Hx(f0+nBN)Hx*(f0+mBN). The first term of Eq. (3) is a dc component, the second term shows the fundamental term consisting of linear OFDM subcarriers that are to be retrieved, and the third term is the SSMI which degrades the desired OFDM signal. nSABN(t), nAABN (t), and nCABN (t) are the signal-ASE beat noise (SABN), the ASE-ASE beat noise (AABN), and the carrier-ASE beat noise (CABN), respectively. The power spectral density (PSD) of these noises has been studied in [19

19. W. Peng, K. Feng, A. E. Willner, and S. Chi, “Estimation of the bit error rate for direct-detected OFDM signals with optically preamplified receivers,” IEEE J. Lightw. Technol. 27(10), 1340–1346 (2009) [CrossRef] .

]. From Eq. (3), we can see that the SSMI is distributed from N1NB to N1NB in the frequency domain. The non-negative frequency components of the SSMI are shown in Fig. 1(c). The SSMI at the nth subcarrier (0 ≤ n) can be expressed as follows
In={β2i=0N1nan+iai*H^TF(n+i+m,i+m),0nN10,Otherwise.
(4)
This expression shows that the SBBI is distributed from the dc to the (N − 1)th subcarrier. Moreover, the desired term at the nth subcarrier (0 ≤ n) can be shown as
Dn={βanmH^TF(n,0),mnm+N10,Otherwise.
(5)

From Eq. (5) it is obvious that the desired signal is located from mBN to mBN+N1NB in the frequency domain as shown in Fig. 1(b). Considering Eqs. (4) and (5) reveals that the SSMI (In) will fully overlap with the desired signal (Dn) when the GB (m) is zero. There are several approaches to address this issue. In the baseband optical SSB-OFDM (BSSB-OFDM) method [13

13. I. V. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006) [CrossRef] [PubMed] .

], the authors proposed to decrease β as much as possible such that the distortion caused by SSMI is reduced to an acceptable level. Additionally, Cao et al.[15

15. Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,”IEEE Photon. Technol. Lett. 22(11), 736–738 (2010) [CrossRef] .

] proposed the use of subcarrier modulation and turbo coding to compensate SSMI. Moreover in [14

14. W. Peng, X. Wu, V. R. Arbab, B. Shamee, J. Yang, L. C. Christen, K. Feng, A. E. Willner, and S. Chi, “Experimental demonstration of 340 km SSMF transmission using a virtual single sideband OFDM signal that employs carrier suppressed and iterative detection techniques,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper OMU1.

], the authors proposed an iterative detection method to reduce SSMI. On the other hand in OSSB-OFDM [4

4. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightw. Technol. 26(1), 196–203 (2008) [CrossRef] .

], sufficient GB is allocated such that the desired term and SSMI are nonoverlapping in the frequency domain. From Eqs. (4) and (5), we can see that the by choosing m greater than N, B ≤ Δf, the desired signal is nonoverlapping with SSMI. There are advantages and disadvantages to all these approaches. For instance, OSSB-OFDM has better sensitivity compared to the BSSB-OFDM but with the half of SE. The turbo coding and iterative approaches have good SE, but with a burden of computational complexity.

3. Theoretical model of BICR

In order to improve the SE in OSSB-OFDM, the GB should be reduced. However, SSMI would interfere with the OFDM subcarriers which degrades the system performance. To mitigate the SSMI when the GB is smaller than B, the BICR was proposed in [17

17. W. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in European Conference and Exhibition on Optical Communication(ECOC2010), paper Tu.4.A.2 [CrossRef] .

] which is depicted in Fig. 2. In this receiver, an optical coupler splits the received optical signal into two parallel branches. The optical signal in the upper branch is sent to the PD directly. But, the optical signal in the lower branch passes through an optical filter to remove the optical carrier. Consequently, in the upper branch, the optical carrier and OOFDM signal are present, while in the lower branch only the OOFDM signal exists, i.e., the output of the PD in the upper branch consists of the dc, desired, and SSMI terms while the output of the PD in the lower branch consists of only the SSMI term. Thus, by simply subtracting the output of the upper branch from that of the lower branch, the SSMI term will be removed. The optical signal prior to a PD in the upper branch (rU) and the photocurrent in the upper branch (qU) are given by Eqs. (2) and (3), respectively. The optical signal prior to a PD in the lower branch (rL) can be written as
rL(t)=HTF(f0)HOF(f0)ej(2πf0t+ϕ(t))+βej(2π(f0+mBN)t+ϕ(t))k=0N1akHOF(f0+(m+k)BN)HTF(f0+(m+k)BN)ej2πkBNt+nASE(t),
(6)
where HOF(f) represents the transfer function of the optical filter in the lower branch. Therefore, the photocurrent in the lower (qL) branch can be noted as follows
qL(t)=|HTF(f0)HOF(f0)|2+2βRe{ej2πmBNtk=0N1akH^TF(m+k,0)H^OF(m+k,0)ej2πkBNt}+β2k1=0N1k2=0N1ak1ak2*H^TF(m+k1,m+k2)H^OF(m+k1,m+k2)ej2π(k1k2)BNt+nSABN(t)+nAABN(t)+nCABN(t).
(7)
By subtracting qU (t) from qL(t), we have
q(t)=qU(t)qL(t)=|HTF(f0)|2(1|HOF(f0)|2)+2βRe{ej2πmBNtk=0N1akH^TF(m+k,0)[1H^OF(m+k,0)]ej2πkBNt}+β2k1=0N1k2=0N1ak1ak2*H^TF(m+k1,m+k2)[1H^OF(m+k1,m+k2)]ej2π(k1k2)BNt+nSABN(t)+nAABN(t)+nCABN(t),
(8)
Thus, the SSMI at the nth subcarrier (0 ≤ n) can be expressed as
In={β2i=0N1nan+iai*H^TF(n+i+m,i+m)×[1H^OF(n+i+m,i+m)],0nN10,Otherwise
(9)
And the desired term at the nth subcarrier (0 ≤ n) can be shown as
Dn={βanmH^TF(n,0)[1H^OF(n,0)],mnm+N10,,Otherwise
(10)
In the case of an ideal optical filter where the optical carrier can be removed completely without affecting the OOFDM signal, the transfer function, HOF (f), is
HOF(f)={1,f0+mBNff0+mBN+B0,Otherwise
(11)
Thus, considering Eq. (11) in Eqs. (9) and (10), results in
In=0
(12)
Dn={βanmH^TF(n,0),mnm+N10,Otherwise
(13)
From Eq. (12), it is clear that the SSMI term is cancelled completely. In the case of a non-ideal filter, typically having a finite frequency roll-off around its cut-off frequency, there are two impairments that can degrade the system performance. First, the optical carrier in the lower branch would not be removed completely which leads to a mixing product between the carrier and signal. Therefore, the signal power decreases by 1 − ĤOF (n, 0) as shown in (12). Second, the band-edge OOFDM subcarriers are attenuated by the non-ideal optical filter. As such, the SSBI term in the upper and lower branches would not be identical; hence the SSBI cannot be removed completely. It is worth noting that the mitigation of SSMI relies heavily on the common mode rejection ratio of a balanced PD. Moreover, in practical systems, the insertion loss and delay caused by the optical filter in the lower branch should be compensated before the photocurrent from the upper and lower branches are subtracted. In general, two approaches can be applied to address these issues: (1) using a balanced PD and then these impairments are compensated in the optical domain; and (2) using two PDs instead of a balanced PD, where these impairments are compensated in the digital domain. With the former approach it is not easy to estimate and compensate the impairments whereas the latter approach is more practical and adaptive. However, two analog-to-digital converters are needed in the second approach while only one analog-to-digital converter is required in the first approach. We have chosen the second approach for the experiment because it is more practical.

Fig. 2 The proposed receiver structure.

4. Results and discussion

4.1. Simulation results

In Fig. 3, we compare the Q-factor for both the BICR with different optical filter orders M and the conventional receiver by varying the GB. As depicted in the figure, as GB decreases, the number of OFDM subcarriers that suffer from SSMI increases and therefore the Q-factor gets worse. It can be seen that the BICR outperforms the conventional receiver in terms of Q-factor. This is because most SSMI is eliminated using the BICR and a better signal quality is achieved. Moreover, the Q-factor improves by increasing the optical filter order at a fixed GB (i.e., the optical filter becomes more ideal thereby reducing the impairments associated with a non-ideal filter response). Additionally, for the fixed system performance, a higher-order optical filter is required to remove the optical carrier without affecting the OOFDM signal as the GB decreases. In other words, to further improve the SE for a given Q-factor, a higher-order optical filter should be used. For instance, at a Q-factor of 16 dB, the GB can be reduced to 3.7, 3, 2.3, 1.8, and 1.3 GHz using optical filters with orders of 2, 4, 6, 8, and 10, respectively.

Fig. 3 Q-factor versus guard band with different optical filter orders.

Figure 4 illustrates the Q-factor as a function of launch power with different optical filter orders and for GBs of 2 GHz and 3 GHz. As depicted in these figures, at a fixed optical filter order, the Q-factor is maximized at the same optical launch power for the two different GBs. Also, at lower input powers, the Q-factor is limited by ASE noise while for high launch powers, the Q-factor is limited by fiber nonlinearity. Furthermore, the optimum Q-factor increases by increasing either the optical filter order or the GB.

Fig. 4 Simulation results of Q-factor versus the launch power for different optical filter orders: (a) 2 GHz guard band. (b) 3 GHz guard band.

4.2. Experimental setup

Fig. 5 Experimental setup for the proposed structure.

The BER performance is depicted in Fig. 6 versus the GB for both simulation and experiment. The curves in the figure correspond to different receiver structures: conventional receiver, and the BICR using second- and fourth-order optical filters. The dashed and solid lines correspond to the simulation and experimental results, respectively. Due to the limitation on the number of transmitted bits, a BER below 10−5 cannot be measured. As depicted in this figure, the experimental results are in good agreement with the numerical simulations. Moreover, since the SSMI is reduced using the BICR, the BICR outperforms the conventional receiver. The results show that using the second-order optical filter, the measured BER improvement varies from one to two orders of magnitude depending on the GB compared to the conventional receiver. An even greater improvement in BER can be obtained using a higher-order optical filter: the fourth-order optical filter improves the BER by about three orders of magnitude compared to the conventional receiver. In other words, for a given BER, a better SE can be achieved using a higher-order optical filter.

Fig. 6 BER versus guard band for simulation and experiments at an OSNR(0.1nm) of 16.8 dB.

5. Conclusion

In this paper, we evaluated the BICR which improves the SE in DD-OFDM systems. The increased SE results in relaxing electronic components’ bandwidth requirements in DD-OFDM systems. Additionally, the system capacity in WDM-SSB-OFDM systems can be increased. Moreover, the computational complexity is the same as that of the conventional receiver. We studied theoretically in detail how this receiver can mitigate SSMI in RSSB-OFDM systems and recover the transmitted data. Furthermore, we investigated the system performance both with simulation and experiment. To address some practical issues, in the experimental setup, we used two PDs followed by two analog-to-digital convertors instead of a balanced PD followed by one analog-to-digital convertor. The experimental results show that the receiver is efficient to improve the SE of DD-OFDM systems. For a 10Gb/s data with a 4-QAM modulation, using RSSB-OFDM signal with 1.67 bits/s/Hz SE, the BER is improved approximately by one and a half orders of magnitude compared to the conventional receiver when a second-order optical filter is used at the receiver; also with a fourth-order optical filter, the BER performance improves by three orders of magnitude. The center frequency and 3dB bandwidth should be carefully tuned to optimize system performance. Therefore, a sharp optical filter with tunable center frequency is required to compensate for wavelength drift of the carrier.

Acknowledgments

This research was supported in part by the Natural Sciences and Engineering Research Council (NSERC) Canada via the CREATE program on Next-Generation Optical Networks, as well as the Ministry of higher education and the Iran Telecom Research Center (ITRC).

References and links

1.

N. Cvijetic, “OFDM for next-generation optical access networks,” IEEE J. Lightw. Technol. 30(4), 384–398 (2012) [CrossRef] .

2.

Peter J. Winzer, “High-spectral-efficiency optical modulation formats,” IEEE J. Lightw. Technol. 30(24), 3824–3835 (2012) [CrossRef] .

3.

J. Armstrong, “OFDM for optical communications,” IEEE J. Lightw. Technol. 27(3), 189–204 (2009) [CrossRef] .

4.

B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightw. Technol. 26(1), 196–203 (2008) [CrossRef] .

5.

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008) [CrossRef] [PubMed] .

6.

W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?,” J. Optical Networking 7(3), 234–255 (2008) [CrossRef] .

7.

Q. Zhuge, M. Morsy-Osman, M. E. Mousa-Pasandi, X. Xu, M. Chagnon, Z. A. El-Sahn, C. Chen, and D. V. Plant, “Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM,” Opt. Express 20(26), 439–444 (2012) [CrossRef] .

8.

S. L. Jansen, I. Morita, and H. Tanaka, “10 × 121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1 000 km of SSMF,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP2.

9.

T. Pollet, M. V. Blade, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,”IEEE Tran. on Communiacation 43(2/3/4), 191–193 (1995) [CrossRef] .

10.

X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” IEEE J. Lightw. Technol. 26(10), 1309–1316 (2008) [CrossRef] .

11.

W. Peng, B. Zhang, K. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” IEEE J. Lightw. Technol. 27(24), 5723–5735 (2009) [CrossRef] .

12.

A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express 14(6), 2079–2084 (2006) [CrossRef] [PubMed] .

13.

I. V. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express 14(9), 3767–3775 (2006) [CrossRef] [PubMed] .

14.

W. Peng, X. Wu, V. R. Arbab, B. Shamee, J. Yang, L. C. Christen, K. Feng, A. E. Willner, and S. Chi, “Experimental demonstration of 340 km SSMF transmission using a virtual single sideband OFDM signal that employs carrier suppressed and iterative detection techniques,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper OMU1.

15.

Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,”IEEE Photon. Technol. Lett. 22(11), 736–738 (2010) [CrossRef] .

16.

D. Qian, J. Yu, J. Hu, L. Zong, L. Xu, and T. Wang, “10 Gbit/s WDM-SSB-OFDM transmissions over 1000 km SSMF using conventional DFB lasers and direct-detection,” Electronic Letter 44(3), 223–225 (2008) [CrossRef] .

17.

W. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in European Conference and Exhibition on Optical Communication(ECOC2010), paper Tu.4.A.2 [CrossRef] .

18.

W. Peng, X. Wu, V. R. Arbab, B. Shamee, L.C. Christen, J. Yang, K. Feng, A. E. Willner, and S. Chi, “Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper OMU2.

19.

W. Peng, K. Feng, A. E. Willner, and S. Chi, “Estimation of the bit error rate for direct-detected OFDM signals with optically preamplified receivers,” IEEE J. Lightw. Technol. 27(10), 1340–1346 (2009) [CrossRef] .

20.

G. Einarsson, Principles of Lightwave Communications.New York: McGraw-Hill, 1996.

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2330) Fiber optics and optical communications : Fiber optics communications

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 1, 2013
Revised Manuscript: May 30, 2013
Manuscript Accepted: June 7, 2013
Published: June 18, 2013

Citation
S. Alireza Nezamalhosseini, Lawrence R. Chen, Qunbi Zhuge, Mahdi Malekiha, Farokh Marvasti, and David V. Plant, "Theoretical and experimental investigation of direct detection optical OFDM transmission using beat interference cancellation receiver," Opt. Express 21, 15237-15246 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15237


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Cvijetic, “OFDM for next-generation optical access networks,” IEEE J. Lightw. Technol.30(4), 384–398 (2012). [CrossRef]
  2. Peter J. Winzer, “High-spectral-efficiency optical modulation formats,” IEEE J. Lightw. Technol.30(24), 3824–3835 (2012). [CrossRef]
  3. J. Armstrong, “OFDM for optical communications,” IEEE J. Lightw. Technol.27(3), 189–204 (2009). [CrossRef]
  4. B. J. C. Schmidt, A. J. Lowery, and J. Armstrong, “Experimental demonstrations of electronic dispersion compensation for long-haul transmission using direct-detection optical OFDM,” IEEE J. Lightw. Technol.26(1), 196–203 (2008). [CrossRef]
  5. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008). [CrossRef] [PubMed]
  6. W. Shieh, X. Yi, Y. Ma, and Q. Yang, “Coherent optical OFDM: has its time come?,” J. Optical Networking7(3), 234–255 (2008). [CrossRef]
  7. Q. Zhuge, M. Morsy-Osman, M. E. Mousa-Pasandi, X. Xu, M. Chagnon, Z. A. El-Sahn, C. Chen, and D. V. Plant, “Single channel and WDM transmission of 28 Gbaud zero-guard-interval CO-OFDM,” Opt. Express20(26), 439–444 (2012). [CrossRef]
  8. S. L. Jansen, I. Morita, and H. Tanaka, “10 × 121.9-Gb/s PDM-OFDM transmission with 2-b/s/Hz spectral efficiency over 1 000 km of SSMF,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2007), paper PDP2.
  9. T. Pollet, M. V. Blade, and M. Moeneclaey, “BER sensitivity of OFDM systems to carrier frequency offset and Wiener phase noise,”IEEE Tran. on Communiacation43(2/3/4), 191–193 (1995). [CrossRef]
  10. X. Yi, W. Shieh, and Y. Ma, “Phase noise effects on high spectral efficiency coherent optical OFDM transmission,” IEEE J. Lightw. Technol.26(10), 1309–1316 (2008). [CrossRef]
  11. W. Peng, B. Zhang, K. Feng, X. Wu, A. E. Willner, and S. Chi, “Spectrally efficient direct-detected OFDM transmission incorporating a tunable frequency gap and an iterative detection techniques,” IEEE J. Lightw. Technol.27(24), 5723–5735 (2009). [CrossRef]
  12. A. J. Lowery and J. Armstrong, “Orthogonal-frequency-division multiplexing for dispersion compensation of long-haul optical systems,” Opt. Express14(6), 2079–2084 (2006). [CrossRef] [PubMed]
  13. I. V. Djordjevic and B. Vasic, “Orthogonal frequency division multiplexing for high-speed optical transmission,” Opt. Express14(9), 3767–3775 (2006). [CrossRef] [PubMed]
  14. W. Peng, X. Wu, V. R. Arbab, B. Shamee, J. Yang, L. C. Christen, K. Feng, A. E. Willner, and S. Chi, “Experimental demonstration of 340 km SSMF transmission using a virtual single sideband OFDM signal that employs carrier suppressed and iterative detection techniques,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper OMU1.
  15. Z. Cao, J. Yu, W. Wang, L. Chen, and Z. Dong, “Direct-detection optical OFDM transmission system without frequency guard band,”IEEE Photon. Technol. Lett.22(11), 736–738 (2010). [CrossRef]
  16. D. Qian, J. Yu, J. Hu, L. Zong, L. Xu, and T. Wang, “10 Gbit/s WDM-SSB-OFDM transmissions over 1000 km SSMF using conventional DFB lasers and direct-detection,” Electronic Letter44(3), 223–225 (2008). [CrossRef]
  17. W. Peng, I. Morita, and H. Tanaka, “Enabling high capacity direct-detection optical OFDM transmissions using beat interference cancellation receiver,” in European Conference and Exhibition on Optical Communication(ECOC2010), paper Tu.4.A.2. [CrossRef]
  18. W. Peng, X. Wu, V. R. Arbab, B. Shamee, L.C. Christen, J. Yang, K. Feng, A. E. Willner, and S. Chi, “Experimental demonstration of a coherently modulated and directly detected optical OFDM system using an RF-tone insertion,” in Optical Fiber Communication Conference, OSA Technical Digest Series (CD) (Optical Society of America, 2008), paper OMU2.
  19. W. Peng, K. Feng, A. E. Willner, and S. Chi, “Estimation of the bit error rate for direct-detected OFDM signals with optically preamplified receivers,” IEEE J. Lightw. Technol.27(10), 1340–1346 (2009). [CrossRef]
  20. G. Einarsson, Principles of Lightwave Communications.New York: McGraw-Hill, 1996.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited