OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 13 — Jul. 1, 2013
  • pp: 15580–15594
« Show journal navigation

Surface-reflection-initiated pulse-contrast degradation in an optical parametric chirped-pulse amplifier

Jing Wang, Peng Yuan, Jingui Ma, Yongzhi Wang, Guoqiang Xie, and Liejia Qian  »View Author Affiliations


Optics Express, Vol. 21, Issue 13, pp. 15580-15594 (2013)
http://dx.doi.org/10.1364/OE.21.015580


View Full Text Article

Acrobat PDF (2317 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We study a novel mechanism of pre-pulse generation in an optical parametric chirped-pulse amplification (OPCPA) system through an analytical approach together with numerical simulations. The acquired pre-pulses are initiated from the surface-reflection-induced modulation of the seed spectrum and occur as a consequence of high-order distortion of such modulated spectrum due to the instantaneous gain saturation effect. We demonstrate that the intensities of pre-pulses increase quadratically with the initial temporal modulation-depth of the stretched signal pulse as well as the conversion efficiency prior to substantial pump-depletion. Explicit formulas for estimating the contrast limit due to surface reflections are present. We also discuss the impact of group-velocity mismatch on the pre-pulse generation. The results of this work may deepen our cognition on the complexity of the pulse-contrast problem in OPCPA systems.

© 2013 OSA

1. Introduction

Pulse-contrast of high-peak-power laser pulses has been a major concern in applications such as high field physics [1

1. L. Veisz, “Contrast improvement of relativistic few-cycle light pulses,” Coherent and Ultrashort Pulse Laser Emission 14, 305–328 (2010).

]. Undesired laser light in the form of pedestal or pre-pulses could trigger an early ionization of the target before the main pulse arrives and alter the interaction properties detrimentally. Thus the pulse-contrast, defined as the ratio of the peak intensity of the main pulse to the level of pedestal or pre-pulse, is critical for a well-controlled laser-matter interaction experiment. Contrast of 1010 - 1011 is usually required for pre-plasma sensitive experiments under the typical intensity of 1021 W/cm2. Multi-petawatt laser systems in the future will have even more demanding expectations for pulse-contrast (e.g., up to 1012 - 1014), although pulse-contrast usually degrades with the increase of operating power. Nowadays, contrast of 109- 1010 within tens of picoseconds before the main pulse is almost the highest achievable level in high-power laser systems either based on chirped-pulse amplification (CPA) or optical parametric chirped-pulse amplification (OPCPA) techniques [1

1. L. Veisz, “Contrast improvement of relativistic few-cycle light pulses,” Coherent and Ultrashort Pulse Laser Emission 14, 305–328 (2010).

8

8. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J. P. Rousseau, J. P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005). [CrossRef] [PubMed]

]. The mechanisms for pulse-contrast degradation have been widely studied. Except the background noises such as amplified spontaneous emission (ASE) [1

1. L. Veisz, “Contrast improvement of relativistic few-cycle light pulses,” Coherent and Ultrashort Pulse Laser Emission 14, 305–328 (2010).

] or optical parametric fluorescence (OPF) [9

9. F. Tavella, A. Marcinkevičius, and F. Krausz, “Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system,” New J. Phys. 8(10), 219 (2006). [CrossRef]

,10

10. S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” Selected Topics in Quantum Electronics, IEEE Journal of 18(1), 296–307 (2012). [CrossRef]

], which are always present in optical amplifiers, almost all of other proven contrast degradation mechanisms are directly or indirectly associated with modulations of the spectral amplitude or spectral phase. Spectral clipping from the acceptance of stretcher [2

2. M. Kalashnikov, A. Andreev, and H. Schönnagel, “Limiting characteristics of temporal contrast for high aperture CPA lasers,” in Proceedings of Light at Extreme Intensities, D. Dumitras, ed. (Academic, American Institute of Physics), 175–185 (2010).

], pump-noise transfer [11

11. N. Forget, A. Cotel, E. Brambrink, P. Audebert, C. Le Blanc, A. Jullien, O. Albert, and G. Chériaux, “Pump-noise transfer in optical parametric chirped-pulse amplification,” Opt. Lett. 30(21), 2921–2923 (2005). [CrossRef] [PubMed]

13

13. C. Dorrer, “Analysis of pump-induced temporal contrast degradation in optical parametric chirped-pulse amplification,” J. Opt. Soc. Am. B 24(12), 3048–3057 (2007). [CrossRef]

] and the presence of weak post-pulses [14

14. N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Y. Tenyakov, “Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses,” Opt. Express 16(5), 3178–3190 (2008). [CrossRef] [PubMed]

,15

15. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16(14), 10664–10674 (2008). [CrossRef] [PubMed]

] are typical sources of spectral amplitude modulations. Incomplete compensation of the dispersion phase in the compressor [2

2. M. Kalashnikov, A. Andreev, and H. Schönnagel, “Limiting characteristics of temporal contrast for high aperture CPA lasers,” in Proceedings of Light at Extreme Intensities, D. Dumitras, ed. (Academic, American Institute of Physics), 175–185 (2010).

], aberrations in the diffraction gratings in the stretcher [16

16. C. Hooker, Y. Tang, O. Chekhlov, J. Collier, E. Divall, K. Ertel, S. Hawkes, B. Parry, and P. P. Rajeev, “Improving coherent contrast of petawatt laser pulses,” Opt. Express 19(3), 2193–2203 (2011). [CrossRef] [PubMed]

], and the Kerr nonlinearity [14

14. N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Y. Tenyakov, “Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses,” Opt. Express 16(5), 3178–3190 (2008). [CrossRef] [PubMed]

,15

15. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16(14), 10664–10674 (2008). [CrossRef] [PubMed]

,17

17. D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express 16(12), 8876–8886 (2008). [CrossRef] [PubMed]

19

19. X. Liu, R. Wagner, A. Maksimchuk, E. Goodman, J. Workman, D. Umstadter, and A. Migus, “Nonlinear temporal diffraction and frequency shifts resulting from pulse shaping in chirped-pulse amplification systems,” Opt. Lett. 20(10), 1163–1165 (1995). [CrossRef] [PubMed]

] could readily lead to spectral phase modulations. All of these effects will result in pulse-contrast degradation. Various pulse-contrast enhancement schemes have already been investigated. Nonlinear-pulse-cleaning to create a “cleaned” seed [8

8. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J. P. Rousseau, J. P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005). [CrossRef] [PubMed]

,20

20. Y. Huang, C. Zhang, Y. Xu, D. Li, Y. Leng, R. Li, and Z. Xu, “Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification,” Opt. Lett. 36(6), 781–783 (2011). [CrossRef] [PubMed]

,21

21. P. Yuan, G. Xie, D. Zhang, H. Zhong, and L. Qian, “High-contrast near-IR short pulses generated by a mid-IR optical parametric chirped-pulse amplifier with frequency doubling,” Opt. Lett. 35(11), 1878–1880 (2010). [CrossRef] [PubMed]

], double-CPA architecture [22

22. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30(8), 923–925 (2005). [CrossRef] [PubMed]

] and operation optimization of amplifier [23

23. J. Moses, C. Manzoni, S. W. Huang, G. Cerullo, and F. X. Kärtner, “Temporal optimization of ultrabroadband high-energy OPCPA,” Opt. Express 17(7), 5540–5555 (2009). [CrossRef] [PubMed]

,24

24. I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 19(12), 2945–2956 (2002). [CrossRef]

] are typically recommended for noise control in the part of laser driver. Beyond that, further cleaning of the amplified high-power pulse based on certain peak-switching effect intrinsic to intense laser interacting with matter has also been proposed. Such techniques include plasma mirror (PM) [1

1. L. Veisz, “Contrast improvement of relativistic few-cycle light pulses,” Coherent and Ultrashort Pulse Laser Emission 14, 305–328 (2010).

] and second-harmonic generation of high-intensity lasers [25

25. J. D. Bolie, F. Patterson, D. Price, B. White, and P. Springer, “Production of >1021 W/cm2 from a large-aperture Ti:sapphire laser system,” Appl. Phys. B 70(1), S155–S160 (2000).

].

In this paper, we first demonstrate that multiple pre-pulses can be generated in an OPCPA system due to the existence of surface reflections. In the presence of surface reflections, the chirped signal pulse will inevitably be modulated both in the temporal and spectral domains since the seed will interference with its reflected replica after stretching. We hence develop an analytical model to follow the evolution of the temporal and spectral amplitude of such modulated chirped signal pulse during parametric amplification process. We find that, the instantaneous response among the amplitude of such modulated signal, the amplitude of pump, and the amplitude of amplified signal will lead to rapid variations of parametric gain across the chirped seed pulse even in the case of perfect phase-matching and no pump noise, and result in high-order distortion of the spectrum of amplified signal. Consequently, the spectrum acquires several new components in spectral phase that can guide the energy of amplified signal to multiple pre- and post-pulses on the compressed output signal. Both of our analytical and numerical studies show that, prior to significant pump depletion, the maximum intensity of the induced pre-pulses are in direct proportion to the square of the temporal modulation depth of chirped signal before amplification as well as the square of the conversion efficiency. Despite that the intensities of pre-pulses get much more complicated law of growth when pump is substantially depleted, they continue to grow and can become comparable with or even stronger than that of post-pulses.

Note, quantum energy-level systems belonging to the non-instantaneous amplification process such as Ti:sapphire CPAs, are devoid of this pre-pulse generation mechanism. Only in nonlinear CPAs with very large B-integral (i.e., ΣB ≥ 10), pre-pulses could be significantly built up due to the Kerr nonlinearity since self-phase modulation (SPM) can induce nonlinear phase shift across the signal spectrum [14

14. N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Y. Tenyakov, “Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses,” Opt. Express 16(5), 3178–3190 (2008). [CrossRef] [PubMed]

,15

15. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16(14), 10664–10674 (2008). [CrossRef] [PubMed]

]. The Kerr-nonlinearity-initiated pre-pulse generation has also been identified as nonlinear temporal diffraction that is the time-domain analog of spatial nonlinear diffraction [18

18. M. K. Jackson, G. R. Boyer, J. Paye, M. A. Franco, and A. Mysyrowicz, “Temporal diffraction by nonlinear interaction in optical fibers,” Opt. Lett. 17(24), 1770–1772 (1992). [CrossRef] [PubMed]

,19

19. X. Liu, R. Wagner, A. Maksimchuk, E. Goodman, J. Workman, D. Umstadter, and A. Migus, “Nonlinear temporal diffraction and frequency shifts resulting from pulse shaping in chirped-pulse amplification systems,” Opt. Lett. 20(10), 1163–1165 (1995). [CrossRef] [PubMed]

].

This paper is organized as follows. An approximate analytical model for understanding the pre-pulse generation behavior is introduced in Section 2. The numerical models concerning the surface reflections before and inside the OPCPA crystals are respectively built and the analyses of simulation results as well as the explicit formulas for calculation of contrast limit due to surface reflections are present in Section 3. Section 4 discusses the impact of the group-velocity mismatch (GVM) on the pre-pulse generation. Section 5 presents a summary of conclusions.

2. Analytical analyses

Optical amplification systems either based on CPA or OPCPA techniques inevitably suffer from post-pulses formation as the surface reflections of optics cannot be entirely eliminated. Generation of powerful pre-pulses due to the presence of post-pulses has been identified experimentally in Ti:sapphire regenerative and multi-pass amplifiers by Didenko et al. [14

14. N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Y. Tenyakov, “Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses,” Opt. Express 16(5), 3178–3190 (2008). [CrossRef] [PubMed]

]. A theoretical analysis of pre-pulse generation in nonlinear CPA systems has also been thoroughly presented by Schimpf et al. [15

15. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16(14), 10664–10674 (2008). [CrossRef] [PubMed]

]. It can be concluded that the Kerr nonlinearity is the cause for such pulse distortion. In OPCPA, however, the Kerr nonlinearity becomes trivial due to the short medium length (~1 cm) attributed by the high single-pass gain. In this contribution, by employing analysis methods analogous to that in Ref [15

15. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16(14), 10664–10674 (2008). [CrossRef] [PubMed]

], we show that the instantaneous nonlinearity of parametric gain can also induce powerful pre-pulses generation when the amplification stages of OPCPA is seeded with pulses possessing weak post-pulses originating from surface reflections.

For the analytical derivations in this section, the signal and pump fields are represented only as a function of time t (and equivalently optical frequency), without spatial resolution. This assumption is reasonable for most cases in which the crystal length is shorter than the diffraction length. The chirped pulse incident upon the amplification stage is taken as
As0(t)=A0(tϕ(2))exp(it22ϕ(2))+rA0(ttδϕ(2))exp(i(ttδ)22ϕ(2)),
(1)
which consists of a main pulse (the first term) and an initial post-pulse (the second term) with an intensity contrast of r and time-delay of tδ. ϕ(2) is the second-order group-velocity dispersion (GVD) presented by the stretcher. The corresponding intensity profile can then be given by
|As0(t)|2=|A0(tϕ(2))|2+r|A0(ttδϕ(2))|2+2rA0(tϕ(2))A0(ttδϕ(2))cos(ttδϕ(2)(tδ)22ϕ(2)),
(2)
where the third term on the right-hand side indicates a sinusoidal modulation induced by the temporal overlap and interference between the two stretched pulses. If we consider a weak post-pulse (i.e., r << 1), we can drop the second term of Eq. (2) and rewrite it as
|As0(t)|2|A0(tϕ(2))|2[1+ρ(t)]=|A0(tϕ(2))|2[1+2prcos(ttδϕ(2)(tδ)22ϕ(2))].
(3)
Here, the parameter p is introduced to signify A0((t-tδ)/ϕ(2))/A0(t/ϕ(2)). Then the modulation depth is explicit as 2pr and the modulation period is 2π/(tδ/ϕ(2)).

Using the small-signal approximation, the growth of signal intensity along the OPCPA crystal can be approximated by an exponential function [10

10. S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” Selected Topics in Quantum Electronics, IEEE Journal of 18(1), 296–307 (2012). [CrossRef]

,23

23. J. Moses, C. Manzoni, S. W. Huang, G. Cerullo, and F. X. Kärtner, “Temporal optimization of ultrabroadband high-energy OPCPA,” Opt. Express 17(7), 5540–5555 (2009). [CrossRef] [PubMed]

]
Iamp(t)=Is0(t)G(t)14Is0(t)exp(2κLIp(t)),
(4)
where Ip(t), Is0(t) and Iamp(t) are the intensity profiles of pump, input signal and output signal, respectively, L is the crystal length. κ=2ωsωideff2/(ninsnpε0c3) is the gain coefficient, where ns,i,p are the refractive indices of the signal, idler, and pump fields respectively, ωs,i are angular frequencies of the signal and idler, deff is the effective nonlinear coefficient, c is the light speed in a vacuum and ε0 is the permittivity of vacuum. This simple solution is valid under the assumptions of constant pump, large parametric gain (i.e., G > 10) and perfect phase matching. We expect on a physical basis that, when the pump is depleted in small quantities, the solution to the parametric amplification process will still maintain the form of Eq. (4), except that Ip(t) will become a slowly varying function of L. We hence take two steps to treat the parametric amplification in a thin crystal (making the pump depletion remain in small quantities) of length ΔL pumped by a flattop pulse with intensity of Ip0. We ignore the impact of pump depletion on the gain in the first half of crystal, while the time-dependent pump depletion ΔIp(t) is then introduced by correcting the pump intensity for the second half of crystal as Ip(t) = Ip0 - ΔIp(t). Thus the total gain in the crystal of ΔL has the form
G(t)14exp(2κ(ΔL/2)Ip0)·exp(2κ(ΔL/2)Ip0ΔIp(t)).
(5)
Considering the creation of a signal photon must be accompanied by an annihilation of a pump photon, we rewrite ΔIp(t) as
ΔIp(t)=ωpωsΔIs(t)ωpωs14Is0(t)exp(2κ(ΔL/2)Ip0),
(6)
where ΔIs(t) is the increase of signal intensity. For a chirped signal with (weak) temporal modulation, we can express Is0(t) as
Is0(t)=I0[1+ρ(t)],
(7)
where ρ(t) (∑ρ(t) = 0) represents the modulation superimposed on a uniform profile I0. We also introduce the definition of the conversion efficiency η:
η=t[ΔIs(t)]tIp014exp(2κ(ΔL/2)Ip0)I0τsIp0τp,
(8)
where τp and τs are the temporal duration of pump and stretched signal, respectively. Combining Eqs. (5) through (8), we find that the amplitude of amplified signal is given by
Aamp(t)12As0(t)exp(κ(ΔL/2)Ip0)exp(κ(ΔL/2)Ip0(1ωpωsτpτsη(1+ρ(t)))).
(9)
When η is low (i.e., η < 10%), we can further simplify Eq. (9) to
Aamp(t)Aamp(0)(t)exp(γη)exp[γηρ(t)],
(10)
where
Aamp(0)(t)=12As0(t)exp(κΔLIp0),γ=κ(ΔL/2)Ip0ωpτp2ωsτs,
(11)
are the amplified field under constant pump (Ip0) and a time-independent coefficient, respectively. The term exp(-γη) in Eq. (10) signifies the over-all gain saturation due to η ≠ 0 (i.e., pump depletion), while exp[-γηρ(t)] term indicates an instantaneous gain saturation, that is the instantaneous nonlinearity of parametric gain.

By substituting the modulation term ρ(t) in Eq. (3) into Eq. (10), we can obtain the temporal amplitude of the amplified signal as
Aamp(t)Aamp(0)(t)exp(γη)exp(2γηprcos(ttδϕ(2)(tδ)22ϕ(2))).
(12)
By expressing the third term of this expression in terms of Bessel-function [30

30. M. Abramowitz and I. A. Stegun, “Handbook of mathematical functions: with formulas, graphs, and mathematical tables,” in Generation Function for the Bessel-Function, Formula 9.1.41 (Dover publications, 1970).

], we obtain
Aamp(t)Aamp(0)(t)exp(γη)m=m=Jm(2γηpr)exp(imttδϕ(2))exp(im(tδ)22ϕ(2)).
(13)
The corresponding spectral amplitude of Eq. (13) is given by
A˜amp(Ω)12exp(κIp0ΔL)exp(γη)m=m=Jm(2γηpr)A˜0(Ωmtδϕ(2))exp(iϕ(2)2Ω2imtδΩ+i(m+m2)tδ22ϕ(2)).
(14)
Equation (14) demonstrates the occurrence of multiple spectral phase shift terms with the form exp(-imtδΩ), where m could be any positive or negative integer. This expression bears a marked resemblance to the spectral amplitude of amplified signal in nonlinear CPA-systems, i.e., Eq. (12) in Ref [15

15. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16(14), 10664–10674 (2008). [CrossRef] [PubMed]

]. In nonlinear CPAs, the distortion of spectral phase is straightforward as SPM effect introduces nonlinear phase shift directly. However, the derivations from Eq. (10) till Eq. (14) show that similar spectral phase distortion can also be induced by the instantaneous nonlinearity of parametric gain.

By compensating the GVD phase exp((2)Ω2/2) and conducting Fourier transform of Eq. (14), we can obtain the temporal amplitude of compressed signal as
Aout(T)12exp(κIp0ΔL)exp(γη)m=m=Jm(2γηpr)A0(Tmtδ)exp(imtδTϕ(2)i(m+m2)tδ22ϕ(2)).
(15)
This expression not only shows the generation of multiple pre- and post-pulses at some integral multiple of tδ before and after the main pulse (at T = 0), but also indicates the intensity distributions of these pulses. In particular, when 2γηpr< 1, the relative intensity of the most intense pre-pulse (i.e., 1st pre-pulse) Ipre-pulse/I0 can be approximated by
Iprepulse/I0=J12(2γηpr)14×(2γηpr)2=14×γ2×η2×(2pr)2.
(16)
This expression shows, Ipre-pulse/I0, which could characterize the resulting decrease in pulse-contrast of OPCPA, is in direct proportion to the square of the conversion efficiency η and the temporal modulation depth of the incident chirped-pulse2pr.

The dependence of Ipre-pulse/I0 on η can be interpreted as the strengthening of the nonlinear coupling between signal and pump with the increase of pump depletion. Given that η should be as large as possible for efficient energy extraction in some applications, we should deliberately minimize the initial amplitude modulation of chirped pulse for pre-pulse suppression. In practice, it can be realized by coating or wedging the transmissive optical elements in the laser path to minimize the surface reflectivity, as well as conducting OPCPA optimization to make the reflected replicas stay far away from the main pulse on the time axis.

The derivations in this section also reflect that, except for surface reflections, any kind of spectral amplitude or phase modulations that could lead to temporal amplitude modulation of the chirped pulse under amplification could result in detrimental pulse-contrast degradation in OPCPA systems due to the instantaneous parametric gain. And the higher the conversion efficiency is, the more the resulting pulse-contrast degrades.

3. Numerical modeling and simulation results

The analytical model built in Section 2, based on an extension of the traditional small-signal gain solution by introducing a pump-depletion factor, has predicted the contrast degradation characterized by pre-pulse generation. In the present section, full numerical simulations will be conducted to test the predictions and also extend the results into the saturation regime of amplification, where the above analytical solution is no longer valid. We classify the surface reflections in OPCPA into two categories. One is the reflections before the OPCPA crystal, which will provide the amplification process with a chirped signal carrying temporal and spectral modulations as mentioned before. The other is the reflections between the two surfaces of nonlinear crystal. In this case, the formation of post-pulses due to internal reflections, the interference between the original chirped signal and the time-delayed post-pulses, and the parametric amplification process occur in parallel, resulting in a more complicated behavior of pulse-contrast degradation.

3.1 Numerical modeling

The parametric amplification process can be described by the coupled-wave equations having the form [10

10. S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” Selected Topics in Quantum Electronics, IEEE Journal of 18(1), 296–307 (2012). [CrossRef]

,31

31. P. Zhu, L. Qian, S. Xue, and Z. Lin, “Numerical studies of optical parametric chirped pulse amplification,” Opt. Laser Technol. 35(1), 13–19 (2003). [CrossRef]

]
Asz+(1vgs1vgp)Asτ=iωsdeffnscAiApexp(iΔkz),
(17)
Aiz+(1vgi1vgp)Aiτ=iωideffnicAsApexp(iΔkz),
(18)
Apz=iωpdeffnpcAsAiexp(iΔkz),
(19)
where As,i,p are the complex envelopes of the signal, idler, and pump fields, respectively. ns,i,p and ωs,i,p are their refractive indices and angular frequencies. Δk = kp - ks - ki is the wave-vector mismatch. vgs, vgi and vgp are group-velocities defined as vg = dω/dk. The reference frame is assumed to be moving at vgp. Since crystal lengths are typically ~1 cm or shorter, high-order dispersion effects can be neglected. For definiteness, GVM effect is not included in this section and we will give a detailed discussion on its impact in Section 4. Besides, our simulations exclude the spatial transverse dimensions.

3.2 Surface reflections before the OPCPA crystal

To model the surface reflections before the OPCPA crystal, we consider an OPCPA seeded by a femtosecond pulse followed by a post-pulse with an intensity ratio of r = 10−4 and a temporal separation of tδ = 56 ps, as shown in Fig. 2(a)
Fig. 2 (a) Femtosecond seed (at 800 nm with spectral width of 30 nm and transform-limited duration of 29 fs) followed by a weak post-pulse generated by the surface reflections with intensity ratio of 10−4, delay time of 56 ps. (b) The normalized intensity profile of the chirped signal after stretching and the Gaussian (solid red line) or flattop (dashed red line) pump pulse. Inset is an enlarged display of the interference modulation on the trailing edge of chirped signal pulse.
. Both of the two pulses are transform-limited with center wavelength of 800 nm, spectral width of 30 nm and temporal duration of 29 fs. They are stretched to 40 ps with peak intensity of Is0 = 5 kW/cm2 (Fig. 2(b)) before being injected into a type-I β-barium borate (BBO) crystal. The pump pulse at 532 nm has a duration of 80 ps and peak intensity of 5 GW/cm2. It is set to be Gaussian and flattop distributed respectively to study the impact of pump profile. The inset in Fig. 2(b) shows the sinusoidal modulation on the trailing edge of stretched signal induced by the interference between the two pulses in Fig. 2(a) after stretching, just as predicted by Eq. (3).

Assuming an ideal compression (full compensation for the imposed GVD) and no further surface reflections inside the crystal, we numerically simulate the temporal profile of compressed output signal for an OPCPA system operating in different regimes of amplification. The results are shown in Fig. 3
Fig. 3 Calculated compressed output from an OPCPA injected by the seed shown in Fig. 2(b) with peak intensity of 5 kW/cm2. The pump pulse is assumed to be Gaussian distributed with duration of 80 ps and peak intensity of 5 GW/cm2. Assumption of constant pump is used in obtaining (a). The length L of OPCPA crystal (β-BBO) is changed to obtain the other three different amplification regimes: (b) small-signal (η = 0.01%, L = 3.7 mm); (c) weak saturation (η = 10%, L = 6.8 mm); and (d) over-saturation (back conversion occurs, η = 20%, L = 9 mm).
. The output presents the same double-pulse structure [Fig. 3(a)] with the input if we set ∂Ap / ∂z = 0 (constant pump). However, once we take account of pump depletion [Eq. (19)], the 1st pre-pulse preceding the main pulse with a time interval of 56 ps appears with a relative intensity of ~10−13 as shown in Fig. 3(b), even though η is as low as 0.01%. When η increases to 10%, the relative intensity of the 1st pre-pulse grows to ~10−7 as shown in Fig. 3(c), agreeing well with the analytical prediction of Ipre-pulse/I0η2 in Eq. (16). Besides, a 2nd pre-pulse at 112 ps before the main pulse is also generated at η = 10%. When we continue to increase the crystal length and push the OPCPA into the over-saturation regime, more side-pulses are formed and Ipre-pulse/I0 increases to ~10−5, as depicted in Fig. 3(d).

Figure 4
Fig. 4 Evolution of the relative intensities of the four side-pulses: 1st (filled squares) and 2nd (open squares) pre-pulse, and 1st (filled triangles) and 2nd (open triangles) post-pulse. The black line denotes the conversion efficiency. The pump pulse is assumed to be flattop in (a) and Gaussian in (b). Other parameters for simulations are identical with those in Fig. 3.
shows the evolution of the relative intensities of side-pulses (normalized to the main pulse intensity I0) under a flattop [Fig. 4(a)] or Gaussian [Fig. 4(b)] pump pulse, respectively. Despite of small difference in quantitative results, the evolutions under Gaussian and flattop pump pulses share similar trends. The conversion efficiency is also presented in the same figure to highlight the contrast level in different regimes of amplification. The intensity of the 1st post-pulse shows little change throughout the amplification process. In contrast, the newly generated side-pulses show sustaining rapid growth. The growth of the 2nd pre-pulse lags a little behind that of the 1st pre- and the 2nd post-pulse. In particular, the intensity of the 1st pre-pulse can increase to be comparable with or even higher than that of the 1st post-pulse, when OPCPA operates in the over-saturation regime.

In order to identify the dependency of the consequent contrast degradation on the parameters of the initial post-pulse as well as the operating point of OPCPA, simulations were run for the four sets of parameters: (i) Is0 = 5 kW/cm2, r = 10−4 and tδ = 56 ps; (ii) Is0 = 5 kW/cm2, r = 10−3 and tδ = 56 ps; (iii) Is0 = 5 kW/cm2, r = 10−4 and tδ = 48 ps and (iv) Is0 = 50 kW/cm2, r = 10−4 and tδ = 48 ps. Here, the pump pulse is assumed to be flattop distributed.

Figure 5 and Eq. (20) illustrate that Ipre-pulse/I0 increases quadratically with η and 2prwhen pump depletion is not significant, showing a very good quantitative agreement with our analytical predictions in Eq. (16). This provides further confidence in the accuracy of our analytical model in calculating the temporal and spectral distribution of amplified signal as well as the final pulse-contrast of OPCPA when the pump depletion cannot be ignored and when the chirped signal pulse carries temporal modulations, without the need of full numerical simulations. When η > 20% or when OPCPA operates in the over-saturation regime, Ipre-pulse/I0 can no longer be described by the simple formula of Eq. (16). However, it maintains growing, leading to a continual degradation of pulse-contrast as indicated by Fig. 5. The resulting pulse-contrast can even degrade to ~104, which is absolutely unacceptable for many applications. The reason for the difference between the numerical and analytical results in the saturation regime of amplification is that η would get saturated when significant pump depletion occurs. The saturation effect can be truly reflected by the full numerical simulations based on Eqs. (17), (18) and (19), yet it is overlooked by the exponential gain function of Eq. (4), which our analytical derivations are based on.

3.3 Surface reflections inside the OPCPA crystal

Even though we seed the OPCPA crystal with a totally clean signal, the surface reflections inside the crystal can still generate a time-delayed replica of chirped signal that overlays on the trailing edge of the signal pulse as a post-pulse. To identify the contrast degradation behavior in this case, we firstly simulate an OPCPA process in a 5 mm type-I β-BBO pumped by a Gaussian pulse at 532 nm with a duration of 80 ps and peak intensity of 5 GW/cm2 and injected by a chirped pulse at 800 nm with a stretched duration of 40 ps, spectral width of 20 nm and peak intensity of 0.5 MW/cm2. The surface reflectivity of the β-BBO is assumed to be 0.1% (reflectivity for laser intensity), aiming at highlighting the destructive effect of surface reflections, even when it is low in the view of quantity.

The result of full numerical simulations shown in Fig. 6(a)
Fig. 6 (a) The intensity profiles of the pump (black), signal (red) and idler (blue) after the parametric amplification of a chirped signal pulse at 800 nm with a duration of 40 ps, spectral width of 20 nm and peak intensity of 0.5 MW/cm2 in a 5 mm type-I β-BBO crystal with inner surface reflectivity of 0.1%. The pump is a Gaussian pulse at 532 nm with a duration of 80 ps and peak intensity of 5 GW/cm2. Inset in (a) is an enlarged display of the modulations on the three pulses. (b) The spectra of signal before (dashed line) and after amplification (solid line). Inset in (b) is an enlarged display of the spectral modulation of amplified signal. (c) The normalized intensity profile of compressed output signal. (d) The evolution of intensities of the 1st (filled squares) and 2nd (open squares) pre-pulses and 1st (filled triangles) and 2nd (open triangles) post-pulses as well as the conversion efficiency (black line) with the increase of pump intensity.
demonstrates that all of the intensity profiles of pump, signal and idler acquire fast quasi-sinusoidal modulations with modulation period of Tm = 0.08 ps after amplification, even though the pump and signal is totally clean before amplification. The modulation of pump has a complementary pattern with that of signal, while the modulation pattern of idler is the same with that of signal. This can be interpreted as the Manley-Rowe relations, which tells that in a lossless medium the rate at which the signal photons are created is equal to the rate at which the idler photons are created and the rate at which the pump photons are destroyed. The calculated spectra of signal before and after amplification are plotted in Fig. 6(b), demonstrating the occurrence of a quasi-sinusoidal modulation with period of 0.04 nm (i.e., Ωm = 1.18 × 1011 rad/s in the term of angular frequency) on the amplified spectrum. The consequent compressed output signal is depicted in Fig. 6(c). Despite that the injected seed possesses no post-pulses, the compressed output signal manifests as a main pulse accompanied by multiple side-pulses. The time separation between two adjacent pulses is 56 ps, which is just the ratio of twice the crystal length and the group velocity of signal as 2L/vgs (as L = 5 mm and vgs = 1.78 × 108 m/s in this case), claiming that these side-pulses are initiated from the surface reflections of signal within the crystal. We can also find that the modulation period of amplified fields in the temporal domain, Tm, obeys Tm = 2π/(tδ/ϕ(2)) (as ϕ(2) = 6.8 × 10−25 s2/rad in this case), which agrees with the prediction of Eq. (3), and the modulation period in the spectral domain, Ωm, fits well with Ωm = Tm/ϕ(2). The evolution of the intensities of acquired side-pulses within different amplification regimes is summarized in Fig. 6(d). The intensity of the 1st post-pulse is significantly higher than that of the 1st pre-pulse in the regime of small-signal amplification. Yet, the gap rapidly shrinks with the increase of conversion efficiency. Quantitatively, in the over-saturation regime, the generated pre-pulse can degrade the contrast of pulse front to ~104.

To obtain an explicit formula like Eq. (20) for Ipre-pulse/I0 in this case, we start from the difference between the contrast degradation processes initiated by the surface reflections before and inside the OPCPA crystal. For the “before-crystal” case, the modulation depth of chirped signal pulse before amplification is straightforward as 2pr, as indicated by Eq. (3). For the “inside-crystal” case, however, there is no initial post-pulse. Only after the injected signal undergoes single-pass amplification and double reflections by the inner surfaces of the crystal can a post-pulse be formed. Thus the intensity of such a post-pulse is expected to be proportional to the single-pass parametric gain G and the square of the surface reflectivity R. By replacing the r in Eq. (16) by GR2, we obtain a trial solution for Ipre-pulse/I0 as
Iprepulse/I0b×η2×p2×G×R2,
(21)
where b is the constant coefficient for the trail solution. The parameter p shares a similar definition of p = A0((t-tδ)/ϕ(2))/A0(t/ϕ(2)) with that in Eq. (4), where A0 is the temporal amplitude of the main signal pulse. The time-interval tδ here equals the ratio of twice the crystal length and the group velocity of signal. To test the validity of Eq. (21), numerical simulations were run for the five sets of parameters: (i) Is0 = 10−6Ip0, R = 0.1% and L = 5 mm; (ii) Is0 = 10−6Ip0, R = 0.1% and L = 4 mm; (iii) Is0 = 10−6 Ip0, R = 0.1% and L = 3 mm; (iv) Is0 = 10−6 Ip0, R = 0.01% and L = 5 mm and (v) Is0 = 10−5 Ip0, R = 0.1% and L = 5 mm. The simulation results, as shown in Fig. 7
Fig. 7 Fit of the numerical results (Ipre-pulse/I0) from the five sets of parameters(scattered data points)using Eq. (21) (solid line). Other parameters for simulation are identical with those in Fig. 6.
, are found to fit well with the trail solution of Eq. (21) when η < 20% and the coefficient b is set to be 0.4.

In addition, we find that the determination of Ipre-pulse/I0 in this case can be divided into two relatively independent and interconnected steps, that is
IprepulseI0=IpostpulseI0×IprepulseIpostpulse.
(22)
The first term Ipost-pulse/I0 is the relative intensity of the 1st post-pulse against the main pulse. It is found to be proportional to GR2 but almost independent of η, as shown in Fig. 8(a)
Fig. 8 (a) The calculated Ipost-pulse/I0 under varying parametric gain (G) from 102 to 106 and surface reflectivity (R) of 0.1%, 0.01% and 1%, and its fitting. (b) The calculated Ipre-pulse/Ipost-pulse under the five sets of parameters (scattered data points) and its fitting. The crystal length is fixed at 5 mm. Other parameters for simulation are identical with those in Fig. 6.
. The second term Ipre-pulse/Ipost-pulse is the relative intensity of the 1st pre-pulse against 1st post-pulse. It is proportional to η2 but almost independent of G and R, as plotted in Fig. 8(b). This result is reasonable. As mentioned before, a post-pulse can be formed as the amplified reflection of the main pulse, with its intensity proportional to the parametric gain G and the double reflection loss R2. This post-pulse will be amplified and then guided to the position of the 1st post-pulse during compression. Although the nonlinear parametric gain can superimpose an additional 1st post-pulse to the compressed signal, according to Eq. (15), the intensity of this nonlinearity-induced post-pulse is typically lower than that of the post-pulse originating from surface reflections. That is the reason that Ipost-pulse/I0 is nearly proportional to GR2 and is little affected by η. In contrast, since the 1st pre-pulse is totally induced by the nonlinearity of parametric amplification, its relative intensity is mainly determined by η.

4. Effect of group-velocity mismatch

In this section, we concern the impact of group-velocity mismatch (GVM) on the pre-pulse generation demonstrated above. Based on an intuitive though, since GVM can cause relative movements among the interacting fields, the transfer of temporal modulations from chirped signal pulse to the pump pulse may become less effective. At this point, we expect that the distortion of signal spectrum will become less significant and the consequent pre-pulses will be weaker. Although that the group velocities of signal and idler are typically matched to obtain a large phase matching bandwidth, the GVM between pump and signal (δsp = 1/vgs - 1/vgp) is usually nonzero, we study the impact of δsp, while assuming δsi = 0 (δsi = 1/vgs - 1/vgi).

Full numerical simulations were primarily run for a set of parameters similar to that for Fig. 3, except a shorter delay time of 10 ps rather than 56 ps for the initial post-pulse. This parameter is designed to make the modulation depth of chirped signal pulse (2pr) larger, so that the evolution of the modulations of pump and signal during amplification could be identified more clearly. According to Eq. (3), the modulation period of chirped signal pulse becomes Tm = 256 fs. With δsp varying from 0 to 1000 fs/mm, the consequent Ipre-pulse/I0 under a fixed conversion efficiency of 32% (saturated amplification) decreases from ~10−5 to ~10−7, as demonstrated in Fig. 9(a)
Fig. 9 (a) The dependency of pre-pulse intensity (Ipre-pulse/I0) on the GVM (δsp) at the 32% conversion efficiency point for chirped signal pulses having modulation period of 256 ps (square symbols), 170 fs (cycle symbols) and 384 fs (triangle symbols), respectively. The seed is assumed to be followed by a post-pulse with time separation of 10 ps. Other simulation parameters are identical with those in Fig. 3. (b) Part of the intensity profiles of pump (red) and signal (black) after amplification under δsp = 0 fs/mm and pump (magenta) and signal (blue) under δsp = 1000 fs/mm, in the case of Tm = 256 fs.
. Simulations were also run for the chirped signal with modulation periods of 170 fs and 384 fs, obtained by changing the spectral width of seed to 45 nm and 20 nm respectively. Comparison of the three sets of results shows the shorter the modulation period, the effective for the GVM in impeding the growth of pre-pulses.

Figure 9(b) presents part of the intensity profiles of pump and signal in the case of δsp = 0 and δsp = 1000 fs/mm, respectively. Compared with the case of δsp = 0, the modulation depth of pump undergoes a significant reduction while that of the chirped signal pulse undergoes a slight increase after introducing δsp = 1000 fs/mm. This is reasonable because the instantaneous pump-depletion in the case of δsp = 0 could, on the one hand, induce a complementary modulation pattern on the pump pulse, yet on the other hand, partially compensate the intensity variation of the temporal profile of chirped signal as a negative feedback. From Fig. 8, we can conclude that an increase of δsp is effective in impeding the growth of pre-pulses as it results in a decrease in the modulation depth of the pump pulse under the same modulation condition of chirped signal pulse. This result is consistent with our conjecture. Nevertheless, the advisable increase of δsp is very limited, since δsp can cause the signal to shift away from the peak of pump pulse, and other optical noises like OPF can then be preferentially amplified by the peak of pump pulse, resulting in a degradation of pulse-contrast in the form of pedestals with increasing level.

5. Conclusion

We have shown that the surface reflections can lead to pre-pulses generation on the compressed output signal, causing a degradation of the contrast of pulse front to be lower than 106 in an OPCPA system, even when there is no pump noise, OPF or SPM at all. Such the pre-pulse generation originates from the instantaneous nature of parametric gain and thus is extremely hard to be eliminated. Although antireflection coatings and wedged optics have been usually used to reduce the surface reflections, we claim the existence of surface reflection will still be a potential bottleneck for the contrast improvement of OPCPA systems, especially for the large aperture systems or systems with short inter-component spacing. The explicit formulas derived in this paper can be used for direct calculation of the intensities of acquired pre-pulses initiated by the surface reflections before or inside the OPCPA crystal, without one having to resort the full numerical simulation. Besides, the analytic model built in this paper revealing the instantaneous gain saturation effect provides another useful analytical tool for analyzing the performance of OPCPA systems for real pump and signal pulses which are not uniformly distributed in the temporal domain.

Acknowledgments

This work was partially supported by the National Basic Research Program of China (973 Program) (Grant No. 2013CBA01505), and Natural Science Foundation of China (grant Nos. 61008017 and 11121504).

References and links

1.

L. Veisz, “Contrast improvement of relativistic few-cycle light pulses,” Coherent and Ultrashort Pulse Laser Emission 14, 305–328 (2010).

2.

M. Kalashnikov, A. Andreev, and H. Schönnagel, “Limiting characteristics of temporal contrast for high aperture CPA lasers,” in Proceedings of Light at Extreme Intensities, D. Dumitras, ed. (Academic, American Institute of Physics), 175–185 (2010).

3.

H. Kiriyama, T. Shimomura, H. Sasao, Y. Nakai, M. Tanoue, S. Kondo, S. Kanazawa, A. S. Pirozhkov, M. Mori, Y. Fukuda, M. Nishiuchi, M. Kando, S. V. Bulanov, K. Nagashima, M. Yamagiwa, K. Kondo, A. Sugiyama, P. R. Bolton, T. Tajima, and N. Miyanaga, “Temporal contrast enhancement of petawatt-class laser pulses,” Opt. Lett. 37(16), 3363–3365 (2012). [CrossRef] [PubMed]

4.

T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express 20(10), 10807–10815 (2012). [CrossRef] [PubMed]

5.

J. M. Mikhailova, A. Buck, A. Borot, K. Schmid, C. Sears, G. D. Tsakiris, F. Krausz, and L. Veisz, “Ultra-high-contrast few-cycle pulses for multipetawatt-class laser technology,” Opt. Lett. 36(16), 3145–3147 (2011). [CrossRef] [PubMed]

6.

Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, and Z. Wei, “High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier,” Opt. Lett. 36(16), 3194–3196 (2011). [CrossRef] [PubMed]

7.

H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, M. Tanoue, A. Akutsu, S. Kondo, S. Kanazawa, H. Okada, T. Motomura, H. Daido, T. Kimura, and T. Tajima, “High-contrast, high-intensity laser pulse generation using a nonlinear preamplifier in a Ti:sapphire laser system,” Opt. Lett. 33(7), 645–647 (2008). [CrossRef] [PubMed]

8.

A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J. P. Rousseau, J. P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett. 30(8), 920–922 (2005). [CrossRef] [PubMed]

9.

F. Tavella, A. Marcinkevičius, and F. Krausz, “Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system,” New J. Phys. 8(10), 219 (2006). [CrossRef]

10.

S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” Selected Topics in Quantum Electronics, IEEE Journal of 18(1), 296–307 (2012). [CrossRef]

11.

N. Forget, A. Cotel, E. Brambrink, P. Audebert, C. Le Blanc, A. Jullien, O. Albert, and G. Chériaux, “Pump-noise transfer in optical parametric chirped-pulse amplification,” Opt. Lett. 30(21), 2921–2923 (2005). [CrossRef] [PubMed]

12.

I. N. Ross, G. H. C. New, and P. K. Bates, “Contrast limitation due to pump noise in an optical parametric chirped pulse amplification system,” Opt. Commun. 273(2), 510–514 (2007). [CrossRef]

13.

C. Dorrer, “Analysis of pump-induced temporal contrast degradation in optical parametric chirped-pulse amplification,” J. Opt. Soc. Am. B 24(12), 3048–3057 (2007). [CrossRef]

14.

N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Y. Tenyakov, “Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses,” Opt. Express 16(5), 3178–3190 (2008). [CrossRef] [PubMed]

15.

D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express 16(14), 10664–10674 (2008). [CrossRef] [PubMed]

16.

C. Hooker, Y. Tang, O. Chekhlov, J. Collier, E. Divall, K. Ertel, S. Hawkes, B. Parry, and P. P. Rajeev, “Improving coherent contrast of petawatt laser pulses,” Opt. Express 19(3), 2193–2203 (2011). [CrossRef] [PubMed]

17.

D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express 16(12), 8876–8886 (2008). [CrossRef] [PubMed]

18.

M. K. Jackson, G. R. Boyer, J. Paye, M. A. Franco, and A. Mysyrowicz, “Temporal diffraction by nonlinear interaction in optical fibers,” Opt. Lett. 17(24), 1770–1772 (1992). [CrossRef] [PubMed]

19.

X. Liu, R. Wagner, A. Maksimchuk, E. Goodman, J. Workman, D. Umstadter, and A. Migus, “Nonlinear temporal diffraction and frequency shifts resulting from pulse shaping in chirped-pulse amplification systems,” Opt. Lett. 20(10), 1163–1165 (1995). [CrossRef] [PubMed]

20.

Y. Huang, C. Zhang, Y. Xu, D. Li, Y. Leng, R. Li, and Z. Xu, “Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification,” Opt. Lett. 36(6), 781–783 (2011). [CrossRef] [PubMed]

21.

P. Yuan, G. Xie, D. Zhang, H. Zhong, and L. Qian, “High-contrast near-IR short pulses generated by a mid-IR optical parametric chirped-pulse amplifier with frequency doubling,” Opt. Lett. 35(11), 1878–1880 (2010). [CrossRef] [PubMed]

22.

M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30(8), 923–925 (2005). [CrossRef] [PubMed]

23.

J. Moses, C. Manzoni, S. W. Huang, G. Cerullo, and F. X. Kärtner, “Temporal optimization of ultrabroadband high-energy OPCPA,” Opt. Express 17(7), 5540–5555 (2009). [CrossRef] [PubMed]

24.

I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B 19(12), 2945–2956 (2002). [CrossRef]

25.

J. D. Bolie, F. Patterson, D. Price, B. White, and P. Springer, “Production of >1021 W/cm2 from a large-aperture Ti:sapphire laser system,” Appl. Phys. B 70(1), S155–S160 (2000).

26.

J. Ma, P. Yuan, Y. Wang, H. Zhu, and L. Qian, “Numerical study on pulse contrast enhancement in a short-pulse-pumped optical parametric amplifier,” Opt. Commun. 285(21–22), 4531–4536 (2012). [CrossRef]

27.

H. Ren, L. Qian, H. Zhu, D. Fan, and P. Yuan, “Pulse-contrast degradation due to pump phase-modulation in optical parametric chirped-pulse amplification system,” Opt. Express 18(12), 12948–12959 (2010). [CrossRef] [PubMed]

28.

S. Demmler, J. Rothhardt, S. Hädrich, J. Bromage, J. Limpert, and A. Tünnermann, “Control of nonlinear spectral phase induced by ultra-broadband optical parametric amplification,” Opt. Lett. 37(19), 3933–3935 (2012). [CrossRef] [PubMed]

29.

F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, “High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier,” Appl. Phys. B 81(6), 753–756 (2005). [CrossRef]

30.

M. Abramowitz and I. A. Stegun, “Handbook of mathematical functions: with formulas, graphs, and mathematical tables,” in Generation Function for the Bessel-Function, Formula 9.1.41 (Dover publications, 1970).

31.

P. Zhu, L. Qian, S. Xue, and Z. Lin, “Numerical studies of optical parametric chirped pulse amplification,” Opt. Laser Technol. 35(1), 13–19 (2003). [CrossRef]

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Nonlinear Optics

History
Original Manuscript: April 10, 2013
Revised Manuscript: June 4, 2013
Manuscript Accepted: June 4, 2013
Published: June 21, 2013

Citation
Jing Wang, Peng Yuan, Jingui Ma, Yongzhi Wang, Guoqiang Xie, and Liejia Qian, "Surface-reflection-initiated pulse-contrast degradation in an optical parametric chirped-pulse amplifier," Opt. Express 21, 15580-15594 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-13-15580


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Veisz, “Contrast improvement of relativistic few-cycle light pulses,” Coherent and Ultrashort Pulse Laser Emission14, 305–328 (2010).
  2. M. Kalashnikov, A. Andreev, and H. Schönnagel, “Limiting characteristics of temporal contrast for high aperture CPA lasers,” in Proceedings of Light at Extreme Intensities, D. Dumitras, ed. (Academic, American Institute of Physics), 175–185 (2010).
  3. H. Kiriyama, T. Shimomura, H. Sasao, Y. Nakai, M. Tanoue, S. Kondo, S. Kanazawa, A. S. Pirozhkov, M. Mori, Y. Fukuda, M. Nishiuchi, M. Kando, S. V. Bulanov, K. Nagashima, M. Yamagiwa, K. Kondo, A. Sugiyama, P. R. Bolton, T. Tajima, and N. Miyanaga, “Temporal contrast enhancement of petawatt-class laser pulses,” Opt. Lett.37(16), 3363–3365 (2012). [CrossRef] [PubMed]
  4. T. J. Yu, S. K. Lee, J. H. Sung, J. W. Yoon, T. M. Jeong, and J. Lee, “Generation of high-contrast, 30 fs, 1.5 PW laser pulses from chirped-pulse amplification Ti:sapphire laser,” Opt. Express20(10), 10807–10815 (2012). [CrossRef] [PubMed]
  5. J. M. Mikhailova, A. Buck, A. Borot, K. Schmid, C. Sears, G. D. Tsakiris, F. Krausz, and L. Veisz, “Ultra-high-contrast few-cycle pulses for multipetawatt-class laser technology,” Opt. Lett.36(16), 3145–3147 (2011). [CrossRef] [PubMed]
  6. Z. Wang, C. Liu, Z. Shen, Q. Zhang, H. Teng, and Z. Wei, “High-contrast 1.16 PW Ti:sapphire laser system combined with a doubled chirped-pulse amplification scheme and a femtosecond optical-parametric amplifier,” Opt. Lett.36(16), 3194–3196 (2011). [CrossRef] [PubMed]
  7. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, M. Tanoue, A. Akutsu, S. Kondo, S. Kanazawa, H. Okada, T. Motomura, H. Daido, T. Kimura, and T. Tajima, “High-contrast, high-intensity laser pulse generation using a nonlinear preamplifier in a Ti:sapphire laser system,” Opt. Lett.33(7), 645–647 (2008). [CrossRef] [PubMed]
  8. A. Jullien, O. Albert, F. Burgy, G. Hamoniaux, J. P. Rousseau, J. P. Chambaret, F. Augé-Rochereau, G. Chériaux, J. Etchepare, N. Minkovski, and S. M. Saltiel, “10-10 temporal contrast for femtosecond ultraintense lasers by cross-polarized wave generation,” Opt. Lett.30(8), 920–922 (2005). [CrossRef] [PubMed]
  9. F. Tavella, A. Marcinkevičius, and F. Krausz, “Investigation of the superfluorescence and signal amplification in an ultrabroadband multiterawatt optical parametric chirped pulse amplifier system,” New J. Phys.8(10), 219 (2006). [CrossRef]
  10. S. Witte and K. S. E. Eikema, “Ultrafast optical parametric chirped-pulse amplification,” Selected Topics in Quantum Electronics, IEEE Journal of18(1), 296–307 (2012). [CrossRef]
  11. N. Forget, A. Cotel, E. Brambrink, P. Audebert, C. Le Blanc, A. Jullien, O. Albert, and G. Chériaux, “Pump-noise transfer in optical parametric chirped-pulse amplification,” Opt. Lett.30(21), 2921–2923 (2005). [CrossRef] [PubMed]
  12. I. N. Ross, G. H. C. New, and P. K. Bates, “Contrast limitation due to pump noise in an optical parametric chirped pulse amplification system,” Opt. Commun.273(2), 510–514 (2007). [CrossRef]
  13. C. Dorrer, “Analysis of pump-induced temporal contrast degradation in optical parametric chirped-pulse amplification,” J. Opt. Soc. Am. B24(12), 3048–3057 (2007). [CrossRef]
  14. N. V. Didenko, A. V. Konyashchenko, A. P. Lutsenko, and S. Y. Tenyakov, “Contrast degradation in a chirped-pulse amplifier due to generation of prepulses by postpulses,” Opt. Express16(5), 3178–3190 (2008). [CrossRef] [PubMed]
  15. D. N. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “The impact of spectral modulations on the contrast of pulses of nonlinear chirped-pulse amplification systems,” Opt. Express16(14), 10664–10674 (2008). [CrossRef] [PubMed]
  16. C. Hooker, Y. Tang, O. Chekhlov, J. Collier, E. Divall, K. Ertel, S. Hawkes, B. Parry, and P. P. Rajeev, “Improving coherent contrast of petawatt laser pulses,” Opt. Express19(3), 2193–2203 (2011). [CrossRef] [PubMed]
  17. D. Schimpf, E. Seise, J. Limpert, and A. Tünnermann, “Decrease of pulse-contrast in nonlinear chirped-pulse amplification systems due to high-frequency spectral phase ripples,” Opt. Express16(12), 8876–8886 (2008). [CrossRef] [PubMed]
  18. M. K. Jackson, G. R. Boyer, J. Paye, M. A. Franco, and A. Mysyrowicz, “Temporal diffraction by nonlinear interaction in optical fibers,” Opt. Lett.17(24), 1770–1772 (1992). [CrossRef] [PubMed]
  19. X. Liu, R. Wagner, A. Maksimchuk, E. Goodman, J. Workman, D. Umstadter, and A. Migus, “Nonlinear temporal diffraction and frequency shifts resulting from pulse shaping in chirped-pulse amplification systems,” Opt. Lett.20(10), 1163–1165 (1995). [CrossRef] [PubMed]
  20. Y. Huang, C. Zhang, Y. Xu, D. Li, Y. Leng, R. Li, and Z. Xu, “Ultrashort pulse temporal contrast enhancement based on noncollinear optical-parametric amplification,” Opt. Lett.36(6), 781–783 (2011). [CrossRef] [PubMed]
  21. P. Yuan, G. Xie, D. Zhang, H. Zhong, and L. Qian, “High-contrast near-IR short pulses generated by a mid-IR optical parametric chirped-pulse amplifier with frequency doubling,” Opt. Lett.35(11), 1878–1880 (2010). [CrossRef] [PubMed]
  22. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett.30(8), 923–925 (2005). [CrossRef] [PubMed]
  23. J. Moses, C. Manzoni, S. W. Huang, G. Cerullo, and F. X. Kärtner, “Temporal optimization of ultrabroadband high-energy OPCPA,” Opt. Express17(7), 5540–5555 (2009). [CrossRef] [PubMed]
  24. I. N. Ross, P. Matousek, G. H. C. New, and K. Osvay, “Analysis and optimization of optical parametric chirped pulse amplification,” J. Opt. Soc. Am. B19(12), 2945–2956 (2002). [CrossRef]
  25. J. D. Bolie, F. Patterson, D. Price, B. White, and P. Springer, “Production of >1021 W/cm2 from a large-aperture Ti:sapphire laser system,” Appl. Phys. B70(1), S155–S160 (2000).
  26. J. Ma, P. Yuan, Y. Wang, H. Zhu, and L. Qian, “Numerical study on pulse contrast enhancement in a short-pulse-pumped optical parametric amplifier,” Opt. Commun.285(21–22), 4531–4536 (2012). [CrossRef]
  27. H. Ren, L. Qian, H. Zhu, D. Fan, and P. Yuan, “Pulse-contrast degradation due to pump phase-modulation in optical parametric chirped-pulse amplification system,” Opt. Express18(12), 12948–12959 (2010). [CrossRef] [PubMed]
  28. S. Demmler, J. Rothhardt, S. Hädrich, J. Bromage, J. Limpert, and A. Tünnermann, “Control of nonlinear spectral phase induced by ultra-broadband optical parametric amplification,” Opt. Lett.37(19), 3933–3935 (2012). [CrossRef] [PubMed]
  29. F. Tavella, K. Schmid, N. Ishii, A. Marcinkevičius, L. Veisz, and F. Krausz, “High-dynamic range pulse-contrast measurements of a broadband optical parametric chirped-pulse amplifier,” Appl. Phys. B81(6), 753–756 (2005). [CrossRef]
  30. M. Abramowitz and I. A. Stegun, “Handbook of mathematical functions: with formulas, graphs, and mathematical tables,” in Generation Function for the Bessel-Function, Formula 9.1.41 (Dover publications, 1970).
  31. P. Zhu, L. Qian, S. Xue, and Z. Lin, “Numerical studies of optical parametric chirped pulse amplification,” Opt. Laser Technol.35(1), 13–19 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited