OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 14 — Jul. 15, 2013
  • pp: 16466–16472
« Show journal navigation

Narrow-band generation in random distributed feedback fiber laser

Srikanth Sugavanam, Nikita Tarasov, Xuewen Shu, and Dmitry V. Churkin  »View Author Affiliations


Optics Express, Vol. 21, Issue 14, pp. 16466-16472 (2013)
http://dx.doi.org/10.1364/OE.21.016466


View Full Text Article

Acrobat PDF (1089 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Narrow-band emission of spectral width down to ~0.05 nm line-width is achieved in the random distributed feedback fiber laser employing narrow-band fiber Bragg grating or fiber Fabry-Perot interferometer filters. The observed line-width is ~10 times less than line-width of other demonstrated up to date random distributed feedback fiber lasers. The random DFB laser with Fabry-Perot interferometer filter provides simultaneously multi-wavelength and narrow-band (within each line) generation with possibility of further wavelength tuning.

© 2013 OSA

1. Introduction

Random lasers refer to a unique class of lasers where a classical resonator is replaced by randomly distributed scattering centers. Lasing in such a system with “non-resonant feedback” was first demonstrated by Ambartsumyan et al, where the fully reflecting mirror of a ruby laser was replaced with a rough surface [1

1. R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokov, “Laser with nonresonant feedback,” Sov. Phys. JETP 3, 167–169 (1966).

]. The field saw a resurgence in activity after the development of pulsed lasers, eventually leading to realization of various random lasing configurations [2

2. H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003). [CrossRef]

4

4. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]

]. The most common form of the random laser is the powder form, where the active medium itself helps to scatter the emitted radiation [5

5. V. Markushev, V. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron. 16(2), 281–283 (1986). [CrossRef]

]. Other forms include colloidal suspension of scattering centers in an active medium [6

6. H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003). [CrossRef]

], nanowires [7

7. H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys. 97(6), 064315 (2005). [CrossRef]

] and polymers [8

8. S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000). [CrossRef]

]. The simplicity of realization of random lasers gives them an upper hand over conventional lasers. In general, the drawbacks of such systems are the requirement of high peak powers, low efficiency due to small active areas with poor confinement and low directionality, and more importantly, cumbersome or almost no control over the spectral properties of the emission.

To address confinement and directionality issues, a suspension of TiO2 particles in a rhodamine-G solution was inserted into hollow core optical fiber [9

9. C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007). [CrossRef] [PubMed]

]. This resulted in an improvement in the efficiency by two orders of magnitude when compared to random lasing realized in bulk random media due to fiber guiding properties. In fibers, a random feedback can be also provided by strong scattering on conventional fiber optic mirrors – fiber Bragg gratings (FBGs) placed (in spectral domain) in a random way by using a number of different gratings [10

10. O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. A. 22(12), 2542 (2005). [CrossRef]

,11

11. N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17(2), 395–404 (2009). [CrossRef] [PubMed]

] or introducing randomly incorporated phase errors in a single FBG [12

12. M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009). [CrossRef] [PubMed]

].

Recently, a concept of a new type of a random laser operating via extremely weak random scattering in a single mode fiber has been proposed and experimentally demonstrated [13

13. S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]

]. The random distributed feedback (DFB) is provided via backward random Rayleigh scattering amplified through the Raman effect in a long (tens of km). While the threshold of this laser is relatively high, the efficiency was noted to be quite comparable to existing CW lasers [13

13. S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]

,14

14. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20(27), 28033–28038 (2012). [CrossRef] [PubMed]

]. A number of different random DFB fiber laser configurations are realized up to date [15

15. D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010). [CrossRef]

36

36. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20(10), 11178–11188 (2012). [CrossRef] [PubMed]

]. In particular, random DFB fiber lasers can be multi-wavelength [18

18. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010). [CrossRef] [PubMed]

20

20. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering”, Appl. Phys. B 99, 391–395 (2010).

], tunable [21

21. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011). [CrossRef]

,22

22. A. Sarmani, R. Zamiri, and M. Bakar, “Tunable Raman fiber laser induced by Rayleigh backscattering in an ultra-long cavity,” J. Eur. Opt. Soc - Rapid. 11043, 4–7 (2011).

], can operate in different spectral bands [23

23. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express 19(19), 18486–18494 (2011). [CrossRef] [PubMed]

,24

24. R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115 nm,” Appl. Phys. B 111, 1–4 (2013).

] and provide cascaded operation at higher Stokes components [23

23. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express 19(19), 18486–18494 (2011). [CrossRef] [PubMed]

,25

25. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012). [CrossRef] [PubMed]

]. In terms of applications, random DFB fiber lasers are promising for sensing [27

27. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B 104(4), 957–960 (2011). [CrossRef]

31

31. X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE 8421, 842127, 842127-4 (2012). [CrossRef]

,34

34. M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett. 37(15), 3129–3131 (2012). [CrossRef] [PubMed]

] and telecom applications [32

32. J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers”, in Advanced Photonics Congress (OSA, 2012), p. JM5A.7. [CrossRef]

,33

33. X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express 21(5), 6572–6577 (2013). [CrossRef] [PubMed]

]. In particular, the use of the random DFB system as a sensor in conjunction with a Brillouin-OTDR system was also demonstrated [31

31. X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE 8421, 842127, 842127-4 (2012). [CrossRef]

]. The random DFB fiber laser has a lower noise figure when compared to a bi-directional 1st order and 2nd order Raman pumping configurations [32

32. J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers”, in Advanced Photonics Congress (OSA, 2012), p. JM5A.7. [CrossRef]

,33

33. X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express 21(5), 6572–6577 (2013). [CrossRef] [PubMed]

]. The concept of random DFB fiber laser is further developed by implementing a stimulated Brillouin scattering (SBS) instead of Raman scattering [34

34. M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett. 37(15), 3129–3131 (2012). [CrossRef] [PubMed]

,35

35. A. A. Fotiadi, I. Lobach, and P. Mégret, “Dynamics of ultra-long Brillouin fiber laser,” Proc. SPIE 8601, 86011K, 86011K-9 (2013). [CrossRef]

].

In all random DFB lasers demonstrated up to date, the laser radiation is rather broad having a typical spectral width of 1 nm and more. It is of practical interest to suppress the linewidth of the random DFB laser. In the present work, lasing of spectral widths down to 0.05 nm is demonstrated in the random DFB system by use of narrow FBG or fiber based Fabry-Perot filter.

2. Experimental results

2.1 The laser design

Figure 1
Fig. 1 Experimental configuration of the narrow-band random DFB laser. The red arrows indicate the direction of propagation of laser radiation within the cavity. A spectrally selective element is inserted in the lower branch.
shows a schematic diagram of the experimental setup. Two spans of 40 km standard Corning SMF 28 fiber were pumped from the central point by two Raman fiber lasers at 1455 nm. Raman gain has a maximum near 1550 nm in this case. Above the generation threshold, the random generation owing the random distributed Rayleigh feedback is started.

To obtain the narrow-band generation, spectral filters are used. Two types of filters are used in this work: FBG or fiber-coupled Fabry-Perot filter (FFP). The FBG has a Gaussian profile, with line-width 0.05 nm and centered around 1550.5 nm. The FFP filter has a pass-band at 1552.7 nm, finesse 486 and a free spectral range 623.60 GHz. This corresponds to a spectral width of 10 pm for every FFP transmission pike. To enable using the filter in the laser and to preserve the random feedback at the same time, a unidirectional circulator configuration is employed. This also provides isolation when the FFP is used. The radiation propagating from left fiber end to right fiber end is bypassed through the spectral filter allowing selective gain only within the reflection bandwidth of the filter. The radiation propagating from the right fiber end to the left fiber end freely passes via the upper branch.

The non-uniform longitudinal power distribution in the random DFB fiber laser allows us to use low-power handling filter (like FFP) to manage properties of the high power (~1 W) random generation. Indeed, the power at the central point of configuration is sufficiently lower than maximum generated power [13

13. S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]

,14

14. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20(27), 28033–28038 (2012). [CrossRef] [PubMed]

,36

36. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20(10), 11178–11188 (2012). [CrossRef] [PubMed]

]. In our case the power at filter position is always lower than 10 mW, while generated power at maximum is of order of 1 W.

2.2 Emission characteristics

Firstly, we study the system with FBG used as a spectral filter. Generation initiates beyond a marked threshold, and the generation power increases almost linearly with the pump power (Fig. 2(a)
Fig. 2 Generation properties of random DFB fiber laser with a narrow-band FBG as a spectral filter: (a) Output power (b) The full linewidth and half maximum (FWHM) depending on pump power. (c,d) Optical spectra at different pump power level from left (c) and right (d) outputs.
). Till the pump power of 1.2 W, the generation spectral width is almost constant at level around 0.05 nm and follows the spectral width of used FBG (Fig. 2(b)). So narrow-band generation in a random DFB fiber laser is achieved. Note that the minimal spectral achieved in the configuration without spectral filter is 0.5 nm. Beyond 1.2 W of pump power, the spectrum becomes to be broader than spectral filter. Moreover, the generation properties become asymmetric: the spectral broadening is much more pronounced at the left output of the laser, where the broadest spectrum has a width of ~0.3 nm (being still narrower than in the case of random DFB fiber laser without any spectral filters). The spectrum width of the generation emitted from the right end of the system is always below 0.1 nm. Note that in the case of the pure random DFB system which does not employ any spectral filters, the output characteristics are symmetric [13

13. S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]

]. We have specially checked that the observed asymmetry (power and spectral) in outputs is reversed if the filter is moved to the upper branch, which rules out any effects arising due to pump asymmetry.

Similar results are obtained with FFP as a spectral filter (Figs. 3(a)
Fig. 3 Generation properties of random DFB fiber laser with a narrow-band FFP as a spectral filter: (a) Transmission profile of the FFP (b) Multiwavelength narrow-band generation observed at the right output.
, 3(b)). The narrow-band generation is generated. The observed line-width is below the 0.02 nm OSA instrument function. As pump power increasing, the spectrum becomes broader than the spectral width of FFP filter and asymmetry generation properties emitted from the left and right outputs of the system arises. As the free spectral range of the FFP is smaller than the Raman gain profile spectral width, multiple lines are generated simultaneously (Fig. 3(b)), each of them being narrow-band itself. Note that the presented configuration provides a straight-forward and easy way to obtain a narrow-band multi-wavelength and simultaneously tunable generation by using narrow-band tunable FFP filter. The separation between channels can be controlled in precise way by managing FFP spectral properties.

3. Discussion

The generated spectra are different along the different points in the cavity for both FBG based and FFP based configurations (Figs. 4(a)
Fig. 4 Optical spectra at different locations in a random DFB fiber laser with (a) FBG and (b) FFP filter.
, 4(b)). While the FBG/FFP presents a well filtered signal for the fiber span on the right, the backscattered signal from the right contains a significant Brillouin scattered component (0.08 nm shifted from the main spectral peak), as observed in the upper branch. As the generation power along the fiber could be as high as 1 W providing high enough nonlinearity, the four wave mixing (FWM) between different SBS components could be initiated. In addition, as the random DFB fiber laser is mode-less, i.e. comprising numerous very close-spaced spectral components [13

13. S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]

], the radiation even in so narrow bandwidth as 10 pm has to be partially coherent. So, in addition to the SBS initiated FWM, the self-phase modulation of partially coherent radiation [37

37. J. T. Manassah, “Self-phase modulation of incoherent light revisited,” Opt. Lett. 16(21), 1638–1640 (1991). [CrossRef] [PubMed]

] within each SBS component could be pronounced. Depending on phase stochastization mechanism, different spectral broadening laws (linear [38

38. S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett. 37(13), 2508–2510 (2012). [CrossRef] [PubMed]

] or square-root [39

39. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729 (2007). [CrossRef]

,40

40. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008). [CrossRef] [PubMed]

]) could be realized. The question of exact spectral broadening law in narrow-band random DFB fiber laser should be further investigated.

The narrow-band random DFB fiber laser could be a good candidate to investigate temporal and statistical properties of random fiber lasers. Indeed, the question of temporal and statistical properties of quasi-CW partially coherent lasers is of general interest in past years [41

41. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010). [CrossRef] [PubMed]

46

46. S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett. 37(4), 500–502 (2012). [CrossRef] [PubMed]

]. There is no up to date any experimental study of temporal or statistical properties of random DFB fiber lasers based on Raman scattering. However, it is known that random Rayleigh scattering could change sufficiently temporal and statistical properties of SBS lasers [47

47. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23(23), 1805–1807 (1998). [CrossRef] [PubMed]

]. Having narrow-band generation within 10 pm (around 1 GHz) bandwidth, the temporal and statistical properties of the laser could be investigated in real-time using conventional oscilloscopes directly without using spectral filtering techniques [46

46. S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett. 37(4), 500–502 (2012). [CrossRef] [PubMed]

] or indirect methods of measuring fast intensity fluctuations [48

48. J. Schröder and S. Coen, “Observation of high-contrast, fast intensity noise of a continuous wave Raman fiber laser,” Opt. Express 17(19), 16444–16449 (2009). [CrossRef] [PubMed]

]. The result of this investigation will be published elsewhere.

4. Conclusions

To conclude, for the first time narrow-band generation of random DFB fiber laser has been demonstrated using narrow-band spectral filter in the random laser. Despite the fact that there is almost no generated power in the central part of the laser where the filter is placed, introducing the narrow-band filter provides laser generation with a line-width down to 0.05 nm being 10 times narrower than minimal achieved line-width in random DFB fiber lasers without spectral filters. The random DFB laser with FFP provides multi-wavelength and narrow-band (within each line) generation. At low power, the generation spectrum bandwidth is limited by the spectral filter bandwidth, but not by the Raman gain spectral profile. At higher pump power, the nonlinear spectral broadening affects the spectral shape and width due to cooperative processes of stimulated Brillouin scattering, self-phase modulation and four wave mixing. The presented laser configuration provides the opportunity of obtaining extremely narrow line-width radiation upon suitable optimization and simultaneous tunable and multi-wavelength operation.

Acknowledgments

Authors would like to acknowledge the support of the European Research Council, EPSRC, SB RAS partner integration projects, grants of the Russian Ministry of Education and Science, Russian Foundation for Basic Research, Department of General Physics of the Russian Academy of Sciences, and thank E.V. Podivilov for fruitful discussions.

References and links

1.

R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokov, “Laser with nonresonant feedback,” Sov. Phys. JETP 3, 167–169 (1966).

2.

H. Cao, “Lasing in random media,” Waves Random Media 13(3), R1–R39 (2003). [CrossRef]

3.

H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen. 38(49), 10497–10535 (2005). [CrossRef]

4.

D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys. 4(5), 359–367 (2008). [CrossRef]

5.

V. Markushev, V. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron. 16(2), 281–283 (1986). [CrossRef]

6.

H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9(1), 111–119 (2003). [CrossRef]

7.

H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys. 97(6), 064315 (2005). [CrossRef]

8.

S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron. 36(1), 2–11 (2000). [CrossRef]

9.

C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett. 99(15), 153903 (2007). [CrossRef] [PubMed]

10.

O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. A. 22(12), 2542 (2005). [CrossRef]

11.

N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express 17(2), 395–404 (2009). [CrossRef] [PubMed]

12.

M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express 17(21), 19067–19074 (2009). [CrossRef] [PubMed]

13.

S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]

14.

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20(27), 28033–28038 (2012). [CrossRef] [PubMed]

15.

D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010). [CrossRef]

16.

W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express 21(7), 8544–8549 (2013). [CrossRef] [PubMed]

17.

A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express 19(15), 14152–14159 (2011). [CrossRef] [PubMed]

18.

A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett. 35(7), 1100–1102 (2010). [CrossRef] [PubMed]

19.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011). [CrossRef] [PubMed]

20.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering”, Appl. Phys. B 99, 391–395 (2010).

21.

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011). [CrossRef]

22.

A. Sarmani, R. Zamiri, and M. Bakar, “Tunable Raman fiber laser induced by Rayleigh backscattering in an ultra-long cavity,” J. Eur. Opt. Soc - Rapid. 11043, 4–7 (2011).

23.

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express 19(19), 18486–18494 (2011). [CrossRef] [PubMed]

24.

R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115 nm,” Appl. Phys. B 111, 1–4 (2013).

25.

W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express 20(13), 14400–14405 (2012). [CrossRef] [PubMed]

26.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol. 28, 3149–3155 (2010).

27.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B 104(4), 957–960 (2011). [CrossRef]

28.

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol. 30(8), 1168–1172 (2012). [CrossRef]

29.

Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett. 17(10), 2044–2046 (2005). [CrossRef]

30.

Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express 20(16), 17695–17700 (2012). [CrossRef] [PubMed]

31.

X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE 8421, 842127, 842127-4 (2012). [CrossRef]

32.

J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers”, in Advanced Photonics Congress (OSA, 2012), p. JM5A.7. [CrossRef]

33.

X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express 21(5), 6572–6577 (2013). [CrossRef] [PubMed]

34.

M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett. 37(15), 3129–3131 (2012). [CrossRef] [PubMed]

35.

A. A. Fotiadi, I. Lobach, and P. Mégret, “Dynamics of ultra-long Brillouin fiber laser,” Proc. SPIE 8601, 86011K, 86011K-9 (2013). [CrossRef]

36.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20(10), 11178–11188 (2012). [CrossRef] [PubMed]

37.

J. T. Manassah, “Self-phase modulation of incoherent light revisited,” Opt. Lett. 16(21), 1638–1640 (1991). [CrossRef] [PubMed]

38.

S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett. 37(13), 2508–2510 (2012). [CrossRef] [PubMed]

39.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729 (2007). [CrossRef]

40.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett. 33(6), 633–635 (2008). [CrossRef] [PubMed]

41.

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010). [CrossRef] [PubMed]

42.

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36(6), 790–792 (2011). [CrossRef] [PubMed]

43.

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett. 36(18), 3617–3619 (2011). [CrossRef] [PubMed]

44.

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285(8), 2154–2160 (2012). [CrossRef]

45.

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21(7), 8177–8182 (2013). [CrossRef] [PubMed]

46.

S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett. 37(4), 500–502 (2012). [CrossRef] [PubMed]

47.

A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23(23), 1805–1807 (1998). [CrossRef] [PubMed]

48.

J. Schröder and S. Coen, “Observation of high-contrast, fast intensity noise of a continuous wave Raman fiber laser,” Opt. Express 17(19), 16444–16449 (2009). [CrossRef] [PubMed]

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3510) Lasers and laser optics : Lasers, fiber
(290.5870) Scattering : Scattering, Rayleigh
(290.5910) Scattering : Scattering, stimulated Raman

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 18, 2013
Revised Manuscript: May 14, 2013
Manuscript Accepted: May 16, 2013
Published: July 2, 2013

Citation
Srikanth Sugavanam, Nikita Tarasov, Xuewen Shu, and Dmitry V. Churkin, "Narrow-band generation in random distributed feedback fiber laser," Opt. Express 21, 16466-16472 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16466


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Ambartsumyan, N. Basov, P. Kryukov, and V. Letokov, “Laser with nonresonant feedback,” Sov. Phys. JETP3, 167–169 (1966).
  2. H. Cao, “Lasing in random media,” Waves Random Media13(3), R1–R39 (2003). [CrossRef]
  3. H. Cao, “Review on latest developments in random lasers with coherent feedback,” J. Phys. Math. Gen.38(49), 10497–10535 (2005). [CrossRef]
  4. D. S. Wiersma, “The physics and applications of random lasers,” Nat. Phys.4(5), 359–367 (2008). [CrossRef]
  5. V. Markushev, V. Zolin, and C. M. Briskina, “Luminescence and stimulated emission of neodymium in sodium lanthanum molybdate powders,” Sov. J. Quantum Electron.16(2), 281–283 (1986). [CrossRef]
  6. H. Cao, J. Y. Xu, A. L. Burin, E. W. Seeling, and R. P. H. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron.9(1), 111–119 (2003). [CrossRef]
  7. H. C. Hsu, C. Y. Wu, and W. F. Hsieh, “Stimulated emission and lasing of random-growth oriented ZnO nanowires,” J. Appl. Phys.97(6), 064315 (2005). [CrossRef]
  8. S. V. Frolov, M. Shkunov, A. Fujii, K. Yoshino, and Z. V. Vardeny, “Lasing and stimulated emission in π-conjugated polymers,” IEEE J. Quantum Electron.36(1), 2–11 (2000). [CrossRef]
  9. C. J. de Matos, L. de S Menezes, A. M. Brito-Silva, M. A. Martinez Gámez, A. S. Gomes, and C. B. de Araújo, “Random fiber laser,” Phys. Rev. Lett.99(15), 153903 (2007). [CrossRef] [PubMed]
  10. O. Shapira and B. Fischer, “Localization of light in a random-grating array in a single-mode fiber,” J. Opt. Soc. Am. A.22(12), 2542 (2005). [CrossRef]
  11. N. Lizárraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. Méndez, “Single-mode Er-doped fiber random laser with distributed Bragg grating feedback,” Opt. Express17(2), 395–404 (2009). [CrossRef] [PubMed]
  12. M. Gagné and R. Kashyap, “Demonstration of a 3 mW threshold Er-doped random fiber laser based on a unique fiber Bragg grating,” Opt. Express17(21), 19067–19074 (2009). [CrossRef] [PubMed]
  13. S. Turitsyn, S. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010). [CrossRef]
  14. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012). [CrossRef] [PubMed]
  15. D. Churkin, S. Babin, A. E. El-Taher, P. Harper, S. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010). [CrossRef]
  16. W. L. Zhang, Y. Y. Zhu, Y. J. Rao, Z. N. Wang, X. H. Jia, and H. Wu, “Random fiber laser formed by mixing dispersion compensated fiber and single mode fiber,” Opt. Express21(7), 8544–8549 (2013). [CrossRef] [PubMed]
  17. A. R. Sarmani, M. H. Abu Bakar, A. A. A. Bakar, F. R. M. Adikan, and M. A. Mahdi, “Spectral variations of the output spectrum in a random distributed feedback Raman fiber laser,” Opt. Express19(15), 14152–14159 (2011). [CrossRef] [PubMed]
  18. A. E. El-Taher, M. Alcon-Camas, S. A. Babin, P. Harper, J. D. Ania-Castañón, and S. K. Turitsyn, “Dual-wavelength, ultralong Raman laser with Rayleigh-scattering feedback,” Opt. Lett.35(7), 1100–1102 (2010). [CrossRef] [PubMed]
  19. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011). [CrossRef] [PubMed]
  20. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering”, Appl. Phys. B99, 391–395 (2010).
  21. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011). [CrossRef]
  22. A. Sarmani, R. Zamiri, and M. Bakar, “Tunable Raman fiber laser induced by Rayleigh backscattering in an ultra-long cavity,” J. Eur. Opt. Soc - Rapid.11043, 4–7 (2011).
  23. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011). [CrossRef] [PubMed]
  24. R. Teng, Y. Ding, and L. Chen, “Random fiber laser operating at 1,115 nm,” Appl. Phys. B111, 1–4 (2013).
  25. W. L. Zhang, Y. J. Rao, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Low threshold 2nd-order random lasing of a fiber laser with a half-opened cavity,” Opt. Express20(13), 14400–14405 (2012). [CrossRef] [PubMed]
  26. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28, 3149–3155 (2010).
  27. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011). [CrossRef]
  28. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol.30(8), 1168–1172 (2012). [CrossRef]
  29. Z. Wang, Y. Cui, B. Yun, and C. Lu, “Multiwavelength generation in a Raman fiber laser with sampled Bragg grating,” IEEE Photon. Technol. Lett.17(10), 2044–2046 (2005). [CrossRef]
  30. Z. N. Wang, Y. J. Rao, H. Wu, P. Y. Li, Y. Jiang, X. H. Jia, and W. L. Zhang, “Long-distance fiber-optic point-sensing systems based on random fiber lasers,” Opt. Express20(16), 17695–17700 (2012). [CrossRef] [PubMed]
  31. X.-H. Jia, Y.-J. Rao, Z.-N. Wang, W.-L. Zhang, Y. Jiang, J.-M. Zhu, and Z.-X. Yang, “Towards fully distributed amplification and high-performance long-range distributed sensing based on random fiber laser,” Proc. SPIE8421, 842127, 842127-4 (2012). [CrossRef]
  32. J. Nuño del Campo, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers”, in Advanced Photonics Congress (OSA, 2012), p. JM5A.7. [CrossRef]
  33. X.-H. Jia, Y.-J. Rao, F. Peng, Z.-N. Wang, W.-L. Zhang, H.-J. Wu, and Y. Jiang, “Random-lasing-based distributed fiber-optic amplification,” Opt. Express21(5), 6572–6577 (2013). [CrossRef] [PubMed]
  34. M. Pang, S. Xie, X. Bao, D.-P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012). [CrossRef] [PubMed]
  35. A. A. Fotiadi, I. Lobach, and P. Mégret, “Dynamics of ultra-long Brillouin fiber laser,” Proc. SPIE8601, 86011K, 86011K-9 (2013). [CrossRef]
  36. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012). [CrossRef] [PubMed]
  37. J. T. Manassah, “Self-phase modulation of incoherent light revisited,” Opt. Lett.16(21), 1638–1640 (1991). [CrossRef] [PubMed]
  38. S. I. Kablukov, E. A. Zlobina, E. V. Podivilov, and S. A. Babin, “Output spectrum of Yb-doped fiber lasers,” Opt. Lett.37(13), 2508–2510 (2012). [CrossRef] [PubMed]
  39. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729 (2007). [CrossRef]
  40. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Turbulence-induced square-root broadening of the Raman fiber laser output spectrum,” Opt. Lett.33(6), 633–635 (2008). [CrossRef] [PubMed]
  41. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010). [CrossRef] [PubMed]
  42. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36(6), 790–792 (2011). [CrossRef] [PubMed]
  43. D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011). [CrossRef] [PubMed]
  44. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012). [CrossRef]
  45. A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013). [CrossRef] [PubMed]
  46. S. Randoux and P. Suret, “Experimental evidence of extreme value statistics in Raman fiber lasers,” Opt. Lett.37(4), 500–502 (2012). [CrossRef] [PubMed]
  47. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett.23(23), 1805–1807 (1998). [CrossRef] [PubMed]
  48. J. Schröder and S. Coen, “Observation of high-contrast, fast intensity noise of a continuous wave Raman fiber laser,” Opt. Express17(19), 16444–16449 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited