## Experimental circular quantum secret sharing over telecom fiber network |

Optics Express, Vol. 21, Issue 14, pp. 16663-16669 (2013)

http://dx.doi.org/10.1364/OE.21.016663

Acrobat PDF (889 KB)

### Abstract

We present a robust single photon circular quantum secret sharing (QSS) scheme with phase encoding over 50 km single mode fiber network using a circular QSS protocol. Our scheme can automatically provide a perfect compensation of birefringence and remain stable for a long time. A high visibility of 99.3% is obtained. Furthermore, our scheme realizes a polarization insensitive phase modulators. The visibility of this system can be maintained perpetually without any adjustment to the system every time we test the system.

© 2013 OSA

## 1. Introduction

16. F. G. Deng, H. Y. Zhou, and G. L. Long, “Circular quantum secret sharing,” J. Phys. Math. Gen. **39**(45), 14089–14099 (2006). [CrossRef]

12. J. Bogdanski, J. Ahrens, and M. Bourennane, “Sagnac secret sharing over telecom fiber networks,” Opt. Express **17**(2), 1055–1063 (2009). [CrossRef] [PubMed]

18. D. S. Bethune, M. Navarro, and W. P. Risk, “Enhanced autocompensating quantum cryptography system,” Appl. Opt. **41**(9), 1640–1648 (2002). [CrossRef] [PubMed]

_{0}and U

_{1}which represent the bits 0 and 1 respectively, on the single photons that they receive:

_{A}, Alice sends a quantum signal to Bob, who can chose the encoding mode or the control mode randomly. In the encoding mode, bob then encodes the photon with the two unitary operations U

_{0}and U

_{1}chosen randomly, marked by U

_{B}, and sends it to Charlie. Charlie performs a similar operation in the same way as Bob, and returns the photon to Alice after his operation marked as U

_{C}. For each photon that she receives, Alice performs a single-photon measurement with the same basis as the one she originally used to prepare it. As the two unitary operations U

_{0}and U

_{1}do not change the measuring bases, Alice obtains a deterministic outcome for almost all the photons returned, e. g., U

_{A}= U

_{B}⊗ U

_{C}. In order to prevent any eavesdropper from getting information about U

_{A}, Bob and Charlie can chose the control mode, in the control mode, they measure a few photons he received with one of the two measuring bases randomly. Alice also can measure a few photons in this way. In the eavesdropping check Bob, Charlie or Alice will publish the result of measurements and negotiate with the parties who sent these photons to him. In essence, the security of this QSS protocol is ensured by the analysis of the error rates in a similar way to the BB84 and LM05 protocol [19, 20

20. M. Lucamarini and S. Mancini, “Secure deterministic communication without entanglement,” Phys. Rev. Lett. **94**(14), 140501 (2005). [CrossRef] [PubMed]

21. N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A **73**(2), 022320 (2006). [CrossRef]

## 2. Experimental setup

_{A}connected to a Faraday mirror FM

_{1}, two single-photon detectors D1 and D2, a 50 / 50 coupler, and two polarization beamsplitters PBS

_{1}and PBS

_{2}which are connected to the other parties. All Alice station’s components are polarization maintaining and aligned to the “horizontal” axis.

_{B}, FM

_{2}and PM

_{C}, FM

_{3}, respectively), and a quantum channel. They also have a control mode box and a fiber switch use to choose the control mode.

## 3. Experimental data

_{1}and D

_{2}versus the voltage V

_{PMB}of Bob’s phase modulator, with the voltage of the other parties’ modulators fixed at 0. We can see that the there is good interference of the photons, and at the half-wave voltage (~4.2V), the counts in D

_{1}and D

_{2}reach their minimum and maximum, respectively, the photon pulses can contain the information all parties load in it and the “polarization insensitive phase modulator” modulator works well.

_{1}and C

_{2}mean the counts of D

_{1}and D

_{2}respectively.

## 4. Conclusion

## Acknowledgments

## References and links

1. | A. Shamir, “How to share a secret,” Commun. ACM |

2. | M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A |

3. | R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett. |

4. | L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A |

5. | S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett. |

6. | Y. Sun, Q. Y. Wen, F. Gao, X. B. Chen, and F. C. Zhu, “Multiparty quantum secret sharing based on bell measurement,” Opt. Commun. |

7. | L. Hao, C. Wang, and G. L. Long, “Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration,” Opt. Commun. |

8. | X. B. Chen, S. Yang, Y. Su, and Y. X. Yang, “Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state,” Phys. Scr. |

9. | F. G. Deng, H. Y. Zhou, and G. L. Long, “Bidirectional quantum secret sharing and secret splitting with polarized single photons,” Phys. Lett. A |

10. | F. L. Yan, T. Gao, and Y. C. Li, “Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations,” Chin. Phys. Lett. |

11. | L. F. Han, Y. M. Liu, J. Liu, and Z. J. Zhang, “Multiparty quantum secret sharing of secure direct communication using single photons,” Opt. Commun. |

12. | J. Bogdanski, J. Ahrens, and M. Bourennane, “Sagnac secret sharing over telecom fiber networks,” Opt. Express |

13. | J. Bogdanski, N. Rafiei, and M. Bourennane, “Experimental quantum secret sharing using telecommunication fiber,” Phys. Rev. A |

14. | C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett. |

15. | J. Bogdanski, J. Ahrens, and M. Bourennane, “Single mode fiber birefringence compensation in Sagnac and “plug & play” interferometric setups,” Opt. Express |

16. | F. G. Deng, H. Y. Zhou, and G. L. Long, “Circular quantum secret sharing,” J. Phys. Math. Gen. |

17. | D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys. |

18. | D. S. Bethune, M. Navarro, and W. P. Risk, “Enhanced autocompensating quantum cryptography system,” Appl. Opt. |

19. | C. H. Bennett and G. Brassard, “Quantum Cryptography: Public key distribution and coin tossing,” in IEEE Int.Conf. on Computers, Systems, and Signal Processing, (Bangalore, 1984), 175–179. |

20. | M. Lucamarini and S. Mancini, “Secure deterministic communication without entanglement,” Phys. Rev. Lett. |

21. | N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A |

22. | R. Kumar, M. Lucamarini, G. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A |

23. | M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Implementation of two way Quantum Key Distribution protocol with decoy state,” Opt. Commun. |

**OCIS Codes**

(270.0270) Quantum optics : Quantum optics

(270.5565) Quantum optics : Quantum communications

(270.5568) Quantum optics : Quantum cryptography

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: May 22, 2013

Manuscript Accepted: June 11, 2013

Published: July 3, 2013

**Virtual Issues**

August 6, 2013 *Spotlight on Optics*

**Citation**

Ke-Jin Wei, Hai-Qiang Ma, and Jian-Hui Yang, "Experimental circular quantum secret sharing over telecom fiber network," Opt. Express **21**, 16663-16669 (2013)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-14-16663

Sort: Year | Journal | Reset

### References

- A. Shamir, “How to share a secret,” Commun. ACM22(11), 612–613 (1979). [CrossRef]
- M. Hillery, V. Buzek, and A. Berthiaume, “Quantum secret sharing,” Phys. Rev. A59(3), 1829–1834 (1999). [CrossRef]
- R. Cleve, D. Gottesman, and H. K. Lo, “How to share a quantum secret,” Phys. Rev. Lett.83(3), 648–651 (1999). [CrossRef]
- L. Xiao, G. L. Long, F. G. Deng, and J. W. Pan, “Efficient multiparty quantum-secret-sharing schemes,” Phys. Rev. A69(5), 052307 (2004). [CrossRef]
- S. Gaertner, C. Kurtsiefer, M. Bourennane, and H. Weinfurter, “Experimental demonstration of four-party quantum secret sharing,” Phys. Rev. Lett.98(2), 020503, 4 (2007). [CrossRef] [PubMed]
- Y. Sun, Q. Y. Wen, F. Gao, X. B. Chen, and F. C. Zhu, “Multiparty quantum secret sharing based on bell measurement,” Opt. Commun.282(17), 3647–3651 (2009). [CrossRef]
- L. Hao, C. Wang, and G. L. Long, “Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration,” Opt. Commun.284(14), 3639–3642 (2011). [CrossRef]
- X. B. Chen, S. Yang, Y. Su, and Y. X. Yang, “Cryptanalysis on the improved multiparty quantum secret sharing protocol based on the GHZ state,” Phys. Scr.86(5), 055002 (2012). [CrossRef]
- F. G. Deng, H. Y. Zhou, and G. L. Long, “Bidirectional quantum secret sharing and secret splitting with polarized single photons,” Phys. Lett. A337(4-6), 329–334 (2005). [CrossRef]
- F. L. Yan, T. Gao, and Y. C. Li, “Quantum secret sharing protocol between multiparty and multiparty with single photons and unitary transformations,” Chin. Phys. Lett.25, 4 (2008).
- L. F. Han, Y. M. Liu, J. Liu, and Z. J. Zhang, “Multiparty quantum secret sharing of secure direct communication using single photons,” Opt. Commun.281(9), 2690–2694 (2008). [CrossRef]
- J. Bogdanski, J. Ahrens, and M. Bourennane, “Sagnac secret sharing over telecom fiber networks,” Opt. Express17(2), 1055–1063 (2009). [CrossRef] [PubMed]
- J. Bogdanski, N. Rafiei, and M. Bourennane, “Experimental quantum secret sharing using telecommunication fiber,” Phys. Rev. A78(6), 062307 (2008). [CrossRef]
- C. Schmid, P. Trojek, M. Bourennane, C. Kurtsiefer, M. Zukowski, and H. Weinfurter, “Experimental single qubit quantum secret sharing,” Phys. Rev. Lett.95(23), 230505 (2005). [CrossRef] [PubMed]
- J. Bogdanski, J. Ahrens, and M. Bourennane, “Single mode fiber birefringence compensation in Sagnac and “plug & play” interferometric setups,” Opt. Express17(6), 4485–4494 (2009). [CrossRef] [PubMed]
- F. G. Deng, H. Y. Zhou, and G. L. Long, “Circular quantum secret sharing,” J. Phys. Math. Gen.39(45), 14089–14099 (2006). [CrossRef]
- D. S. Bethune and W. P. Risk, “Autocompensating quantum cryptography,” New J. Phys.4, 421–4215 (2002).
- D. S. Bethune, M. Navarro, and W. P. Risk, “Enhanced autocompensating quantum cryptography system,” Appl. Opt.41(9), 1640–1648 (2002). [CrossRef] [PubMed]
- C. H. Bennett and G. Brassard, “Quantum Cryptography: Public key distribution and coin tossing,” in IEEE Int.Conf. on Computers, Systems, and Signal Processing, (Bangalore, 1984), 175–179.
- M. Lucamarini and S. Mancini, “Secure deterministic communication without entanglement,” Phys. Rev. Lett.94(14), 140501 (2005). [CrossRef] [PubMed]
- N. Gisin, S. Fasel, B. Kraus, H. Zbinden, and G. Ribordy, “Trojan-horse attacks on quantum-key-distribution systems,” Phys. Rev. A73(2), 022320 (2006). [CrossRef]
- R. Kumar, M. Lucamarini, G. Giuseppe, R. Natali, G. Mancini, and P. Tombesi, “Two-way quantum key distribution at telecommunication wavelength,” Phys. Rev. A77(2), 022304 (2008). [CrossRef]
- M. F. Abdul Khir, M. Zain, I. Bahari, and S. Shaari, “Implementation of two way Quantum Key Distribution protocol with decoy state,” Opt. Commun.285(5), 842–845 (2012). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.