OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 16 — Aug. 12, 2013
  • pp: 19091–19096
« Show journal navigation

Trapping of light in solitonic cavities and its role in the supercontinuum generation

R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed  »View Author Affiliations


Optics Express, Vol. 21, Issue 16, pp. 19091-19096 (2013)
http://dx.doi.org/10.1364/OE.21.019091


View Full Text Article

Acrobat PDF (1251 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate that the fission of higher-order N-solitons with a subsequent ejection of fundamental quasi-solitons creates cavities formed by a pair of solitary waves with dispersive light trapped between them. As a result of multiple reflections of the trapped light from the bounding solitons which act as mirrors, they bend their trajectories and collide. In the spectral domain, the two solitons receive blue and red wavelength shifts, and the spectrum of the trapped light alters as well. This phenomenon strongly affects spectral characteristics of the generated supercontinuum. Consideration of the system's parameters which affect the creation of the cavity reveals possibilities of predicting and controlling soliton-soliton collisions induced by multiple reflections of the trapped light.

© 2013 OSA

1. Introduction

Various aspects of the dynamics of ultrashort pulses in photonic crystal fibers (PCFs), such as higher-order soliton fission and interaction of solitons with radiation, are the subject of profound interest for fundamental studies and technological applications in photonics. In particular, the fission of higher-order solitons [1

1. J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Suppl. Progr. Theor. Phys. 55, 284–306 (1974). [CrossRef]

3

3. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002). [CrossRef] [PubMed]

] is a key mechanism for the generation of ultrashort frequency-tuned fundamental solitons [4

4. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003). [CrossRef] [PubMed]

] and ultra-broadband optical supercontinuum (SC) [3

3. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002). [CrossRef] [PubMed]

, 5

5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]

10

10. R. Driben and N. Zhavoronkov, “Supercontinuum spectrum control in microstructure fibers by initial chirp management,” Opt. Express 18(16), 16733–16738 (2010). [CrossRef] [PubMed]

]. Recently, a model based on an optical-soliton counterpart of the Newton's cradle (NC) was introduced for understanding the mechanism of N-soliton fission under the action of the higher-order dispersion [11

11. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton's cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013). [CrossRef]

]. The mechanism, which remains relevant in the presence of the Raman and self-steepening effects, explains the discrete nature of ejections of fundamental quasi-solitons from the parental N-soliton temporal slot, the delay between the ejections being controlled by the strength of the third-order dispersion. Quasi-solitons with higher peak powers are ejected before their weaker counterparts, and they experience stronger Raman self-frequency shifts [12

12. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986). [CrossRef] [PubMed]

]. Along with the ejected solitons, the N-soliton fission gives rise to emission of strong dispersive radiation. Due to interaction with the radiation, weaker solitons can acquire an additional acceleration, which leads to their collisions with the stronger solitons ejected earlier [13

13. R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express 18(25), 25993–25998 (2010). [CrossRef] [PubMed]

]. As these interactions strongly affect the spectral broadening of the pulse at all the stages of the SC formation, a challenging objective is to develop reliable control over these phenomena. Among particular types of the interactions involving solitons and radiation, notable are various forms of the four-wave mixing (FWM) [14

14. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29(20), 2411–2413 (2004). [CrossRef] [PubMed]

18

18. A. Efimov, A. J. Taylor, A. V. Yulin, D. V. Skryabin, and J. C. Knight, “Phase-sensitive scattering of a continuous wave on a soliton,” Opt. Lett. 31(11), 1624–1626 (2006). [CrossRef] [PubMed]

], trapping of dispersive waves by solitons [19

19. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007). [CrossRef]

], formation of bound states of solitons [20

20. A. Podlipensky, P. Szarniak, N. Y. Joly, C. G. Poulton, and P. St. J. Russell, “Bound soliton pairs in photonic crystal fiber,” Opt. Express 15(4), 1653–1662 (2007). [CrossRef] [PubMed]

22

22. B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44(10), 6954–6957 (1991). [CrossRef] [PubMed]

], soliton fusion [23

23. R. Driben and I. V. Babushkin, “Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers,” Opt. Lett. 37(24), 5157–5159 (2012). [CrossRef] [PubMed]

], etc. Interactions between dispersive waves and solitons were also studied in the context of all-optical switching and rogue-wave formation [24

24. A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011). [CrossRef] [PubMed]

,25

25. A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci Rep 2, 850 (2012). [CrossRef] [PubMed]

]. In a recent work [26

26. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21(12), 14481–14486 (2013). [CrossRef] [PubMed]

], dispersive waves trapped in an effective predesigned cavity created by two solitons acting like mirrors, were considered, and it was shown that the FWM strongly affects the dynamics of both the solitons and the trapped waves. In particular, this interaction may result in broadening or narrowing of the spectrum of the trapped waves [26

26. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21(12), 14481–14486 (2013). [CrossRef] [PubMed]

]. Furthermore, the radiation-induced attraction (“Casimir force”) between the solitons eventually causes them to collide. Interestingly, the trapping of light in a moving area with high refractive index and the transformation of the pulse spectrum was considered in [27

27. D. Faccio, T. Arane, M. Lamperti, and U. Leonhardt, “Optical black hole lasers,” Class. Quantum Gravity 29(22), 224009 (2012). [CrossRef]

].

The main objective of the present work is to investigate how the FWM between the solitons and dispersive waves in two-soliton cavities emerging from the fission of N-solitons, affects the ensuing SC generation.

2. Light trapping by the solitonic cavity following the fission of the N-soliton

For the sake of clarity, we chiefly disregard the Raman self-frequency shift (which is a relevant assumption for a hollow-core PCFs filled with Raman-inactive xenon [28

28. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011). [CrossRef]

]) and dispersion terms above the third order. It is shown in the last part of the paper that the the cavity dynamics reported remains valid if those effects are taken into regard.

In the present context, the evolution of amplitude A of the electromagnetic waves is governed by the generalized nonlinear Schrödinger equation (NLSE) [7

7. J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

,28

28. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011). [CrossRef]

], which includes the second- and third-order dispersion (TOD) terms with respective coefficients β2 and β3, and the cubic nonlinear term, with coefficient γ, along with its self-steepening part:
Az=iβ222AT2+β363AT3+iγ[A|A|2+iω0T(A|A|2)],
(1)
where T=tz/vgis the retarded time, with group velocityvgtaken at carrier frequency ω0. Figure 1
Fig. 1 The solitonic cavity produced by the fission of a 12- soliton with TFWHM = 90 fs and peak power of 8MW, in the PCF filled with a Raman-inactive gas, in temporal- (a) and spectral-domain (b) representations. Dashed blue lines in (a) designate trajectories of the cavity-building solitons produced by artificially filtering out all the radiation trapped between them. Dashed black and solid magenta lines in (b) designate the evolution of spectral maxima of the two solitons, starting from Z = 0.16m. The spectral region of multiple bouncing of dispersive waves is highlighted by a dashed rectangle.
demonstrates the fission of the N-soliton with N=12 and 800-nm central wavelength, as produced by simulations of Eq. (1). The input is taken, accordingly, as u0=Pinsech(T/T0) with T0 = 50 fs (TFWHM ~90 fs) and Pin=N2P0, where P0 = 56 kW. The fiber parameters are β2 = −0.0021 ps2/m, β3 = 5.24∙10−6 ps3/m and γ = 1.5∙10−5 W−1m−1.

After the breakup of the injected N-soliton, a strong Cherenkov dispersive wave packet [8

8. D. V. Skryabin and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010). [CrossRef]

] is emitted at Z = 0.1 m, which appears at the blue edge of the respective spectrum around 450 nm, and is not involved in the process described below (see Fig. 1). It is the field in the periodic chain of pulses [11

11. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton's cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013). [CrossRef]

] propagating in a bound state, between the ejections of fundamental quasi-solitons, that gets partially trapped bouncing from the cavity-building solitons, starting from Z = 0.16 m [Fig. 1 (a)]. Although peak intensities of the trapped wave packets are 5-6 times smaller than those of the solitons, the packets play a major role in the subsequent evolution of the cavity and, thus, in the spectral evolution of the generated SC [Fig. 1(b)]. Multiple quasi-elastic [29

29. R. Driben and B. A. Malomed, “Suppression of crosstalk between solitons in a multi-channel split-step system,” Opt. Commun. 197, 481–489 (2001).

] collisions of the trapped dispersive wave with the cavity-building solitons cause their acceleration and deceleration, manifested in bending of their trajectories [Fig. 1(a)], i.e., effective tilting of the mirrors in the respective cavity picture.

In the spectral domain, the curvature of the trajectories is represented by a blue shift for one soliton (from 1010 nm to 930nm), and a red shift for the other one (from 920 nm to 1030nm), as spectral filtering of individual solitons reveals [the dotted black and solid magenta curves in Fig. 1(b) demonstrate the evolution of the central wavelengths of the two solitons]. The spectral region between 460 nm and 620 nm, where the reflections of the trapped waves occur, is shown by a dashed white rectangle in Fig. 1(b), and it is discussed inmore detail below. To prove the critical role of the interaction with the dispersive waves in the bending of the solitons' trajectories and their spectral shifts, an additional simulation was performed, in which we filter out all the radiation between the two solitons at Z = 0.16 m. In this case, the solitons propagate along undistorted trajectories, as shown in Fig. 1(a) by the dotted blue lines. As a result of the deceleration of the first soliton and acceleration of the second one, the two collide at z = 0.56 m. At some distance before the collision, the “soliton mirrors” degrade, allowing the trapped radiation to escape. The shrinkage of the cavity created by the two solitons resembles the structure of tapered waveguides [30

30. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).

].

The interaction between the dispersive waves and solitons dealt with here is different from [13

13. R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express 18(25), 25993–25998 (2010). [CrossRef] [PubMed]

], where the dispersive waves emitted by the first soliton collided with the second one and mostly passed through it without being reflected back to the first soliton and affecting its trajectory or central wavelength. To further clarify the present effect, we have performed another numerical experiment, by filtering out everything from Z = 0.16, except for the cavity consisting of the two solitons with the field trapped between them, see Fig. 2(a)
Fig. 2 Dynamics of the cavity filtered out at Z = 0.16m, so that only the two solitons and the dispersive waves trapped between them are kept in the system, in the temporal (a) and spectral (b) domains. Four horizontal lines designate reflections of the trapped light from the solitons.
. Figure 2(b) shows the evolution of the trapped-field spectrum while the spectral lines of the solitons are located far away, between 900 and 1000nm, as seen in Fig. 1(b). It can be observed from both panels of Fig. 2 that the trapped light experiences strong spectral changes as it collides with the solitons, similar to the case of the specially designed solitonic cavity [26

26. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21(12), 14481–14486 (2013). [CrossRef] [PubMed]

]. The condition of the resonant scattering [15

15. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016619 (2005). [CrossRef] [PubMed]

] for the case referred to as phase-insensitive in [18

18. A. Efimov, A. J. Taylor, A. V. Yulin, D. V. Skryabin, and J. C. Knight, “Phase-sensitive scattering of a continuous wave on a soliton,” Opt. Lett. 31(11), 1624–1626 (2006). [CrossRef] [PubMed]

] can be written in the following form:
β22δi2+β36δi3+(β2δs+β32δs2)(δδi)=β22δ2+β36δ3
(2)
where the frequency deviations from the one corresponding to the dispersion curve reference wavelength-λ0 are: δi=2πc(1λi1λ0),δs=2πc(1λs1λ0),δ=2πc(1λ1λ0), λi,λs andλ pertaining to the incident wave, the soliton, and the scattered wave, respectively. The left-hand side of Eq. (2) can be referred to as the dispersion characteristic of the FWM, while the right-hand side represents the dispersion of the fiber. Solutions of Eq. (2) give wavelengths at which the FWM terms are in resonance with the system's eigenmodes. For example, for the first reflection shown in Fig. 2 we deduce from Eq. (2) that the trapped wave packet, centered around λp = 490 nm, is reflected from the first soliton (centered around λs = 950 nm) into a spectral region around λ = 596 nm. The change of the soliton wavelengths in the course of the propagation explains the observation that the cascaded re-scattering of the trapped waves is not exactly periodic, leading to the modification of the trapped radiation.

To build the soliton cavity, one has to choose system parameters appropriately. For very small values of TOD parameter β3, the fission leads to a decomposition of the N-soliton into N distinct fundamental solitons without trapping any light between them, as predicted for the nearly integrable NLSE [1

1. J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Suppl. Progr. Theor. Phys. 55, 284–306 (1974). [CrossRef]

,2

2. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Photon. Technol. Lett. 23, 510–524 (1987).

]. In this case, the peak powers of fundamental soliton emerging after the splitting of the N-soliton are Pj=P0(2N2j+1)2 [1

1. J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Suppl. Progr. Theor. Phys. 55, 284–306 (1974). [CrossRef]

,2

2. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Photon. Technol. Lett. 23, 510–524 (1987).

]. At larger values of β3, the fission is dominated by the NC mechanism [11

11. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton's cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013). [CrossRef]

], with solitons ejected in a step-like sequence, see Fig. 3(a)
Fig. 3 (a-c) N-soliton fission in the PCF filled with a Raman-inactive gas. (a) Fission of the 11-soliton with TFWHM = 90 fs and β3 = 5.24∙10−6 ps3/m; (b) fission of the 14-soliton with TFWHM = 90 fs and β3 = 3.5∙10−6 ps3/m; (c) fission of the 15-soliton with TFWHM = 90 fs and β3 = 2.1∙10−6 ps3/m. (d) The smallest order N of the input soliton necessary to build the cavity versus the relative TOD strength,-δ3.
-3(c). This situation is appropriate for building the soliton cavity. However, if the TOD is too strong, ejections of the fundamental quasi-solitons occur with a very large delay [11

11. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton's cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013). [CrossRef]

], leaving little opportunity for the light trapped between the ejected solitons to mediate the attractive interaction between them.

The cavity can be formed by not only the first two ejected solitons, but by another pair as well. Figure 3(a) demonstrates that, despite evident multiple reflections of the trapped field between the first two solitons, no significant bending of their trajectories is observed, due to a strong initial frequency difference imparted to these two solitons while they were ejected. However, the interaction between the third and fourth solitons via the light trapped between them overcomes their initial spectral separation, making them to build the cavity. As mentioned above, additional cavities may be built, as Fig. 3(b) reveals.

For each normalized value of the relative TOD strength, defined as δ3 = β3/(6|β2|Τ0), there exists a minimum value, Nmin, of the input-soliton's order N for which the light trapped by the ejected soliton pair induces the effective attraction and subsequent collision between them. At N < Nmin, no collisions occur [see Fig. 3(c)], as in that case the large separation between the ejected solitons in the temporal and frequency domains cannot be surmounted by the attraction induced by the bouncing light. The curve for Nmin versus δ3, plotted in Fig. 3(d) in the range of 0.0016 < δ3 < 0.11, shows that the absolute minimum of the necessary soliton order is N ≈11, at which the solitons do collide if the fission takes place at δ3 = 0.0083. The two green marks near the left segment of the curve pertain to the examples shown in Fig. 3(a), 3(b), while the red mark, which is located slightly to the left of the critical curve, pertains to panel (c), where no collision occurs.

Finally, we discuss the role of the higher-order nonlinear and dispersion terms in the generalized NLSE. The shock term, which has been included in Eq. (1), facilitates the ejection of quasi-solitons from the NC, therefore it facilitates the attraction and collisions between the solitons. If the shock term is dropped, the first “collapsing cavity” emerges atNmin=16, instead of 12 in Fig. 1, for the same values of other parameters. In the presence of the standard Raman term in the extended NLSE which describes regular silica PCFs [8

8. D. V. Skryabin and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010). [CrossRef]

,10

10. R. Driben and N. Zhavoronkov, “Supercontinuum spectrum control in microstructure fibers by initial chirp management,” Opt. Express 18(16), 16733–16738 (2010). [CrossRef] [PubMed]

], red-shifted accelerated solitons tend to separate from each other faster. Nevertheless, the mechanism of the soliton-soliton attraction through the trapped light can overpower this tendency, as seen in Fig. 4(a)
Fig. 4 (a) The fission of the 18- soliton with TFWHM = 90 fs and β3 = 5.235∙10−6 ps3/m, in the regular silica PCF with the standard Raman term added to Eq. (1). (b) The temporal and (c) spectral SC evolution resulting from the fission of a 50-soliton with TFWHM = 90 fs in the regular silica PCF, with the Raman term and dispersions of up to the seventh order included in Eq. (1). The spectral region of two consecutive reflections of the trapped light from the two first solitons is highlighted by the black rectangle.
. Further, the effect reported here is not specific solely for the TOD, and may be observed as well in the presence of higher-order dispersion terms. In the case when the dispersion terms up to the seventh order are included (as in Ref [10

10. R. Driben and N. Zhavoronkov, “Supercontinuum spectrum control in microstructure fibers by initial chirp management,” Opt. Express 18(16), 16733–16738 (2010). [CrossRef] [PubMed]

].), the effect looks qualitatively the same, see Fig. 4(b), 4(c). For fibers with the leading TOD term, the dependence of Nmin on the TOD strength (not shown here in detail) is similar to that presented in Fig. 3(d), where the higher-order dispersion terms are disregarded.

3. Conclusions

We have demonstrated that after the fission of the initial N-soliton, cavities consisting of two solitons are formed with light trapped between them. As a result of multiple reflections of the trapped light waves from the bounding solitons, which act as mirrors in the cavity, the solitons experience strong bending of their trajectories and eventually collide. The spectrum of the trapped waves also changes as they bounce from the solitons with varying wavelengths. This phenomenon strongly affects spectral characteristics of the generated SC (supercontinuum). The systematic study has identified the minimum order N of the input soliton, above which the mutual attraction and ensuing collision of the solitons occur. The mechanism, which is explored in detail in the Raman-free setting, remains valid in the model of regular glass fibers, with all higher-order linear and nonlinear terms included.

Acknowledgment

The work of R.D. and B.A.M. was partly supported by the Binational (US-Israel) Science Foundation through grant No. 2010239. The work of AVY was supported by the FCT grant PTDC/FIS/112624/2009 and PEst-OE/FIS/UI0618/2011.

References and links

1.

J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Suppl. Progr. Theor. Phys. 55, 284–306 (1974). [CrossRef]

2.

Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Photon. Technol. Lett. 23, 510–524 (1987).

3.

J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett. 88(17), 173901 (2002). [CrossRef] [PubMed]

4.

W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature 424(6948), 511–515 (2003). [CrossRef] [PubMed]

5.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]

6.

M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express 14(20), 9391–9407 (2006). [CrossRef] [PubMed]

7.

J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

8.

D. V. Skryabin and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys. 82(2), 1287–1299 (2010). [CrossRef]

9.

R. Driben, A. Husakou, and J. Herrmann, “Supercontinuum generation in aqueous colloids containing silver nanoparticles,” Opt. Lett. 34(14), 2132–2134 (2009). [CrossRef] [PubMed]

10.

R. Driben and N. Zhavoronkov, “Supercontinuum spectrum control in microstructure fibers by initial chirp management,” Opt. Express 18(16), 16733–16738 (2010). [CrossRef] [PubMed]

11.

R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton's cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A 87(6), 063808 (2013). [CrossRef]

12.

F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett. 11(10), 659–661 (1986). [CrossRef] [PubMed]

13.

R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express 18(25), 25993–25998 (2010). [CrossRef] [PubMed]

14.

A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett. 29(20), 2411–2413 (2004). [CrossRef] [PubMed]

15.

D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72(1), 016619 (2005). [CrossRef] [PubMed]

16.

A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell, “Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling,” Opt. Express 12(26), 6498–6507 (2004). [CrossRef] [PubMed]

17.

A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett. 95(21), 213902 (2005). [CrossRef] [PubMed]

18.

A. Efimov, A. J. Taylor, A. V. Yulin, D. V. Skryabin, and J. C. Knight, “Phase-sensitive scattering of a continuous wave on a soliton,” Opt. Lett. 31(11), 1624–1626 (2006). [CrossRef] [PubMed]

19.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007). [CrossRef]

20.

A. Podlipensky, P. Szarniak, N. Y. Joly, C. G. Poulton, and P. St. J. Russell, “Bound soliton pairs in photonic crystal fiber,” Opt. Express 15(4), 1653–1662 (2007). [CrossRef] [PubMed]

21.

B. A. Malomed, “Potential of interaction between two- and three-dimensional solitons,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7928–7933 (1998). [CrossRef]

22.

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44(10), 6954–6957 (1991). [CrossRef] [PubMed]

23.

R. Driben and I. V. Babushkin, “Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers,” Opt. Lett. 37(24), 5157–5159 (2012). [CrossRef] [PubMed]

24.

A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett. 106(16), 163901 (2011). [CrossRef] [PubMed]

25.

A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci Rep 2, 850 (2012). [CrossRef] [PubMed]

26.

A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express 21(12), 14481–14486 (2013). [CrossRef] [PubMed]

27.

D. Faccio, T. Arane, M. Lamperti, and U. Leonhardt, “Optical black hole lasers,” Class. Quantum Gravity 29(22), 224009 (2012). [CrossRef]

28.

J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B 28, A11–A26 (2011). [CrossRef]

29.

R. Driben and B. A. Malomed, “Suppression of crosstalk between solitons in a multi-channel split-step system,” Opt. Commun. 197, 481–489 (2001).

30.

W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A 11, 963–983 (1994).

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.5295) Fiber optics and optical communications : Photonic crystal fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: June 25, 2013
Revised Manuscript: July 25, 2013
Manuscript Accepted: July 25, 2013
Published: August 2, 2013

Citation
R. Driben, A. V. Yulin, A. Efimov, and B. A. Malomed, "Trapping of light in solitonic cavities and its role in the supercontinuum generation," Opt. Express 21, 19091-19096 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19091


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Satsuma and N. Yajima, “Initial value problems of one-dimensional self-modulation of nonlinear waves in dispersive media,” Suppl. Progr. Theor. Phys.55, 284–306 (1974). [CrossRef]
  2. Y. Kodama and A. Hasegawa, “Nonlinear pulse propagation in a monomode dielectric guide,” IEEE Photon. Technol. Lett.23, 510–524 (1987).
  3. J. Herrmann, U. Griebner, N. Zhavoronkov, A. Husakou, D. Nickel, J. C. Knight, W. J. Wadsworth, P. St. J. Russell, and G. Korn, “Experimental evidence for supercontinuum generation by fission of higher-order solitons in photonic fibers,” Phys. Rev. Lett.88(17), 173901 (2002). [CrossRef] [PubMed]
  4. W. H. Reeves, D. V. Skryabin, F. Biancalana, J. C. Knight, P. St. J. Russell, F. G. Omenetto, A. Efimov, and A. J. Taylor, “Transformation and control of ultra-short pulses in dispersion-engineered photonic crystal fibres,” Nature424(6948), 511–515 (2003). [CrossRef] [PubMed]
  5. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  6. M. H. Frosz, O. Bang, and A. Bjarklev, “Soliton collision and Raman gain regimes in continuous-wave pumped supercontinuum generation,” Opt. Express14(20), 9391–9407 (2006). [CrossRef] [PubMed]
  7. J. M. Dudley, G. Gentry, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  8. D. V. Skryabin and A. V. Gorbach, “Looking at a soliton through the prism of optical supercontinuum,” Rev. Mod. Phys.82(2), 1287–1299 (2010). [CrossRef]
  9. R. Driben, A. Husakou, and J. Herrmann, “Supercontinuum generation in aqueous colloids containing silver nanoparticles,” Opt. Lett.34(14), 2132–2134 (2009). [CrossRef] [PubMed]
  10. R. Driben and N. Zhavoronkov, “Supercontinuum spectrum control in microstructure fibers by initial chirp management,” Opt. Express18(16), 16733–16738 (2010). [CrossRef] [PubMed]
  11. R. Driben, B. A. Malomed, A. V. Yulin, and D. V. Skryabin, “Newton's cradles in optics: From to N-soliton fission to soliton chains,” Phys. Rev. A87(6), 063808 (2013). [CrossRef]
  12. F. M. Mitschke and L. F. Mollenauer, “Discovery of the soliton self-frequency shift,” Opt. Lett.11(10), 659–661 (1986). [CrossRef] [PubMed]
  13. R. Driben, F. Mitschke, and N. Zhavoronkov, “Cascaded interactions between Raman induced solitons and dispersive waves in photonic crystal fibers at the advanced stage of supercontinuum generation,” Opt. Express18(25), 25993–25998 (2010). [CrossRef] [PubMed]
  14. A. V. Yulin, D. V. Skryabin, and P. St. J. Russell, “Four-wave mixing of linear waves and solitons in fibers with higher-order dispersion,” Opt. Lett.29(20), 2411–2413 (2004). [CrossRef] [PubMed]
  15. D. V. Skryabin and A. V. Yulin, “Theory of generation of new frequencies by mixing of solitons and dispersive waves in optical fibers,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.72(1), 016619 (2005). [CrossRef] [PubMed]
  16. A. Efimov, A. J. Taylor, F. G. Omenetto, A. V. Yulin, N. Y. Joly, F. Biancalana, D. V. Skryabin, J. C. Knight, and P. St. J. Russell, “Time-spectrally-resolved ultrafast nonlinear dynamics in small-core photonic crystal fibers: Experiment and modelling,” Opt. Express12(26), 6498–6507 (2004). [CrossRef] [PubMed]
  17. A. Efimov, A. V. Yulin, D. V. Skryabin, J. C. Knight, N. Joly, F. G. Omenetto, A. J. Taylor, and P. Russell, “Interaction of an Optical Soliton with a Dispersive Wave,” Phys. Rev. Lett.95(21), 213902 (2005). [CrossRef] [PubMed]
  18. A. Efimov, A. J. Taylor, A. V. Yulin, D. V. Skryabin, and J. C. Knight, “Phase-sensitive scattering of a continuous wave on a soliton,” Opt. Lett.31(11), 1624–1626 (2006). [CrossRef] [PubMed]
  19. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1(11), 653–657 (2007). [CrossRef]
  20. A. Podlipensky, P. Szarniak, N. Y. Joly, C. G. Poulton, and P. St. J. Russell, “Bound soliton pairs in photonic crystal fiber,” Opt. Express15(4), 1653–1662 (2007). [CrossRef] [PubMed]
  21. B. A. Malomed, “Potential of interaction between two- and three-dimensional solitons,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics58(6), 7928–7933 (1998). [CrossRef]
  22. B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A44(10), 6954–6957 (1991). [CrossRef] [PubMed]
  23. R. Driben and I. V. Babushkin, “Accelerated rogue waves generated by soliton fusion at the advanced stage of supercontinuum formation in photonic-crystal fibers,” Opt. Lett.37(24), 5157–5159 (2012). [CrossRef] [PubMed]
  24. A. Demircan, Sh. Amiranashvili, and G. Steinmeyer, “Controlling light by light with an optical event horizon,” Phys. Rev. Lett.106(16), 163901 (2011). [CrossRef] [PubMed]
  25. A. Demircan, S. Amiranashvili, C. Brée, C. Mahnke, F. Mitschke, and G. Steinmeyer, “Rogue events in the group velocity horizon,” Sci Rep2, 850 (2012). [CrossRef] [PubMed]
  26. A. V. Yulin, R. Driben, B. A. Malomed, and D. V. Skryabin, “Soliton interaction mediated by cascaded four wave mixing with dispersive waves,” Opt. Express21(12), 14481–14486 (2013). [CrossRef] [PubMed]
  27. D. Faccio, T. Arane, M. Lamperti, and U. Leonhardt, “Optical black hole lasers,” Class. Quantum Gravity29(22), 224009 (2012). [CrossRef]
  28. J. C. Travers, W. Chang, J. Nold, N. Y. Joly, and P. St. J. Russell, “Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers,” J. Opt. Soc. Am. B28, A11–A26 (2011). [CrossRef]
  29. R. Driben and B. A. Malomed, “Suppression of crosstalk between solitons in a multi-channel split-step system,” Opt. Commun.197, 481–489 (2001).
  30. W.-P. Huang, “Coupled-mode theory for optical waveguides: an overview,” J. Opt. Soc. Am. A11, 963–983 (1994).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited