## Sub-Poissonian-light generation by postselection from twin beams |

Optics Express, Vol. 21, Issue 16, pp. 19387-19394 (2013)

http://dx.doi.org/10.1364/OE.21.019387

Acrobat PDF (802 KB)

### Abstract

States with sub-Poissonian photon-number statistics obtained by post-selection from twin beams are experimentally generated. States with Fano factors down to 0.62 and mean photon numbers around 12 are reached. Their quasi-distributions of integrated intensities attaining negative values are reconstructed. An intensified CCD camera with a quantum detection efficiency exceeding 20% is utilized both for post-selection and beam characterization. Experimental results are compared with theory that provides the optimum experimental conditions.

© 2013 OSA

## 1. Introduction

1. L. Mandel and E. Wolf, *Optical Coherence and Quantum Optics* (Cambridge Univ. Press, Cambridge, 1995) [CrossRef] .

3. B. E. A. Saleh and M. C. Teich, *Fundamentals of Photonics* (Wiley, New York, 1991) [CrossRef] .

1. L. Mandel and E. Wolf, *Optical Coherence and Quantum Optics* (Cambridge Univ. Press, Cambridge, 1995) [CrossRef] .

4. A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum state tomography,” Rev. Mod. Phys. **81**, 299–332 (2009) [CrossRef] .

5. P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. **1**, 173–179 (1986) [CrossRef] .

6. C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. **83**, 2722–2725 (1999) [CrossRef] .

7. B. T. H. Varcoe, S. Brattke, and H. Walther, “The creation and detection of arbitrary photon number states using cavity QED,” New J. Phys. **6**, 97 (2004) [CrossRef] .

8. C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. **85**, 290–293 (2000) [CrossRef] [PubMed] .

9. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Phot. **5**, 301–305 (2011) [CrossRef] .

10. C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New. J. Phys. **6**, 89 (2004) [CrossRef] .

11. O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett. **30**, 1539–1541 (2008) [CrossRef] .

14. G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. **81**, 5039–5043 (1998) [CrossRef] .

15. M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep. **413**, 319–396 (2005) [CrossRef] .

16. D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature **390**, 575–579 (1997) [CrossRef] .

17. A. Migdall, “Correlated-photon metrology without absolute standards,” Physics Today **52**, 41–46 (1999) [CrossRef] .

18. A. F. Abouraddy, K. C. Toussaint Jr., A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon ellipsometry,” J. Opt. Soc. Am. B **19**, 656–662 (2002) [CrossRef] .

19. G. Brida, M. Genovese, and M. Gramegna, “Twin-photon techniques for photo-detector calibration,” Laser Phys. Lett. **3**, 115–123 (2006) [CrossRef] .

21. J. Perina Jr., O. Haderka, M. Hamar, and V. Michálek, “Absolute detector calibration using twin beams,” Opt. Lett. **37**, 2475–2477 (2012) [CrossRef] [PubMed] .

22. T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. **84**, 4729–4732 (2000) [CrossRef] [PubMed] .

23. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. **74**, 145–195 (2011) [CrossRef] .

7. B. T. H. Varcoe, S. Brattke, and H. Walther, “The creation and detection of arbitrary photon number states using cavity QED,” New J. Phys. **6**, 97 (2004) [CrossRef] .

25. R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett. **51**, 384–387 (1983) [CrossRef] .

*F*≈ 0.998), Franck–Hertz experiment [26

26. M. C. Teich and B. E. A. Saleh, “Observation of sub-Poisson Franck-Hertz light at 253.7 nm,” J. Opt. Soc. Am. B **2**, 275–282 (1985) [CrossRef] .

*F*≈ 0.99), high-efficiency light-emitting diodes [27

27. P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. **4**, 293–299 (1987) [CrossRef] .

*F*≈ 0.96), in the process of second-subharmonic generation [28

28. M. Koashi, K. Kono, T. Hirano, and M. Matsuoka, “Photon antibunching in pulsed squeezed light generated via parametric amplification,” Phys. Rev. Lett. **71**, 1164–1167 (1993) [CrossRef] [PubMed] .

7. B. T. H. Varcoe, S. Brattke, and H. Walther, “The creation and detection of arbitrary photon number states using cavity QED,” New J. Phys. **6**, 97 (2004) [CrossRef] .

29. J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. **73**, 565–583 (2001) [CrossRef] .

30. J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, “Conditional preparation of a quantum state in the continuous variable regime: Generation of a sub-Poissonian state from twin beams,” Phys. Rev. Lett. **91**, 213601 (2003) [CrossRef] [PubMed] .

31. J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, and S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett. **64**, 2897–2900 (1990) [CrossRef] [PubMed] .

32. J. Peřina Jr, O. Haderka, and J. Soubusta, “Quantum cryptography using a photon source based on postselection from entangled two-photon states,” Phys. Rev. A **64**, 052305 (2001) [CrossRef] .

33. J. Peřina, J. Křepelka, J. Peřina Jr., M. Bondani, A. Allevi, and A. Andreoni, “Experimental joint signal-idler quasidistributions and photon-number statistics for mesoscopic twin beams,” Phys. Rev. A **76**, 043806 (2007) [CrossRef] .

34. J. Peřina, J. Křepelka, J. Peřina Jr., M. Bondani, A. Allevi, and A. Andreoni, “Correlations in photon-numbers and integrated intensities in parametric processes involving three optical fields,” Eur. Phys. J. D **53**, 373–382 (2009) [CrossRef] .

35. O. Haderka, M. Hamar, and J. Peřina Jr., “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D **28**, 149–154 (2004) [CrossRef] .

38. M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A **68**, 043814 (2003) [CrossRef] .

39. A. Allevi, M. Bondani, and A. Andreoni, “Photon-number correlations by photon-number resolving detectors,” Opt. Lett. **35**, 1707–1709 (2010) [CrossRef] [PubMed] .

40. M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B **27**, 852–862 (2010) [CrossRef] .

41. L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A **75**, 062325 (2007) [CrossRef] .

42. A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. **83**, 791–793 (2003) [CrossRef] .

45. L. Lolli, G. Brida, I. P. Degiovanni, M. Gramegna, E. Monticone, F. Piacentini, C. Portesi, M. Rajteri, I. Ruo-Berchera, E. Taralli, and P. Traina, “Ti/Au TES as superconducting detector for quantum technologies,” Int. J. Quant. Inf. **9**, 405–413 (2011) [CrossRef] .

21. J. Perina Jr., O. Haderka, M. Hamar, and V. Michálek, “Absolute detector calibration using twin beams,” Opt. Lett. **37**, 2475–2477 (2012) [CrossRef] [PubMed] .

46. O. Haderka, J. Peřina Jr., M. Hamar, and J. Peřina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A **71**, 033815 (2005) [CrossRef] .

## 2. Conditional states generated from twin beams by post-selection

47. M. Hamar, J. Peřina Jr., O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric downconversion,” Phys. Rev. A **81**, 043827 (2010) [CrossRef] .

*f*(

*c*,

_{s}*c*) giving the number of experimental realizations with

_{i}*c*signal and

_{s}*c*idler photocounts is available after a sufficiently high number of measurement repetitions. The normalized histogram

_{i}*f*(

_{i}*c*;

_{i}*c*) ≡

_{s}*f*(

*c*,

_{s}*c*)/∑

_{i}*c*(

_{i}f*c*,

_{s}*c*) then describes the measurement on the idler field conditioned by the detection of

_{i}*c*signal photocounts. The idler-field conditional photon-number distribution (CPND)

_{s}*p*(

_{c,i}*n*;

_{i}*c*) arising after detecting

_{s}*c*signal photocounts can easily be reconstructed. The method of expectation maximization allows to find this distribution as a steady state available by the following iteration procedure [48

_{s}48. J. Peřina Jr., M. Hamar, V. Michálek, and O. Haderka, “Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera,” Phys. Rev. A **85**, 023816 (2012) [CrossRef] .

*T*(

*c*,

_{i}*n*) give probabilities of having

_{i}*c*photocounts when detecting a field with

_{i}*n*photons. These probabilities valid for an iCCD camera with

_{i}*N*active pixels, QDE

_{i}*η*and dark-count rate per pixel

_{i}*D*have been derived in [48

_{i}48. J. Peřina Jr., M. Hamar, V. Michálek, and O. Haderka, “Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera,” Phys. Rev. A **85**, 023816 (2012) [CrossRef] .

*p*(

_{c,i}*n*;

_{i}*c*) can be compared with the ’theoretical’ ones

_{s}*p*(

_{si}*n*,

_{s}*n*) along the formula: The matrix elements

_{i}*T*(

_{s}*c*,

_{s}*n*) characterize detection in the signal field and are given by the formula analogous to that in Eq. (2). The joint PND

_{s}*p*(

_{si}*n*,

_{s}*n*) of a twin beam can be expressed as a two-fold convolution of three Mandel-Rice PNDs [49

_{i}49. J. Peřina, *Quantum Statistics of Linear and Nonlinear Optical Phenomena* (Kluwer, Dordrecht, 1991) [CrossRef] .

21. J. Perina Jr., O. Haderka, M. Hamar, and V. Michálek, “Absolute detector calibration using twin beams,” Opt. Lett. **37**, 2475–2477 (2012) [CrossRef] [PubMed] .

50. J. Peřina and J. Křepelka, “Multimode description of spontaneous parametric down-conversion,” J. Opt. B: Quant. Semiclass. Opt. **7**, 246–252 (2005) [CrossRef] .

*p*(

*n;M,b*) = Γ(

*n*+

*M*)/[

*n*!Γ(

*M*)]

*b*/(1+

^{n}*b*)

^{n+M}. Symbol Γ stands for the Γ-function. Each part

*a*has its own number

*M*of independent modes and mean number of photons (or photon pairs)

_{a}*b*per mode,

_{a}*a*=

*p*,

*s*,

*i*. Appropriate values of these quantities as well as QDEs

*η*and

_{s}*η*can be derived from the histogram

_{i}*f*(

*c*,

_{s}*c*) using a fitting procedure (for details, see [21

_{i}**37**, 2475–2477 (2012) [CrossRef] [PubMed] .

51. J. Peřina Jr, O. Haderka, V. Michálek, and M. Hamar, “State reconstruction of a multimode twin beam using photodetection,” Phys. Rev. A **87**, 022108 (2013) [CrossRef] .

## 3. Sub-Poissonian-light generation

_{2}O

_{4}crystal pumped by the third harmonics of a femtosecond cavity dumped Ti:sapphire laser with pulse duration 150 fs at 840 nm (for details, see [47

47. M. Hamar, J. Peřina Jr., O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric downconversion,” Phys. Rev. A **81**, 043827 (2010) [CrossRef] .

*N*=

_{s}*N*= 6272 pixels of the photocathode with mean dark-count rates

_{i}*D*=

_{s}*D*= 0.04/

_{i}*N*have been used in detecting each field. The histogram

_{s}*f*(

*c*,

_{s}*c*) has been built after 2 × 10

_{i}^{5}measurement repetitions. Its analysis has revealed the following values of parameters:

*η*= 0.235,

_{s}*η*= 0.243,

_{i}*b*= 0.056,

_{p}*M*= 180,

_{p}*b*= 9.8,

_{s}*M*= 0.012,

_{s}*b*= 29, and

_{i}*M*= 0.0009. Covariance between the signal and idler photon-numbers

_{i}*n*and

_{s}*n*was 91%. There were 〈

_{i}*c*〉 = 2.39 and 〈

_{s}*c*〉 = 2.45 photocounts on average in the signal and idler detection areas, respectively. The field in front of the camera was on average composed of 〈

_{i}*n*〉 = 9.87 photon pairs, 〈

_{p}*n*〉 = 0.12 noise signal photons and 〈

_{s}*n*〉 = 0.03 noise idler photons.

_{i}*F*: mean photon-pair number (〈

_{i}*n*〉), QDE of the camera

_{p}*η*, mean number of noise signal photons (〈

*n*〉) used for post-selection, and mean number of noise idler photons in the post-selected field (〈

_{s}*n*〉). The dependence of Fano factor

_{i}*F*on mean photon-pair number 〈

_{i}*n*〉 is weak, as the curves in Fig. 4(a) showing the least available values

_{p}*c*) as well as the values

_{s}*n*〉 are optimum, which is the case of the performed experiment. Whereas fields with low values of 〈

_{p}*n*〉 suffer from the noise (〈

_{p}*n*〉) when detecting the signal photons, greater values of 〈

_{s}*n*〉 are handicapped by a lower signal QDE

_{p}*η*. The QDE

_{s}*η*crucially limits the available values of Fano factor

_{s}*F*. The greater the values of

_{i}*η*the smaller the values of

_{s}*F*, as shown in Fig. 4(b). We note that the greater the values of

_{i}*η*the smaller the post-selection probabilities

_{s}*p*(

_{s}*c*). Nonzero noise in the post-selecting signal field (〈

_{s}*n*〉) degrades the post-selection process and, naturally, greater values of Fano factor

_{s}*F*occur [Fig. 4(c)]. If this noise is negligible the values of

_{i}*F*close to zero can be reached even for non-unit values of QDE

_{i}*η*. However, this occurs when post-selecting by a greater number

_{s}*c*of signal photocount. As such events are rarely observed this regime is practically not useful. Finally, the noise in idler field (〈

_{s}*n*〉) only conceals the sub-Poissonian character of the conditional idler field. The greater the values of 〈

_{i}*n*〉 the greater the values of Fano factor

_{i}*F*. This analysis shows that the used experimental conditions, namely the chosen parameters of the twin beam, have allowed to reach the nearly optimum values of Fano factor

_{i}*F*allowed by the used iCCD camera. The improvement of camera’s QDE opens the door for reaching lower values of Fano factor

_{i}*F*.

_{i}*c*simultaneously. Also post-selection does not necessarily have to be based upon the measurement of a fixed number

_{s}*c*of signal photocounts – more sophisticated post-selection patterns are possible. This allows, for example, the generation of highly nonclassical CPNDs composed of several peaks provided that sufficiently low values of Fano factors are experimentally reached.

_{s}53. B. E. A. Saleh and M. C. Teich, “Can the channel capacity of a light-wave communication system be increased by the use of photon-number-squeezed light?” Phys. Rev. Lett. **58**, 2656–2659 (1987) [CrossRef] [PubMed] .

54. V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. **96**, 010401 (2006) [CrossRef] [PubMed] .

## 4. Conclusions

## Acknowledgments

## References and links

1. | L. Mandel and E. Wolf, |

2. | J. Peřina, Z. Hradil, and B. Jurčo, |

3. | B. E. A. Saleh and M. C. Teich, |

4. | A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum state tomography,” Rev. Mod. Phys. |

5. | P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett. |

6. | C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett. |

7. | B. T. H. Varcoe, S. Brattke, and H. Walther, “The creation and detection of arbitrary photon number states using cavity QED,” New J. Phys. |

8. | C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett. |

9. | A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Phot. |

10. | C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New. J. Phys. |

11. | O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett. |

12. | G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. Della Frera, A. Tosi, A. Bahgat Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett. |

13. | M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, M. V. Chekhova, A. Aiello, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Comm. |

14. | G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett. |

15. | M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep. |

16. | D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature |

17. | A. Migdall, “Correlated-photon metrology without absolute standards,” Physics Today |

18. | A. F. Abouraddy, K. C. Toussaint Jr., A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon ellipsometry,” J. Opt. Soc. Am. B |

19. | G. Brida, M. Genovese, and M. Gramegna, “Twin-photon techniques for photo-detector calibration,” Laser Phys. Lett. |

20. | M. Lindenthal and J. Kofler, “Measuring the absolute photodetection efficiency using photon number correlations,” Appl. Opt. |

21. | J. Perina Jr., O. Haderka, M. Hamar, and V. Michálek, “Absolute detector calibration using twin beams,” Opt. Lett. |

22. | T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett. |

23. | N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. |

24. | M. A. Nielsen and I. L. Juang, |

25. | R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett. |

26. | M. C. Teich and B. E. A. Saleh, “Observation of sub-Poisson Franck-Hertz light at 253.7 nm,” J. Opt. Soc. Am. B |

27. | P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett. |

28. | M. Koashi, K. Kono, T. Hirano, and M. Matsuoka, “Photon antibunching in pulsed squeezed light generated via parametric amplification,” Phys. Rev. Lett. |

29. | J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys. |

30. | J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, “Conditional preparation of a quantum state in the continuous variable regime: Generation of a sub-Poissonian state from twin beams,” Phys. Rev. Lett. |

31. | J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, and S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett. |

32. | J. Peřina Jr, O. Haderka, and J. Soubusta, “Quantum cryptography using a photon source based on postselection from entangled two-photon states,” Phys. Rev. A |

33. | J. Peřina, J. Křepelka, J. Peřina Jr., M. Bondani, A. Allevi, and A. Andreoni, “Experimental joint signal-idler quasidistributions and photon-number statistics for mesoscopic twin beams,” Phys. Rev. A |

34. | J. Peřina, J. Křepelka, J. Peřina Jr., M. Bondani, A. Allevi, and A. Andreoni, “Correlations in photon-numbers and integrated intensities in parametric processes involving three optical fields,” Eur. Phys. J. D |

35. | O. Haderka, M. Hamar, and J. Peřina Jr., “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D |

36. | J. Řeháček, Z. Hradil, O. Haderka, J. Peřina Jr., and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A |

37. | D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett. |

38. | M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A |

39. | A. Allevi, M. Bondani, and A. Andreoni, “Photon-number correlations by photon-number resolving detectors,” Opt. Lett. |

40. | M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B |

41. | L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A |

42. | A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett. |

43. | A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Goltsman, K. G. Lagoudakis, M. Benkahoul, F. Levy, and A. Fiore, “Superconducting nanowire photonnumber-resolving detector at telecommunication wavelengths,” Nat. Phot. |

44. | D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express |

45. | L. Lolli, G. Brida, I. P. Degiovanni, M. Gramegna, E. Monticone, F. Piacentini, C. Portesi, M. Rajteri, I. Ruo-Berchera, E. Taralli, and P. Traina, “Ti/Au TES as superconducting detector for quantum technologies,” Int. J. Quant. Inf. |

46. | O. Haderka, J. Peřina Jr., M. Hamar, and J. Peřina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A |

47. | M. Hamar, J. Peřina Jr., O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric downconversion,” Phys. Rev. A |

48. | J. Peřina Jr., M. Hamar, V. Michálek, and O. Haderka, “Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera,” Phys. Rev. A |

49. | J. Peřina, |

50. | J. Peřina and J. Křepelka, “Multimode description of spontaneous parametric down-conversion,” J. Opt. B: Quant. Semiclass. Opt. |

51. | J. Peřina Jr, O. Haderka, V. Michálek, and M. Hamar, “State reconstruction of a multimode twin beam using photodetection,” Phys. Rev. A |

52. | J. Peřina and J. Křepelka, “Joint probability distributions of stimulated parametric down-conversion for controllable nonclassical fluctuations,” Eur. Phys. J. D |

53. | B. E. A. Saleh and M. C. Teich, “Can the channel capacity of a light-wave communication system be increased by the use of photon-number-squeezed light?” Phys. Rev. Lett. |

54. | V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett. |

**OCIS Codes**

(030.5290) Coherence and statistical optics : Photon statistics

(040.5570) Detectors : Quantum detectors

(190.4975) Nonlinear optics : Parametric processes

**ToC Category:**

Coherence and Statistical Optics

**History**

Original Manuscript: May 16, 2013

Revised Manuscript: July 11, 2013

Manuscript Accepted: July 12, 2013

Published: August 8, 2013

**Citation**

Jan Peřina, Ondřej Haderka, and Václav Michálek, "Sub-Poissonian-light generation by postselection from twin beams," Opt. Express **21**, 19387-19394 (2013)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-16-19387

Sort: Year | Journal | Reset

### References

- L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge Univ. Press, Cambridge, 1995). [CrossRef]
- J. Peřina, Z. Hradil, and B. Jurčo, Quantum Optics and Fundamentals of Physics (Kluwer, Dordrecht, 1994). [CrossRef]
- B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
- A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum state tomography,” Rev. Mod. Phys.81, 299–332 (2009). [CrossRef]
- P. Grangier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter: A new light on single-photon interferences,” Europhys. Lett.1, 173–179 (1986). [CrossRef]
- C. Brunel, B. Lounis, P. Tamarat, and M. Orrit, “Triggered source of single photons based on controlled single molecule fluorescence,” Phys. Rev. Lett.83, 2722–2725 (1999). [CrossRef]
- B. T. H. Varcoe, S. Brattke, and H. Walther, “The creation and detection of arbitrary photon number states using cavity QED,” New J. Phys.6, 97 (2004). [CrossRef]
- C. Kurtsiefer, S. Mayer, P. Zarda, and H. Weinfurter, “Stable solid-state source of single photons,” Phys. Rev. Lett.85, 290–293 (2000). [CrossRef] [PubMed]
- A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity,” Nat. Phot.5, 301–305 (2011). [CrossRef]
- C. Santori, D. Fattal, J. Vuckovic, G. S. Solomon, and Y. Yamamoto, “Single-photon generation with InAs quantum dots,” New. J. Phys.6, 89 (2004). [CrossRef]
- O. Alibart, D. B. Ostrowsky, P. Baldi, and S. Tanzilli, “High-performance guided-wave asynchronous heralded single-photon source,” Opt. Lett.30, 1539–1541 (2008). [CrossRef]
- G. Brida, I. P. Degiovanni, M. Genovese, F. Piacentini, P. Traina, A. Della Frera, A. Tosi, A. Bahgat Shehata, C. Scarcella, A. Gulinatti, M. Ghioni, S. V. Polyakov, A. Migdall, and A. Giudice, “An extremely low-noise heralded single-photon source: A breakthrough for quantum technologies,” Appl. Phys. Lett.101, 221112 (2012). [CrossRef]
- M. Förtsch, J. U. Fürst, C. Wittmann, D. Strekalov, M. V. Chekhova, A. Aiello, C. Silberhorn, G. Leuchs, and C. Marquardt, “A versatile source of single photons for quantum information processing,” Nat. Comm.4, 1818 (2013).
- G. Weihs, T. Jennewein, C. Simon, H. Weinfurter, and A. Zeilinger, “Violation of Bell’s inequality under strict Einstein locality conditions,” Phys. Rev. Lett.81, 5039–5043 (1998). [CrossRef]
- M. Genovese, “Research on hidden variable theories: A review of recent progresses,” Phys. Rep.413, 319–396 (2005). [CrossRef]
- D. Bouwmeester, J. W. Pan, K. Mattle, M. Eibl, H. Weinfurter, and A. Zeilinger, “Experimental quantum teleportation,” Nature390, 575–579 (1997). [CrossRef]
- A. Migdall, “Correlated-photon metrology without absolute standards,” Physics Today52, 41–46 (1999). [CrossRef]
- A. F. Abouraddy, K. C. Toussaint, A. V. Sergienko, B. E. A. Saleh, and M. C. Teich, “Entangled-photon ellipsometry,” J. Opt. Soc. Am. B19, 656–662 (2002). [CrossRef]
- G. Brida, M. Genovese, and M. Gramegna, “Twin-photon techniques for photo-detector calibration,” Laser Phys. Lett.3, 115–123 (2006). [CrossRef]
- M. Lindenthal and J. Kofler, “Measuring the absolute photodetection efficiency using photon number correlations,” Appl. Opt.45, 6059–6063 (2006). [CrossRef] [PubMed]
- J. Perina, O. Haderka, M. Hamar, and V. Michálek, “Absolute detector calibration using twin beams,” Opt. Lett.37, 2475–2477 (2012). [CrossRef] [PubMed]
- T. Jennewein, C. Simon, G. Weihs, H. Weinfurter, and A. Zeilinger, “Quantum cryptography with entangled photons,” Phys. Rev. Lett.84, 4729–4732 (2000). [CrossRef] [PubMed]
- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74, 145–195 (2011). [CrossRef]
- M. A. Nielsen and I. L. Juang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).
- R. Short and L. Mandel, “Observation of sub-Poissonian photon statistics,” Phys. Rev. Lett.51, 384–387 (1983). [CrossRef]
- M. C. Teich and B. E. A. Saleh, “Observation of sub-Poisson Franck-Hertz light at 253.7 nm,” J. Opt. Soc. Am. B2, 275–282 (1985). [CrossRef]
- P. R. Tapster, J. G. Rarity, and J. S. Satchell, “Generation of sub-Poissonian light by high-efficiency light-emitting diodes,” Europhys. Lett.4, 293–299 (1987). [CrossRef]
- M. Koashi, K. Kono, T. Hirano, and M. Matsuoka, “Photon antibunching in pulsed squeezed light generated via parametric amplification,” Phys. Rev. Lett.71, 1164–1167 (1993). [CrossRef] [PubMed]
- J. M. Raimond, M. Brune, and S. Haroche, “Manipulating quantum entanglement with atoms and photons in a cavity,” Rev. Mod. Phys.73, 565–583 (2001). [CrossRef]
- J. Laurat, T. Coudreau, N. Treps, A. Maitre, and C. Fabre, “Conditional preparation of a quantum state in the continuous variable regime: Generation of a sub-Poissonian state from twin beams,” Phys. Rev. Lett.91, 213601 (2003). [CrossRef] [PubMed]
- J. Mertz, A. Heidmann, C. Fabre, E. Giacobino, and S. Reynaud, “Observation of high-intensity sub-Poissonian light using an optical parametric oscillator,” Phys. Rev. Lett.64, 2897–2900 (1990). [CrossRef] [PubMed]
- J. Peřina, O. Haderka, and J. Soubusta, “Quantum cryptography using a photon source based on postselection from entangled two-photon states,” Phys. Rev. A64, 052305 (2001). [CrossRef]
- J. Peřina, J. Křepelka, J. Peřina, M. Bondani, A. Allevi, and A. Andreoni, “Experimental joint signal-idler quasidistributions and photon-number statistics for mesoscopic twin beams,” Phys. Rev. A76, 043806 (2007). [CrossRef]
- J. Peřina, J. Křepelka, J. Peřina, M. Bondani, A. Allevi, and A. Andreoni, “Correlations in photon-numbers and integrated intensities in parametric processes involving three optical fields,” Eur. Phys. J. D53, 373–382 (2009). [CrossRef]
- O. Haderka, M. Hamar, and J. Peřina, “Experimental multi-photon-resolving detector using a single avalanche photodiode,” Eur. Phys. J. D28, 149–154 (2004). [CrossRef]
- J. Řeháček, Z. Hradil, O. Haderka, J. Peřina, and M. Hamar, “Multiple-photon resolving fiber-loop detector,” Phys. Rev. A67, 061801(R) (2003). [CrossRef]
- D. Achilles, C. Silberhorn, C. Sliwa, K. Banaszek, and I. A. Walmsley, “Fiber-assisted detection with photon number resolution,” Opt. Lett.28, 2387 (2003). [CrossRef] [PubMed]
- M. J. Fitch, B. C. Jacobs, T. B. Pittman, and J. D. Franson, “Photon-number resolution using time-multiplexed single-photon detectors,” Phys. Rev. A68, 043814 (2003). [CrossRef]
- A. Allevi, M. Bondani, and A. Andreoni, “Photon-number correlations by photon-number resolving detectors,” Opt. Lett.35, 1707–1709 (2010). [CrossRef] [PubMed]
- M. Ramilli, A. Allevi, V. Chmill, M. Bondani, M. Caccia, and A. Andreoni, “Photon-number statistics with silicon photomultipliers,” J. Opt. Soc. Am. B27, 852–862 (2010). [CrossRef]
- L. A. Jiang, E. A. Dauler, and J. T. Chang, “Photon-number-resolving detector with 10 bits of resolution,” Phys. Rev. A75, 062325 (2007). [CrossRef]
- A. J. Miller, S. W. Nam, J. M. Martinis, and A. V. Sergienko, “Demonstration of a low-noise near-infrared photon counter with multiphoton discrimination,” Appl. Phys. Lett.83, 791–793 (2003). [CrossRef]
- A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Goltsman, K. G. Lagoudakis, M. Benkahoul, F. Levy, and A. Fiore, “Superconducting nanowire photonnumber-resolving detector at telecommunication wavelengths,” Nat. Phot.2, 302–306 (2008). [CrossRef]
- D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Opt. Express19, 870–875 (2011). [CrossRef] [PubMed]
- L. Lolli, G. Brida, I. P. Degiovanni, M. Gramegna, E. Monticone, F. Piacentini, C. Portesi, M. Rajteri, I. Ruo-Berchera, E. Taralli, and P. Traina, “Ti/Au TES as superconducting detector for quantum technologies,” Int. J. Quant. Inf.9, 405–413 (2011). [CrossRef]
- O. Haderka, J. Peřina, M. Hamar, and J. Peřina, “Direct measurement and reconstruction of nonclassical features of twin beams generated in spontaneous parametric down-conversion,” Phys. Rev. A71, 033815 (2005). [CrossRef]
- M. Hamar, J. Peřina, O. Haderka, and V. Michálek, “Transverse coherence of photon pairs generated in spontaneous parametric downconversion,” Phys. Rev. A81, 043827 (2010). [CrossRef]
- J. Peřina, M. Hamar, V. Michálek, and O. Haderka, “Photon-number distributions of twin beams generated in spontaneous parametric down-conversion and measured by an intensified CCD camera,” Phys. Rev. A85, 023816 (2012). [CrossRef]
- J. Peřina, Quantum Statistics of Linear and Nonlinear Optical Phenomena (Kluwer, Dordrecht, 1991). [CrossRef]
- J. Peřina and J. Křepelka, “Multimode description of spontaneous parametric down-conversion,” J. Opt. B: Quant. Semiclass. Opt.7, 246–252 (2005). [CrossRef]
- J. Peřina, O. Haderka, V. Michálek, and M. Hamar, “State reconstruction of a multimode twin beam using photodetection,” Phys. Rev. A87, 022108 (2013). [CrossRef]
- J. Peřina and J. Křepelka, “Joint probability distributions of stimulated parametric down-conversion for controllable nonclassical fluctuations,” Eur. Phys. J. D281, 4705–4711 (2008).
- B. E. A. Saleh and M. C. Teich, “Can the channel capacity of a light-wave communication system be increased by the use of photon-number-squeezed light?” Phys. Rev. Lett.58, 2656–2659 (1987). [CrossRef] [PubMed]
- V. Giovannetti, S. Lloyd, and L. Maccone, “Quantum metrology,” Phys. Rev. Lett.96, 010401 (2006). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.