OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21056–21061
« Show journal navigation

Holographic optical element to generate achromatic vortices

Jesús Atencia, María-Victoria Collados, Manuel Quintanilla, Julia Marín-Sáez, and Íñigo J. Sola  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21056-21061 (2013)
http://dx.doi.org/10.1364/OE.21.021056


View Full Text Article

Acrobat PDF (2885 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A compound holographic optical element to generate achromatic vortices with high efficiency, based on the combination of two volume phase holograms, is designed and constructed. This element is compact and easy to align. It has high damage threshold, so it can be used with ultraintense laser pulses.

© 2013 OSA

1. Introduction

During the last years, optical vortex beams have been a key element in the development of some applications, as particle micro-manipulation [1

1. J. E. Curtis, B. A. Koos, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]

], vortex coronograph [2

2. G. A. Swartzlander Jr., “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006). [CrossRef] [PubMed]

], interferometry [3

3. S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Opt. Lett. 30(15), 1953–1955 (2005). [CrossRef] [PubMed]

] and quantum information [4

4. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007). [CrossRef]

]. In addition to that, the interest in the non linear propagation of ultraintense and ultrashort vortices [5

5. M. S. Bigelow, P. Zerom, and R. W. Boyd, “Breakup of ring beams carrying orbital angular momentum in sodium vapor,” Phys. Rev. Lett. 92(8), 083902 (2004). [CrossRef] [PubMed]

, 6

6. Z. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997). [CrossRef] [PubMed]

] has been increased, due to its potential applications in some fields, as Laser Induced Breakdown Spectroscopy (LIBS) [7

7. M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907, 621907-5 (2006). [CrossRef]

] or phase control in high harmonic generation.

Some of these applications make use of broadband light sources. The challenge is to get the same angular momentum and spatial profile for all the spectral components. So, it is necessary to generate the vortex with an achromatic element or set-up. Besides, when the light source is a laser emitting ultrashort and ultraintense pulses, the elements involved in the vortex generation must have high damage threshold while keeping the width and shape of the pulse undistorted.

There are mainly two techniques to generate optical vortices: spiral phase plates and computer generated holograms (CGHs).

Spiral phase plates are media where the optical path increases with the azimutal angle. They can be obtained by quartz deposition [8

8. K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12(15), 3548–3553 (2004). [CrossRef] [PubMed]

], by lithography in resist [9

9. W. C. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Oholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85(23), 5784–5785 (2004). [CrossRef]

] and photoresist [10

10. J. W. Sung, H. Hockel, J. D. Brown, and E. G. Johnson, “Development of a two-dimensional phase-grating mask for fabrication of an analog-resist profile,” Appl. Opt. 45(1), 33–43 (2006). [CrossRef] [PubMed]

] or by engraving in fused silica. With these techniques, high efficiency can be reached and the plates have high damage threshold. The drawback of these plates is the presence of chromatic aberration when they are used with broadband pulses, wider than 40 nm [11

11. K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006). [CrossRef]

]. Some works have tried to overcome this problem by combining two different materials in the same spiral plate [12

12. G. A. Swartzlander Jr., “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006). [CrossRef] [PubMed]

], reaching the achromatization of the vortex for two wavelengths, but the achromatization for all wavelengths cannot be obtained.

Computer generated holograms (CGHs) used to generate vortices are gratings that present some dislocation in the diffraction pattern. They are usually amplitude or phase masks recorded in photographic film [13

13. V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992). [CrossRef]

] or generated in LCD [14

14. K. Crabtree, J. A. Davis, and I. Moreno, “Optical processing with vortex-producing lenses,” Appl. Opt. 43(6), 1360–1367 (2004). [CrossRef] [PubMed]

]. These elements cannot be used directly with high power sources, although it is possible to record a volume phase hologram (VPH) with them, obtaining an element with high efficiency and high damage threshold [15

15. Z. S. Sacks, D. Rozas, and G. A. Swartzlander Jr., “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15(8), 2226–2234 (1998). [CrossRef]

]. CGHs and volume phase holograms are diffractive elements, so they all have chromatic angular dispersion, which make them usefulness with broadband sources. One solution is to combine these elements with refractive elements to compensate the chromatic dispersion and obtain an achromatic vortex [16

16. I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13(19), 7599–7608 (2005). [CrossRef] [PubMed]

, 17

17. I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phys. B 91(1), 115–118 (2008). [CrossRef]

]. Some authors have proposed an easier solution, with two separated volume and phase gratings [18

18. O. Martínez-Matos, J. A. Rodrigo, M. P. Hernández-Garay, J. G. Izquierdo, R. Weigand, M. L. Calvo, P. Cheben, P. Vaveliuk, and L. Bañares, “Generation of femtosecond paraxial beams with arbitrary spatial distribution,” Opt. Lett. 35(5), 652–654 (2010). [CrossRef] [PubMed]

], but this solution introduce a spatial chirp and, with ultrashort laser pulses, a temporal chirp.

The aim of the present work is to design and construct an element to generate achromatic vortex beams, so it can be used with broadband sources, and with high damage threshold, in order to be used with ultraintense and ultrashort laser pulses. The element is the result of combining two VPHs recorded in commercial dichromated gelatin emulsion Slavich PFG-04. The compound holographic element is compact and easy to align. It can be used with broadband sources, generating a vortex beam with the same angular momentum for all wavelengths, and keeping the spatial and temporal profile when used with ultrashort laser pulses.

2. Vortex achromatization with optical holographic elements

To achieve an element with high efficiency and high damage threshold, a VPH can be recorded with the interference of a plane wave and a vortex beam generated with a CGH. When the volume hologram is illuminated with a broadband plane wave with a Gaussian spatial profile, a set of polychromatic vortices with topological charge m and Gaussian spatial profile emerges of the hologram, each wavelength propagating in different directions.

To compensate the angular chromatic dispersion it is necessary to combine this VPH with a plane volume grating with the same spatial frequency.

We record a volume hologram HI with the interference of two plane waves
Ur,I(x,y)=ej2πλ1ysinαr
(1)
Uo,I(x,y)=ej2πλ1ysinαo
(2)
forming angles αo and αr with z axis (perpendicular to hologram surface).

The intensity pattern resulting from this interference is:
I=|ej2πλ1ysinαr+ej2πλ1ysinαo|2=2+ej2πλ1y(sinαrsinαo)+ej2πλ1y(sinαrsinαo)
(3)
The complex transmittance recorded if the hologram is a phase hologram is proportional to

τI(x,y)=1+12ej2πλ1y(sinαrsinαo)+12ej2πλ1y(sinαrsinαo)
(4)

The hologram is illuminated with a polychromatic plane wave with a Gaussian spatial profile, Uc(x,y):
Uc(x,y)=u(λ)e(x2+y2)w2ej2πλysinαcdλ
(5)
where u(λ) is the wave spectrum and w is the half wide of the Gaussian beam.

A wave Ui,I(x,y) emerges from the hologram,

Ui,I(x,y)=UC(x,y)τ(x,y)==u(λ)e(x2+y2)w2ej2πλysinαcdλ++12u(λ)e(x2+y2)w2ej{2πλy[sinαc+λλ1(sinαrsinαo)]}dλ++12u(λ)e(x2+y2)w2ej{2πλy[sinαc+λλ1(sinαrsinαo)]}dλ==U1,I(x,y)+U2,I(x,y)+U3,I(x,y)
(6)

U1,I is the transmitted order and can be minimized recording the hologram with the suitable phase modulation and illuminating in Bragg condition for the central wavelength of the spectrum.

U2,I and U3,I are + 1 and −1 diffracted orders, respectively. In the case of volume holograms, only one of them is diffracted efficiently, depending on the αC value. We suppose that this one is U3,I. It is a set of polychromatic plane waves with a Gaussian spatial profile [Fig. 1(a)
Fig. 1 Double-grating vortex generator. (a) Separated gratings, (b) Cemented gratings.
]. The direction of propagation of each wavelength forms an angle αi with z-axis, given by

sinαi=sinαcλλ1(sinαrsinαo)
(7)

We use U3,I to illuminate a second VPH, HII, separated a distance d from HI. HII is recorded with the interference of a plane wave Ur,II and a vortex beam Uo,II,
Ur,II(x,y)=ej2πλ1ysinαr
(8)
Uo,II(x,y)=ej(2πλ1ysinαOmθ)
(9)
Where θ=tan1(y/x) is the angular coordinate at HII plane. The complex transmittance recorded is proportional to

τII(x,y)=1+12ej(2πλ1y(sinαrsinαo)+mθ)+12ej(2πλ1y(sinαrsinαo)+mθ)
(10)

The Gaussian profile of U3,I is kept in the propagation along the distance d, but the different wavelenghts are spatially separated and dephased when U3,I reaches the hologram HII. A set of vortices emerges from HII, all with the same topological charge m forming an angle of αc with the z-axis. The position of the vortex is the same for all wavelengths, but the Gaussian distribution is spatially shifted for each wavelength, as shown in Fig. 1(a).

If d = 0, the wave diffracted efficiently by HII is given by:

U3,II(x,y)=12u(λ)e(x2+y2)w2ej(2πλysinαc+mθ)dλ
(11)

In this particular case [Fig. 1(b)] the Gaussian distribution is centered on vortex for all wavelengths, that is, U3,II is an achromatic vortex, without spatial chromatic dispersion and, when it is used with ultrashort laser pulses, without temporal chirp.

3. Experimental set-up

We record HI and HII with a Coherent Verdi 6 W CW laser emitting at 532 nm. We use commercial Slavich PFG-04 dichromated gelatin plates following the process described in [19

19. A. Villamarín, J. Atencia, M. V. Collados, and M. Quintanilla, “Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates,” Appl. Opt. 48(22), 4348–4353 (2009). [CrossRef] [PubMed]

] to obtain maximum efficiency at 800 nm. The two recording beams forms an angle of 10°, minimum angle required to obtain a volume hologram with the 30 μm-thick PFG-04 emulsion.

The recording scheme for HII is shown in Fig. 2
Fig. 2 Recording scheme for a vortex volume hologram.
. The CGH used to generate Uo,II has been made with a three-step process: first, we calculate the pattern given by the interference of Ur,II [Eq. (8)] and Uo,II [Eq. (9)] (when m = 1) with MatLab and print it on paper with a laser writer; second, we photograph the pattern with a reflex camera in Kodak TMax100 film; third, we contact-copy the film pattern onto a PFG-04 dichromated gelatin plate using incoherent light. So we obtain a thin phase CGH with 14 lines/mm and 25% efficiency. The effects of bitmap resolution in the laser printed CGH require one to use spatial filtering techniques to select the desired diffraction order and to avoid bitmap artifacts. We include a 4–f processor to filter the Gaussian optical vortex and to cancel phase propagation terms [15

15. Z. S. Sacks, D. Rozas, and G. A. Swartzlander Jr., “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15(8), 2226–2234 (1998). [CrossRef]

].

The recording scheme for HI is similar to that shown in Fig. 2 by replacing the vortex wave with a collimated wave. The angle between beams has to be the same for HI and HII to guarantee the chromatic compensation.

After processing, HI and HII are cemented with their emulsions in contact, using Norland NOA61 optical adhesive. This is necessary to avoid changes in the refraction index between holograms and to preserve emulsion from environmental effects.

The maximum efficiency of each grating at Bragg angle for 800 nm is around 95%, so the sandwich has an efficiency of 90%. Losses of about 15% are due to reflection on glass surfaces and glass absorption, so absolute efficiency of the compound holographic element is 77%. This efficiency drops when λgoes far 800 nm. The dependence of diffractive efficiency with wavelength for the compound element is shown in Fig. 3
Fig. 3 Diffractive efficiency vs. wavelength for the cemented holographic element.
. Full width al half maximum (FWHM) is 250 nm, and the wavelength range in which the diffractive efficiency is above 80%, is 100 nm.

While diffractive efficiency drops, transmitted light increases, so the transmitted and diffracted light can overlap for some wavelengths. To avoid this effect, we rotate HI a small angle around the z-axis before join the two holograms. This does not affect the efficiency but causes the transmitted and diffracted beams are separated when they emerge from HII.

Figure 4(a)
Fig. 4 White light vortex. (a) Propagated at 1 m. (b) Interference with a plane wave.
shows a 5 mm-wide white light vortex propagated at 1 m from holographic element. White light illumination is provided by a tungsten light source (Ocean Optics LS-1) with 600 nm FWHM centered at 850 nm. Figure 4(b) shows interference of diffracted light and transmitted light when the holographic element is illuminated out of Bragg condition. It can be seen the dislocation at the center of the interference. Both figures demonstrate that a broadband achromatic optical vortex has been created.

The holographic material Slavich PFG-04 has high damage threshold [20

20. A. Villamarín, I. J. Sola, M. V. Collados, J. Atencia, O. Varela, B. Alonso, C. Méndez, J. San Román, I. Arias, L. Roso, and M. Quintanilla, “Compensation of second-order dispersión in femtosecond pulses after filamentation using volumen holographic transmission gratings recorded in dichromated gelatin,” Appl. Phys. B 106(1), 135–141 (2012). [CrossRef]

], so the designed element can be used with ultrashort and ultraintense laser pulses.

4. Conclusions

We design and construct an element to generate broadband optical vortices with high efficiency by stacking two VPH recorded in Slavich PFG-04 dichromated gelatin emulsion. The angular selectivity of this element is 250 nm (FWMH) and the absolute efficiency is 77%, but it could be higher if an antireflection coating is used. The solution is compact and easy to align. Although the element constructed in this work has its maximum efficiency at 800 nm, this wavelength can be change during the recording step, so it is possible to construct holographic elements adapted to a particular region of the spectrum.

Acknowledgments

This research has been supported by the Spanish Ministerio de Economía y Competitividad (grant FIS2012-35433) and the Diputación General de Aragón (Grupo Consolidado TOL, T76)

References and links

1.

J. E. Curtis, B. A. Koos, and D. G. Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]

2.

G. A. Swartzlander Jr., “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006). [CrossRef] [PubMed]

3.

S. Fürhapter, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “Spiral interferometry,” Opt. Lett. 30(15), 1953–1955 (2005). [CrossRef] [PubMed]

4.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007). [CrossRef]

5.

M. S. Bigelow, P. Zerom, and R. W. Boyd, “Breakup of ring beams carrying orbital angular momentum in sodium vapor,” Phys. Rev. Lett. 92(8), 083902 (2004). [CrossRef] [PubMed]

6.

Z. Chen, M. F. Shih, M. Segev, D. W. Wilson, R. E. Muller, and P. D. Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997). [CrossRef] [PubMed]

7.

M. Fisher, C. Siders, E. Johnson, O. Andrusyak, C. Brown, and M. Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907, 621907-5 (2006). [CrossRef]

8.

K. Sueda, G. Miyaji, N. Miyanaga, and M. Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12(15), 3548–3553 (2004). [CrossRef] [PubMed]

9.

W. C. Cheong, W. M. Lee, X.-C. Yuan, L.-S. Zhang, K. Oholakia, and H. Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85(23), 5784–5785 (2004). [CrossRef]

10.

J. W. Sung, H. Hockel, J. D. Brown, and E. G. Johnson, “Development of a two-dimensional phase-grating mask for fabrication of an analog-resist profile,” Appl. Opt. 45(1), 33–43 (2006). [CrossRef] [PubMed]

11.

K. J. Moh, X. C. Yuan, D. Y. Tang, W. C. Cheong, L.-S. Zhang, D. K. Y. Low, X. Peng, H. B. Niu, and Z. Y. Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006). [CrossRef]

12.

G. A. Swartzlander Jr., “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006). [CrossRef] [PubMed]

13.

V. Y. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992). [CrossRef]

14.

K. Crabtree, J. A. Davis, and I. Moreno, “Optical processing with vortex-producing lenses,” Appl. Opt. 43(6), 1360–1367 (2004). [CrossRef] [PubMed]

15.

Z. S. Sacks, D. Rozas, and G. A. Swartzlander Jr., “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15(8), 2226–2234 (1998). [CrossRef]

16.

I. G. Mariyenko, J. Strohaber, and C. J. G. J. Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13(19), 7599–7608 (2005). [CrossRef] [PubMed]

17.

I. J. Sola, V. Collados, L. Plaja, C. Méndez, J. San Román, C. Ruiz, I. Arias, A. Villamarín, J. Atencia, M. Quintanilla, and L. Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phys. B 91(1), 115–118 (2008). [CrossRef]

18.

O. Martínez-Matos, J. A. Rodrigo, M. P. Hernández-Garay, J. G. Izquierdo, R. Weigand, M. L. Calvo, P. Cheben, P. Vaveliuk, and L. Bañares, “Generation of femtosecond paraxial beams with arbitrary spatial distribution,” Opt. Lett. 35(5), 652–654 (2010). [CrossRef] [PubMed]

19.

A. Villamarín, J. Atencia, M. V. Collados, and M. Quintanilla, “Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates,” Appl. Opt. 48(22), 4348–4353 (2009). [CrossRef] [PubMed]

20.

A. Villamarín, I. J. Sola, M. V. Collados, J. Atencia, O. Varela, B. Alonso, C. Méndez, J. San Román, I. Arias, L. Roso, and M. Quintanilla, “Compensation of second-order dispersión in femtosecond pulses after filamentation using volumen holographic transmission gratings recorded in dichromated gelatin,” Appl. Phys. B 106(1), 135–141 (2012). [CrossRef]

OCIS Codes
(090.1000) Holography : Aberration compensation
(090.7330) Holography : Volume gratings
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Holography

History
Original Manuscript: July 11, 2013
Manuscript Accepted: August 16, 2013
Published: August 30, 2013

Citation
Jesús Atencia, María-Victoria Collados, Manuel Quintanilla, Julia Marín-Sáez, and Íñigo J. Sola, "Holographic optical element to generate achromatic vortices," Opt. Express 21, 21056-21061 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21056


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. E.  Curtis, B. A.  Koos, D. G.  Grier, “Dynamic holographic optical tweezers,” Opt. Commun. 207(1-6), 169–175 (2002). [CrossRef]
  2. G. A.  Swartzlander., “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006). [CrossRef] [PubMed]
  3. S.  Fürhapter, A.  Jesacher, S.  Bernet, M.  Ritsch-Marte, “Spiral interferometry,” Opt. Lett. 30(15), 1953–1955 (2005). [CrossRef] [PubMed]
  4. G.  Molina-Terriza, J. P.  Torres, L.  Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007). [CrossRef]
  5. M. S.  Bigelow, P.  Zerom, R. W.  Boyd, “Breakup of ring beams carrying orbital angular momentum in sodium vapor,” Phys. Rev. Lett. 92(8), 083902 (2004). [CrossRef] [PubMed]
  6. Z.  Chen, M. F.  Shih, M.  Segev, D. W.  Wilson, R. E.  Muller, P. D.  Maker, “Steady-state vortex-screening solitons formed in biased photorefractive media,” Opt. Lett. 22(23), 1751–1753 (1997). [CrossRef] [PubMed]
  7. M.  Fisher, C.  Siders, E.  Johnson, O.  Andrusyak, C.  Brown, M.  Richardson, “Control of filamentation for enhancing remote detection with laser induced breakdown spectroscopy,” Proc. SPIE 6219, 621907, 621907-5 (2006). [CrossRef]
  8. K.  Sueda, G.  Miyaji, N.  Miyanaga, M.  Nakatsuka, “Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses,” Opt. Express 12(15), 3548–3553 (2004). [CrossRef] [PubMed]
  9. W. C.  Cheong, W. M.  Lee, X.-C.  Yuan, L.-S.  Zhang, K.  Oholakia, H.  Wang, “Direct electron-beam writing of continuous spiral phase plates in negative resist with high power efficiency for optical manipulation,” Appl. Phys. Lett. 85(23), 5784–5785 (2004). [CrossRef]
  10. J. W.  Sung, H.  Hockel, J. D.  Brown, E. G.  Johnson, “Development of a two-dimensional phase-grating mask for fabrication of an analog-resist profile,” Appl. Opt. 45(1), 33–43 (2006). [CrossRef] [PubMed]
  11. K. J.  Moh, X. C.  Yuan, D. Y.  Tang, W. C.  Cheong, L.-S.  Zhang, D. K. Y.  Low, X.  Peng, H. B.  Niu, Z. Y.  Lin, “Generation of femtosecond optical vortices using a single refractive optical element,” Appl. Phys. Lett. 88(9), 091103 (2006). [CrossRef]
  12. G. A.  Swartzlander., “Achromatic optical vortex lens,” Opt. Lett. 31(13), 2042–2044 (2006). [CrossRef] [PubMed]
  13. V. Y.  Bazhenov, M. S.  Soskin, M. V.  Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39(5), 985–990 (1992). [CrossRef]
  14. K.  Crabtree, J. A.  Davis, I.  Moreno, “Optical processing with vortex-producing lenses,” Appl. Opt. 43(6), 1360–1367 (2004). [CrossRef] [PubMed]
  15. Z. S.  Sacks, D.  Rozas, G. A.  Swartzlander., “Holographic formation of optical-vortex filaments,” J. Opt. Soc. Am. B 15(8), 2226–2234 (1998). [CrossRef]
  16. I. G.  Mariyenko, J.  Strohaber, C. J. G. J.  Uiterwaal, “Creation of optical vortices in femtosecond pulses,” Opt. Express 13(19), 7599–7608 (2005). [CrossRef] [PubMed]
  17. I. J.  Sola, V.  Collados, L.  Plaja, C.  Méndez, J.  San Román, C.  Ruiz, I.  Arias, A.  Villamarín, J.  Atencia, M.  Quintanilla, L.  Roso, “High power vortex generation with volume phase holograms and non-linear experiments in gases,” Appl. Phys. B 91(1), 115–118 (2008). [CrossRef]
  18. O.  Martínez-Matos, J. A.  Rodrigo, M. P.  Hernández-Garay, J. G.  Izquierdo, R.  Weigand, M. L.  Calvo, P.  Cheben, P.  Vaveliuk, L.  Bañares, “Generation of femtosecond paraxial beams with arbitrary spatial distribution,” Opt. Lett. 35(5), 652–654 (2010). [CrossRef] [PubMed]
  19. A.  Villamarín, J.  Atencia, M. V.  Collados, M.  Quintanilla, “Characterization of transmission volume holographic gratings recorded in Slavich PFG04 dichromated gelatin plates,” Appl. Opt. 48(22), 4348–4353 (2009). [CrossRef] [PubMed]
  20. A.  Villamarín, I. J.  Sola, M. V.  Collados, J.  Atencia, O.  Varela, B.  Alonso, C.  Méndez, J.  San Román, I.  Arias, L.  Roso, M.  Quintanilla, “Compensation of second-order dispersión in femtosecond pulses after filamentation using volumen holographic transmission gratings recorded in dichromated gelatin,” Appl. Phys. B 106(1), 135–141 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited