OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21236–21241
« Show journal navigation

Modeling of spectral and statistical properties of a random distributed feedback fiber laser

Sergey V. Smirnov and Dmitry V. Churkin  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21236-21241 (2013)
http://dx.doi.org/10.1364/OE.21.021236


View Full Text Article

Acrobat PDF (1479 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

For the first time we report full numerical NLSE-based modeling of generation properties of random distributed feedback fiber laser based on Rayleigh scattering. The model which takes into account the random backscattering via its average strength only describes well power and spectral properties of random DFB fiber lasers. The influence of dispersion and nonlinearity on spectral and statistical properties is investigated. The evidence of non-gaussian intensity statistics is found.

© 2013 OSA

1. Introduction

Recently, a concept of a new type of a random laser operating via extremely weak random scattering in a single mode fiber has been proposed and experimentally demonstrated [1

1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]

,2

2. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010). [CrossRef]

]. The random distributed feedback (DFB) fiber laser has a mirrorless open cavity with feedback owing to random Rayleigh backscattering (RS) amplified via Raman gain. The laser generates spatially confined spectrally localized radiation in quasi-CW regime. Different random DFB fiber laser systems were realized [3

3. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express 19(19), 18486–18494 (2011). [CrossRef] [PubMed]

10

10. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol. 30(8), 1168–1172 (2012). [CrossRef]

] generating in different spectral bands [3

3. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express 19(19), 18486–18494 (2011). [CrossRef] [PubMed]

6

6. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011). [CrossRef]

], providing cascaded [2

2. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010). [CrossRef]

,7

7. M. Pang, S. Xie, X. Bao, D. P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett. 37(15), 3129–3131 (2012). [CrossRef] [PubMed]

], tunable [6

6. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011). [CrossRef]

], multi-wavelength output [4

4. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010). [CrossRef]

,5

5. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011). [CrossRef] [PubMed]

]. The noise level of random DFB fiber lasers could be lower than of conventional lasers [11

11. J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20(24), 27376–27381 (2012). [CrossRef] [PubMed]

] making them attractive for telecom applications. Another application is optical sensing [12

12. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry-Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol. 28, 3149–3155 (2010).

,13

13. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B 104(4), 957–960 (2011). [CrossRef]

].

In general, theoretical description of random lasers is challenging [14

14. D. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013). [CrossRef]

]. Power performances of a random DFB fiber laser could be described within simple power balance model [1

1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]

,6

6. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011). [CrossRef]

] providing good prediction for generation threshold, longitudinal generation power distribution [9

9. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20(10), 11178–11188 (2012). [CrossRef] [PubMed]

] and a way to optimization of the laser power performance [15

15. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20(27), 28033–28038 (2012). [CrossRef] [PubMed]

]. Noise properties of a random DFB fiber laser can be also treated within power balance model [11

11. J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20(24), 27376–27381 (2012). [CrossRef] [PubMed]

].

To describe spectral and temporal properties of different types of random lasers various models are used. The random generation is represented in terms of sets of modes either of passive or active cavity, localized or extended [14

14. D. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013). [CrossRef]

, 16

16. H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000). [CrossRef] [PubMed]

20

20. P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics 7(1), 66–71 (2012). [CrossRef]

]. Other approaches are based on Maxwell’s equations combined with the rate equations of a n-level system [21

21. Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE 8351, 835142 (2012). [CrossRef]

,22

22. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007). [CrossRef] [PubMed]

]. Numerical methods to solve such systems are varying and include Monte-Carlo simulation of a random walk of photons [23

23. G. A. Berger, M. Kempe, and A. Z. Genack, “Dynamics of stimulated emission from random media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(5), 6118–6122 (1997). [CrossRef]

], the finite difference time domain method [24

24. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85(1), 70–73 (2000). [CrossRef] [PubMed]

26

26. J. Andreasen and H. Cao, “Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A 82(6), 063835 (2010). [CrossRef]

], the transfer matrix method [27

27. X. Wu, J. Andreasen, H. Cao, and A. Yamilov, “Effect of local pumping on random laser modes in one dimension,” J. Opt. Soc. Am. B 24(10), A26–A33 (2007). [CrossRef]

,28

28. Y. Xie and Z. A. Liu, “A new physical model on lasing in active random media,” Phys. Lett. A 341(1-4), 339–344 (2005). [CrossRef]

]. None of these models are not applied to the description of the random DFB fiber laser. In general, its spectral, temporal and statistical properties are not investigated neither analytically nor numerically. It is also unknown how spectral and temporal/statistical properties depend on fiber specifications (namely, on dispersion and nonlinearity).

In fiber optics, generalized Schrödinger equation (NLSE) is the most powerful and widely applied method to describe various fiber optics systems [29

29. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

]. In particular, NLSE-based modeling describes well power, spectral, temporal and statistical properties of quasi-CW fiber lasers with conventional cavities made of point-based mirrors including Brillouin lasers [30

30. C. E. Preda, G. Ravet, A. A. Fotiadi, and P. Mégret, “Iterative method for Brillouin fiber ring resonator,” in CLEO/Europe 2011 Conference, OSA Technical Digest (Optical Society of America, 2011), paper CJ_P27. [CrossRef]

], Ytterbitum-doped fiber lasers [31

31. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19(9), 8394–8405 (2011). [CrossRef] [PubMed]

,32

32. A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21(7), 8177–8182 (2013). [CrossRef] [PubMed]

] and Raman fiber lasers (RFLs) [33

33. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010). [CrossRef] [PubMed]

36

36. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285(8), 2154–2160 (2012). [CrossRef]

].

In the present paper, we adopt NLSEs based model for full numerical description of power, spectral, temporal and statistical properties of the random DFB fiber laser radiation. The simple model which takes into account only an average energy feedback via random Rayleigh backscattering provides an adequate description of the random DFB fiber laser generation properties. We reveal the influence of fiber dispersion and nonlinearity on spectral and statistical properties of random radiation as well as show indications of non-gaussian statistics of generated random radiation.

2. Numerical model

We consider numerically the symmetrical random DFB fiber laser scheme following initial laser design from [1

1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]

], Fig. 1
Fig. 1 Random DFB fiber laser scheme.
. The laser cavity comprises 2 spools of fiber of length 41.5 km each. Two pumps (1455 nm) are coupled at the central point of in positive and negative directions. There is no any point based reflectors. The laser generates at 1555 nm.

We use generalized NLSEs with additional terms describing random Rayleigh scattering. Equations can be z-averaged over dispersion walk-off length of the generation and pump waves what results in nulling of phase cross-modulation term (see details in [36

36. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285(8), 2154–2160 (2012). [CrossRef]

]):
Ap±z1vgsAp±t+i2β2p2Ap±t2+αp2Ap±=iγp|Ap±|2Ap±gp(ω)2(|As±|2+|As|2)Ap±,
(1)
As±z+i2β2s2As±t2+αs2As±ε(ω)2As=iγs|As±|2As±+gs(ω)2(|Ap±|2+|Ap|2)As±,
(2)
where A is complex field envelope, t is a time in a frame of references moving with pump, vgs is a difference between pump and generation Stokes waves inverse group velocities, β2, α, γ, g are dispersion, linear attenuation, Kerr and Raman coefficients, ε is Rayleigh scattering coefficient, ω stands for frequency. Note that g and ε are operators applied in the frequency space. Sign ± denotes counter-propagating waves, “s” and “p” are used for generation and pump waves, z is a longitudinal coordinate being z = 0 for starting point of propagation and z = L at other fiber end, L is the fiber length. Note that for every point of the fiber, longitudinal coordinate value z for “+” wave corresponds to the value of L-z for “-“ wave and vice versa. Spontaneous Raman emission was taken into account by using white noise as initial condition [37

37. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972). [CrossRef] [PubMed]

]. We use following parameters: αs= 0.046 km–1, αp = 0.055 km–1, γs = 1.09 (km*W)–1, γp = 1.31 (km*W)–1, gs = 0.36 (km*W)–1, gp = 0.39 (km*W)–1. The dispersion is chosen to be normal: β2s = 20 ps2/km, β2p = 35 ps2/km, 1/vgs = −2.3 ns/km. In contrast to conventional lasers, where the generation wavelength is defined primarily by cavity mirrors, modeling of random DFB fiber laser requires taking into account spectral profile of Raman gain. We use parabolic approximation as an example, gi(ω)=gi – kω2, where k = 0.0062 ps2/W/km, i =s,p.

Rayleigh backscattering is a random process on a sub-micron scale [38

38. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23(23), 1805–1807 (1998). [CrossRef] [PubMed]

]. To take into account its random nature in NLSE dynamical approach is practically impossible in a laser having tens of kms length, as it is requires integration with micron scale numerical step over all laser length. However, taking into account only an average energy income results in good quantitative description of a random DFB fiber laser power performance within the power balance model [9

9. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20(10), 11178–11188 (2012). [CrossRef] [PubMed]

,15

15. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20(27), 28033–28038 (2012). [CrossRef] [PubMed]

]. The same approach is used to deal with RS in amplifiers [39

39. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12(19), 4372–4377 (2004). [CrossRef] [PubMed]

]. We follow this approach and add an average term proportional to ε = 4.5 × 10−5 km–1 to Eq. (2) (this value may vary depending on fiber NA and fabrication method [40

40. M. N. Zervas and R. I. Laming, “Rayleigh scattering effect on the gain efficiency and noise of Erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 31(3), 468–471 (1995). [CrossRef]

]). Note that we consider only energy income into generation wave whereas corresponding energy depletion of pump wave is considered through linear losses α. Rayleigh scattering induced energy income to pump wave is neglected as it’s not amplified. Rayleigh term was calculated in Fourier domain what makes it easy to make ε frequency-dependent by introducing factor (ω + ω0)2/ω02 for amplitudes which correspond to λ−4 law for energy.

3. Results and discussion

Typical averaged spectra of generated Stokes wave are shown in Fig. 3(a)
Fig. 3 (a) Raman gain profile (grey) and spectrum for generated “+”-wave at laser output as a function of Δλ = λ−1555 nm for two pump powers of 0.85 W (black) and 3 W (red); (b) lasing spectrum bandwidth (rms) depending on generation power (c) spectrum width at P = 2 W at different dispersion and nonlinearity value.
. The lasing spectrum is much narrower than initial Raman gain spectral profile in qualitative agreement with experimental data [1

1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]

]. Thus a simple model taking only an average random Rayeligh backscattering strength provides a good description of both power and spectral properties of random DFB fiber laser. The higher the generation power, the more pronounced is the nonlinear spectral broadening, Fig. 3(b). We anticipate that such spectral broadening is owing to Kerr nonlinearity and dispersion interplay similar to the processes in the conventional mirror-based fiber lasers [32

32. A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21(7), 8177–8182 (2013). [CrossRef] [PubMed]

, 33

33. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010). [CrossRef] [PubMed]

, 42

42. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007). [CrossRef]

]. Indeed, in our system the generation spectrum becomes narrower for systems with higher dispersion, Fig. 3(c), that could be understand as dispersion prevents to different spectral components to interact nonlinearly in effective way. Similarly, changing the nonlinearity at fixed pump power and fixed dispersion, we observe that spectrum becomes broader in the systems with larger nonlinearity, Fig. 3(c). There are no up to date any experimental data to compare our findings of dispersion and nonlinearity influence on spectrum width. The proper dispersion and/or nonlinear management could be a practical tool to change the spectral properties in real random DFB fiber laser systems.

Finally, we calculate temporal and statistical properties. The intensity dynamics reveals highly stochastic nature of the radiation, Fig. 4(a)
Fig. 4 (a) Typical intensity dynamics (grey shows original simulated data, black – smoothed with a bandwidth of 40 GHz, red – average lasing power level), (b) Intensity ACF and (c) intensity pdfs for different fiber dispersions. Pump power is 2 W on all graphs.
. The typical time scale of fluctuations is ~5 ps, Fig. 4(b), so intensity fluctuations could be hardly measured in real-time using conventional oscilloscopes. Measurements in bandwidth of 40 GHz which could be achieved in state-of-the-art oscilloscopes will result in averaging of actual intensity dynamics, Fig. 4(a) (black). Surprisingly the radiation statistics is not completely Gaussian in random DFB fiber laser. The lower the dispersion, the more non-exponential is intensity probability density function (pdf), Fig. 4(c), revealing probable correlations in radiation. The background level of intensity autocorrelation function (ACF) is higher than 0.5, Fig. 4(b), confirming that the radiation is not completely stochastic. The intriguing question of non-gaussian intensity statistics in the radiation of the random DFB fiber laser has to be further investigated. Note that in conventional mirror based laser cavities non-gaussian intensity statistics is previously reported [33

33. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010). [CrossRef] [PubMed]

35

35. D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett. 36(18), 3617–3619 (2011). [CrossRef] [PubMed]

] arising from partial correlations between different longitudinal modes, which are well-defined (but still strongly fluctuating and broad) in those systems [43

43. S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett. 32(9), 1135–1137 (2007). [CrossRef] [PubMed]

]. Intensity dynamics and statistical properties of random DFB fiber laser are not studied experimentally up to date.

4. Conclusion

Acknowledgments

Authors would like to acknowledge the support of the ERC, EPSRC, SB RAS integration project, grants and mega-grant (14.B25.31.0003) of the Russian Ministry of Education and Science, Russian Foundation for Basic Research, Department of General Physics of the Russian Academy of Sciences, and thank I.D. Vatnik for helpful discussions.

References and links

1.

S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics 4(4), 231–235 (2010). [CrossRef]

2.

D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A 82(3), 033828 (2010). [CrossRef]

3.

I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express 19(19), 18486–18494 (2011). [CrossRef] [PubMed]

4.

A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B 99(3), 391–395 (2010). [CrossRef]

5.

A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett. 36(2), 130–132 (2011). [CrossRef] [PubMed]

6.

S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A 84(2), 021805 (2011). [CrossRef]

7.

M. Pang, S. Xie, X. Bao, D. P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett. 37(15), 3129–3131 (2012). [CrossRef] [PubMed]

8.

Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express 20(20), 22563–22568 (2012). [CrossRef] [PubMed]

9.

D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express 20(10), 11178–11188 (2012). [CrossRef] [PubMed]

10.

A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol. 30(8), 1168–1172 (2012). [CrossRef]

11.

J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express 20(24), 27376–27381 (2012). [CrossRef] [PubMed]

12.

A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry-Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol. 28, 3149–3155 (2010).

13.

H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B 104(4), 957–960 (2011). [CrossRef]

14.

D. Wiersma, “Disordered photonics,” Nat. Photonics 7(3), 188–196 (2013). [CrossRef]

15.

I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express 20(27), 28033–28038 (2012). [CrossRef] [PubMed]

16.

H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84(24), 5584–5587 (2000). [CrossRef] [PubMed]

17.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93(5), 053903 (2004). [CrossRef] [PubMed]

18.

H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008). [CrossRef] [PubMed]

19.

J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics 3(5), 279–282 (2009). [CrossRef]

20.

P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics 7(1), 66–71 (2012). [CrossRef]

21.

Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE 8351, 835142 (2012). [CrossRef]

22.

C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett. 98(14), 143902 (2007). [CrossRef] [PubMed]

23.

G. A. Berger, M. Kempe, and A. Z. Genack, “Dynamics of stimulated emission from random media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(5), 6118–6122 (1997). [CrossRef]

24.

X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett. 85(1), 70–73 (2000). [CrossRef] [PubMed]

25.

J. Lü, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun. 282(11), 2104–2109 (2009). [CrossRef]

26.

J. Andreasen and H. Cao, “Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A 82(6), 063835 (2010). [CrossRef]

27.

X. Wu, J. Andreasen, H. Cao, and A. Yamilov, “Effect of local pumping on random laser modes in one dimension,” J. Opt. Soc. Am. B 24(10), A26–A33 (2007). [CrossRef]

28.

Y. Xie and Z. A. Liu, “A new physical model on lasing in active random media,” Phys. Lett. A 341(1-4), 339–344 (2005). [CrossRef]

29.

G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).

30.

C. E. Preda, G. Ravet, A. A. Fotiadi, and P. Mégret, “Iterative method for Brillouin fiber ring resonator,” in CLEO/Europe 2011 Conference, OSA Technical Digest (Optical Society of America, 2011), paper CJ_P27. [CrossRef]

31.

S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express 19(9), 8394–8405 (2011). [CrossRef] [PubMed]

32.

A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express 21(7), 8177–8182 (2013). [CrossRef] [PubMed]

33.

D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett. 35(19), 3288–3290 (2010). [CrossRef] [PubMed]

34.

S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett. 36(6), 790–792 (2011). [CrossRef] [PubMed]

35.

D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett. 36(18), 3617–3619 (2011). [CrossRef] [PubMed]

36.

D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun. 285(8), 2154–2160 (2012). [CrossRef]

37.

R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt. 11(11), 2489–2494 (1972). [CrossRef] [PubMed]

38.

A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett. 23(23), 1805–1807 (1998). [CrossRef] [PubMed]

39.

J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express 12(19), 4372–4377 (2004). [CrossRef] [PubMed]

40.

M. N. Zervas and R. I. Laming, “Rayleigh scattering effect on the gain efficiency and noise of Erbium-doped fiber amplifiers,” IEEE J. Quantum Electron. 31(3), 468–471 (1995). [CrossRef]

41.

M. D. Mermelstein, R. Posey Jr, G. A. Johnson, and S. T. Vohra, “Rayleigh scattering optical frequency correlation in a single-mode optical fiber,” Opt. Lett. 26(2), 58–60 (2001). [CrossRef] [PubMed]

42.

S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B 24(8), 1729–1738 (2007). [CrossRef]

43.

S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett. 32(9), 1135–1137 (2007). [CrossRef] [PubMed]

OCIS Codes
(140.3490) Lasers and laser optics : Lasers, distributed-feedback
(140.3510) Lasers and laser optics : Lasers, fiber
(290.5870) Scattering : Scattering, Rayleigh

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 22, 2013
Revised Manuscript: July 12, 2013
Manuscript Accepted: July 14, 2013
Published: September 3, 2013

Citation
Sergey V. Smirnov and Dmitry V. Churkin, "Modeling of spectral and statistical properties of a random distributed feedback fiber laser," Opt. Express 21, 21236-21241 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21236


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. K. Turitsyn, S. A. Babin, A. E. El-Taher, P. Harper, D. V. Churkin, S. I. Kablukov, J. D. Ania-Castañón, V. Karalekas, and E. V. Podivilov, “Random distributed feedback fibre laser,” Nat. Photonics4(4), 231–235 (2010). [CrossRef]
  2. D. V. Churkin, S. A. Babin, A. E. El-Taher, P. Harper, S. I. Kablukov, V. Karalekas, J. D. Ania-Castañón, E. V. Podivilov, and S. K. Turitsyn, “Raman fiber lasers with a random distributed feedback based on Rayleigh scattering,” Phys. Rev. A82(3), 033828 (2010). [CrossRef]
  3. I. D. Vatnik, D. V. Churkin, S. A. Babin, and S. K. Turitsyn, “Cascaded random distributed feedback Raman fiber laser operating at 1.2 μm,” Opt. Express19(19), 18486–18494 (2011). [CrossRef] [PubMed]
  4. A. M. R. Pinto, O. Frazão, J. L. Santos, and M. Lopez-Amo, “Multiwavelength fiber laser based on a photonic crystal fiber loop mirror with cooperative Rayleigh scattering,” Appl. Phys. B99(3), 391–395 (2010). [CrossRef]
  5. A. E. El-Taher, P. Harper, S. A. Babin, D. V. Churkin, E. V. Podivilov, J. D. Ania-Castanon, and S. K. Turitsyn, “Effect of Rayleigh-scattering distributed feedback on multiwavelength Raman fiber laser generation,” Opt. Lett.36(2), 130–132 (2011). [CrossRef] [PubMed]
  6. S. A. Babin, A. E. El-Taher, P. Harper, E. V. Podivilov, and S. K. Turitsyn, “Tunable random fiber laser,” Phys. Rev. A84(2), 021805 (2011). [CrossRef]
  7. M. Pang, S. Xie, X. Bao, D. P. Zhou, Y. Lu, and L. Chen, “Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber,” Opt. Lett.37(15), 3129–3131 (2012). [CrossRef] [PubMed]
  8. Y. J. Rao, W. L. Zhang, J. M. Zhu, Z. X. Yang, Z. N. Wang, and X. H. Jia, “Hybrid lasing in an ultra-long ring fiber laser,” Opt. Express20(20), 22563–22568 (2012). [CrossRef] [PubMed]
  9. D. V. Churkin, A. E. El-Taher, I. D. Vatnik, J. D. Ania-Castañón, P. Harper, E. V. Podivilov, S. A. Babin, and S. K. Turitsyn, “Experimental and theoretical study of longitudinal power distribution in a random DFB fiber laser,” Opt. Express20(10), 11178–11188 (2012). [CrossRef] [PubMed]
  10. A. M. R. Pinto, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Temperature fiber laser sensor based on a hybrid cavity and a random mirror,” J. Lightwave Technol.30(8), 1168–1172 (2012). [CrossRef]
  11. J. Nuño, M. Alcon-Camas, and J. D. Ania-Castañón, “RIN transfer in random distributed feedback fiber lasers,” Opt. Express20(24), 27376–27381 (2012). [CrossRef] [PubMed]
  12. A. M. R. Pinto, O. Frazão, J. L. Santos, M. Lopez-Amo, J. Kobelke, and K. Schuster, “Interrogation of a suspended-core Fabry-Perot temperature sensor through a dual wavelength Raman fiber laser,” J. Lightwave Technol.28, 3149–3155 (2010).
  13. H. F. Martins, M. B. Marques, and O. Frazão, “Temperature-insensitive strain sensor based on four-wave mixing using Raman fiber Bragg grating laser sensor with cooperative Rayleigh scattering,” Appl. Phys. B104(4), 957–960 (2011). [CrossRef]
  14. D. Wiersma, “Disordered photonics,” Nat. Photonics7(3), 188–196 (2013). [CrossRef]
  15. I. D. Vatnik, D. V. Churkin, and S. A. Babin, “Power optimization of random distributed feedback fiber lasers,” Opt. Express20(27), 28033–28038 (2012). [CrossRef] [PubMed]
  16. H. Cao, J. Y. Xu, D. Z. Zhang, S.-H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett.84(24), 5584–5587 (2000). [CrossRef] [PubMed]
  17. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett.93(5), 053903 (2004). [CrossRef] [PubMed]
  18. H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science320(5876), 643–646 (2008). [CrossRef] [PubMed]
  19. J. Fallert, R. J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, “Co-existence of strongly and weakly localized random laser modes,” Nat. Photonics3(5), 279–282 (2009). [CrossRef]
  20. P. Stano and P. Jacquod, “Suppression of interactions in multimode random lasers in the Anderson localized regime,” Nat. Photonics7(1), 66–71 (2012). [CrossRef]
  21. Z. Wang, X. Jia, Y. Rao, Y. Jiang, and W. Zhang, “Novel long-distance fiber-optic sensing systems based on random fiber lasers,” Proc. SPIE8351, 835142 (2012). [CrossRef]
  22. C. Vanneste, P. Sebbah, and H. Cao, “Lasing with resonant feedback in weakly scattering random systems,” Phys. Rev. Lett.98(14), 143902 (2007). [CrossRef] [PubMed]
  23. G. A. Berger, M. Kempe, and A. Z. Genack, “Dynamics of stimulated emission from random media,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(5), 6118–6122 (1997). [CrossRef]
  24. X. Jiang and C. M. Soukoulis, “Time dependent theory for random lasers,” Phys. Rev. Lett.85(1), 70–73 (2000). [CrossRef] [PubMed]
  25. J. Lü, J. Liu, H. Liu, K. Wang, and S. Wang, “Theoretical investigation on temporal properties of random lasers pumped by femtosecond-lasing pulses,” Opt. Commun.282(11), 2104–2109 (2009). [CrossRef]
  26. J. Andreasen and H. Cao, “Numerical study of amplified spontaneous emission and lasing in random media,” Phys. Rev. A82(6), 063835 (2010). [CrossRef]
  27. X. Wu, J. Andreasen, H. Cao, and A. Yamilov, “Effect of local pumping on random laser modes in one dimension,” J. Opt. Soc. Am. B24(10), A26–A33 (2007). [CrossRef]
  28. Y. Xie and Z. A. Liu, “A new physical model on lasing in active random media,” Phys. Lett. A341(1-4), 339–344 (2005). [CrossRef]
  29. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2001).
  30. C. E. Preda, G. Ravet, A. A. Fotiadi, and P. Mégret, “Iterative method for Brillouin fiber ring resonator,” in CLEO/Europe 2011 Conference, OSA Technical Digest (Optical Society of America, 2011), paper CJ_P27. [CrossRef]
  31. S. K. Turitsyn, A. E. Bednyakova, M. P. Fedoruk, A. I. Latkin, A. A. Fotiadi, A. S. Kurkov, and E. Sholokhov, “Modeling of CW Yb-doped fiber lasers with highly nonlinear cavity dynamics,” Opt. Express19(9), 8394–8405 (2011). [CrossRef] [PubMed]
  32. A. E. Bednyakova, O. A. Gorbunov, M. O. Politko, S. I. Kablukov, S. V. Smirnov, D. V. Churkin, M. P. Fedoruk, and S. A. Babin, “Generation dynamics of the narrowband Yb-doped fiber laser,” Opt. Express21(7), 8177–8182 (2013). [CrossRef] [PubMed]
  33. D. V. Churkin, S. V. Smirnov, and E. V. Podivilov, “Statistical properties of partially coherent cw fiber lasers,” Opt. Lett.35(19), 3288–3290 (2010). [CrossRef] [PubMed]
  34. S. Randoux, N. Dalloz, and P. Suret, “Intracavity changes in the field statistics of Raman fiber lasers,” Opt. Lett.36(6), 790–792 (2011). [CrossRef] [PubMed]
  35. D. V. Churkin, O. A. Gorbunov, and S. V. Smirnov, “Extreme value statistics in Raman fiber lasers,” Opt. Lett.36(18), 3617–3619 (2011). [CrossRef] [PubMed]
  36. D. V. Churkin and S. V. Smirnov, “Numerical modelling of spectral, temporal and statistical properties of Raman fiber lasers,” Opt. Commun.285(8), 2154–2160 (2012). [CrossRef]
  37. R. G. Smith, “Optical power handling capacity of low loss optical fibers as determined by stimulated Raman and Brillouin scattering,” Appl. Opt.11(11), 2489–2494 (1972). [CrossRef] [PubMed]
  38. A. A. Fotiadi and R. V. Kiyan, “Cooperative stimulated Brillouin and Rayleigh backscattering process in optical fiber,” Opt. Lett.23(23), 1805–1807 (1998). [CrossRef] [PubMed]
  39. J. D. Ania-Castañón, “Quasi-lossless transmission using second-order Raman amplification and fibre Bragg gratings,” Opt. Express12(19), 4372–4377 (2004). [CrossRef] [PubMed]
  40. M. N. Zervas and R. I. Laming, “Rayleigh scattering effect on the gain efficiency and noise of Erbium-doped fiber amplifiers,” IEEE J. Quantum Electron.31(3), 468–471 (1995). [CrossRef]
  41. M. D. Mermelstein, R. Posey, G. A. Johnson, and S. T. Vohra, “Rayleigh scattering optical frequency correlation in a single-mode optical fiber,” Opt. Lett.26(2), 58–60 (2001). [CrossRef] [PubMed]
  42. S. A. Babin, D. V. Churkin, A. E. Ismagulov, S. I. Kablukov, and E. V. Podivilov, “Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser,” J. Opt. Soc. Am. B24(8), 1729–1738 (2007). [CrossRef]
  43. S. A. Babin, V. Karalekas, P. Harper, E. V. Podivilov, V. K. Mezentsev, J. D. Ania-Castañón, and S. K. Turitsyn, “Experimental demonstration of mode structure in ultralong Raman fiber lasers,” Opt. Lett.32(9), 1135–1137 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited