OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 18 — Sep. 9, 2013
  • pp: 21423–21432
« Show journal navigation

Fiber looped phase conjugation of polarization multiplexed signals for pre-compensation of fiber nonlinearity effect

Mark D. Pelusi  »View Author Affiliations


Optics Express, Vol. 21, Issue 18, pp. 21423-21432 (2013)
http://dx.doi.org/10.1364/OE.21.021423


View Full Text Article

Acrobat PDF (2904 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Compensation of nonlinear distortion of polarization-multiplexed (PolMux) signals in optical fiber is evaluated experimentally using all-optical signal pre-distortion and fiber loop phase-conjugation at the transmitter. An improved bit error rate is shown for high baud rate, 80 Gb/s RZ-DPSK PolMux signals before transmission in a 728 km long dispersion-managed fiber link employing a direct detection receiver. The partial compensation of nonlinear distortion for both single channel and 3 × 80 Gb/s WDM PolMux signals is observed, despite the impact from the inter-polarization nonlinearity and the associated polarization scattering. Evidence of the limited compensation of inter-polarization nonlinearity is shown.

© 2013 OSA

1. Introduction

Polarization multiplexed (PolMux) signal transmission using the dual orthogonal principle polarization states in optical fiber has attracted broad interest for doubling the spectral efficiency of communication systems [1

1. T. J. Xia, “Optical channel capacity – From Mb/s to Tb/s and beyond,” Opt. Fiber Technol. 17(5), 328–334 (2011). [CrossRef]

]. The tradeoff is the greater susceptibility to nonlinear distortion from the intensity dependant Kerr effect. As a countermeasure, schemes for compensating the distortion have been explored to extend the maximum transmission distance. A promising solution is the use of high-speed digital signal processing (DSP) at the receiver (Rx), which has shown the partial compensation of an amount of distortion limited by the circuit complexity, size, and power consumption needed for its implementation [2

2. S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010). [CrossRef]

,3

3. W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Low complexity digital perturbation back-propagation,” in Proc. ECOC 2011, paper Tu.3.A.2, 2011.

].

2. Background

The Kerr induced inter-polarization nonlinear effects in optical fiber can severely degrade the transmission performance of PolMux signals, in contrast to the lesser and indirect impact on conventional single polarization (non-PolMux) signals [10

10. R. Khosravani, Y. W. Song, Y. Xie, L.-S. Yan, A. E. Willner, and C. R. Menyuk, “Bit-pattern-dependent polarization rotation in first-order PMD-compensated WDM systems,” Opt. Commun. 257(1), 191–196 (2006). [CrossRef]

]. For WDM PolMux channels for example, the intensity dependant cross polarization modulation (XpolM) can induce a bit-pattern dependant nonlinear rotation of the signal polarization and an associated polarization scattering over the Poincaré sphere, which in turn degrades the orthogonality of PolMux channels leading to a crosstalk BER penalty at the Rx [11

11. L. F. Mollenauer, J. P. Gordon, and F. Heismann, “Polarization scattering by soliton-soliton collisions,” Opt. Lett. 20(20), 2060–2062 (1995). [CrossRef] [PubMed]

13

13. C. Xie, “Impact of nonlinear and polarization effects in coherent systems,” Opt. Express 19(26), B915–B930 (2011). [CrossRef] [PubMed]

]. This is on top of the nonlinear distortions affecting non-PolMux signals of self phase modulation, cross phase modulation (XPM) and four wave mixing (FWM). These effects can arise as both intra-channel and inter-channel nonlinearities [5

5. A. Chowdhury, G. Raybon, R.-J. Essiambre, J. H. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, “Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation,” J. Lightwave Technol. 23(1), 172–177 (2005). [CrossRef]

], especially at the higher baud rates where the propagation distance needed for significant dispersion becomes short relative to the Kerr nonlinear length.

For PolMux signals, Mecozzi and Matera [14

14. A. Mecozzi and F. Matera, “Polarization scattering by intra-channel collisions,” Opt. Express 20(2), 1213–1218 (2012). [CrossRef] [PubMed]

] have shown by theory and numerical simulation that the intra-channel nonlinearities of XPM and FWM between colliding neighboring symbols within the same channel for highly dispersive transmission can induce a bit-pattern dependant polarization scattering in an analogous manner to XpolM for WDM systems. This can alter the XPM between polarization channels on top of the effects of fiber propagation loss and dispersion, to in turn degrade the symmetric evolution of the signal phase distortion that OPC requires in general to maximize the compensation. Further complications may also arise from polarization mode dispersion due to the fiber birefringence, which to first order, is the differential group delay (DGD) between the principle states of polarization stemming from their slightly different refractive index. The varying channel delay from span to span can alter the inter-polarization nonlinearity, just as walk-off between WDM channels due to the group velocity dispersion (GVD) in fiber affects XPM.

3. Design and Experiment

At the Tx, PolMux signal generation was emulated as shown in Fig. 1(b) by splitting the output of a 40 Gbaud RZ DPSK source with a 50:50 coupler and multiplexing both copies using a polarization beam combiner (PBC) after setting their polarization state to be orthogonal via polarization controllers (PC). The PolMux circuit included a time delay line (ΔT), optical switch (SW) and variable optical attenuator (VOA) for data decorrelation, polarization identification at the Rx, and power equalization, respectively.

The signal Tx itself that directly preceded the PolMux circuit had the set-up shown in Fig. 1(d). The center channel of a WDM signal (Ch. 2) was generated from a CW laser at either 1551 or 1559 nm wavelength corresponding to with or without Tx-OPC, respectively. This was modulated by a pair of Mach Zehnder (MZ) modulators that in succession carved pulses of 40 GHz repetition and 33% duty cycle, before applying 40 Gb/s DPSK encoding with a binary 231-1 pseudo random bit sequence (PRBS) as the electrical drive signal. The neighboring WDM channels (Ch. 1 and 3) were produced by simultaneously modulating two CW lasers at 100 GHz carrier frequency offset from Ch.2 using a phase modulator (PM) driven by the complementary output of the same PRBS source. This was followed by an electro-absorption modulator (EAM) for 40 GHz pulse carving. All channels were combined with a multiplexer (MUX) and aligned to be co-polarized at the output of a polarizer. For the single channel measurements, the neighboring channels were switched off, leaving only Ch. 2.

4. Results and discussion

5. Conclusions

Acknowledgments

M.D. Pelusi was supported by the Australian Research Council (ARC) Future Fellowship program. This research was also supported by the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (project number CE110001018).

References and links

1.

T. J. Xia, “Optical channel capacity – From Mb/s to Tb/s and beyond,” Opt. Fiber Technol. 17(5), 328–334 (2011). [CrossRef]

2.

S. J. Savory, G. Gavioli, E. Torrengo, and P. Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010). [CrossRef]

3.

W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Low complexity digital perturbation back-propagation,” in Proc. ECOC 2011, paper Tu.3.A.2, 2011.

4.

S. Watanabe, S. Kaneko, and T. Chikama, “Long-haul fiber transmission using optical phase conjugation,” Opt. Fiber Technol. 2(2), 169–178 (1996). [CrossRef]

5.

A. Chowdhury, G. Raybon, R.-J. Essiambre, J. H. Sinsky, A. Adamiecki, J. Leuthold, C. R. Doerr, and S. Chandrasekhar, “Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation,” J. Lightwave Technol. 23(1), 172–177 (2005). [CrossRef]

6.

S. L. Jansen, D. van den Borne, P. M. Krummrich, S. Spälter, G.-D. Khoe, and H. de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006). [CrossRef]

7.

P. Minzioni, “Nonlinearity compensation in a fiber-optic link by optical phase conjugation,” Fiber Integr. Opt. 28(3), 179–209 (2009). [CrossRef]

8.

P. Minzioni, V. Pusino, I. Cristiani, L. Marazzi, M. Martinelli, C. Langrock, M. M. Fejer, and V. Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010). [CrossRef] [PubMed]

9.

M. D. Pelusi, “WDM signal all-optical precompensation of Kerr nonlinearity in dispersion-managed fibers,” IEEE Photon. Technol. Lett. 25(1), 71–74 (2013). [CrossRef]

10.

R. Khosravani, Y. W. Song, Y. Xie, L.-S. Yan, A. E. Willner, and C. R. Menyuk, “Bit-pattern-dependent polarization rotation in first-order PMD-compensated WDM systems,” Opt. Commun. 257(1), 191–196 (2006). [CrossRef]

11.

L. F. Mollenauer, J. P. Gordon, and F. Heismann, “Polarization scattering by soliton-soliton collisions,” Opt. Lett. 20(20), 2060–2062 (1995). [CrossRef] [PubMed]

12.

B. C. Collings and L. Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photon. Technol. Lett. 12(11), 1582–1584 (2000). [CrossRef]

13.

C. Xie, “Impact of nonlinear and polarization effects in coherent systems,” Opt. Express 19(26), B915–B930 (2011). [CrossRef] [PubMed]

14.

A. Mecozzi and F. Matera, “Polarization scattering by intra-channel collisions,” Opt. Express 20(2), 1213–1218 (2012). [CrossRef] [PubMed]

15.

C. Vinegoni, M. Wegmuller, B. Huttner, and N. Gisin, “Measurement of nonlinear polarization rotation in a highly birefringent optical fibre using a Faraday mirror,” J. Opt. A, Pure Appl. Opt. 2(4), 314–318 (2000). [CrossRef]

16.

M. Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72(6), 341–344 (1989). [CrossRef]

17.

P. Martelli, P. Boffi, M. Ferrario, L. Marazzi, P. Parolari, R. Siano, V. Pusino, P. Minzioni, I. Cristiani, C. Langrock, M. M. Fejer, M. Martinelli, and V. Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 17(20), 17758–17763 (2009). [CrossRef] [PubMed]

18.

L. Marazzi, P. Parolari, P. Martelli, R. Siano, P. Boffi, M. Ferrario, A. Righetti, M. Martinelli, V. Pusino, P. Minzioni, I. Cristiani, V. Degiorgio, C. Langrock, and M. M. Fejer, “Real-time 100-Gb/s POLMUX RZ-DQPSK transmission over uncompensated 500 km of SSMF by optical phase conjugation,” in Proc OFC/NFOEC 2009, paper JWA44 (2009). [CrossRef]

19.

A. Mecozzi, M. Tabacchiera, F. Matera, and M. Settembre, “Intra-channel nonlinearity in differentially phase-modulated transmission,” Opt. Express 19(5), 3990–3995 (2011). [CrossRef] [PubMed]

20.

F. Curti, B. Daino, Q. Mao, F. Matera, and C. G. Someda, “Concatenation of polarisation dispersion in single-mode fibres,” Electron. Lett. 25(4), 290–292 (1989). [CrossRef]

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing
(070.5040) Fourier optics and signal processing : Phase conjugation
(290.5855) Scattering : Scattering, polarization

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: May 22, 2013
Revised Manuscript: August 21, 2013
Manuscript Accepted: August 22, 2013
Published: September 4, 2013

Citation
Mark D. Pelusi, "Fiber looped phase conjugation of polarization multiplexed signals for pre-compensation of fiber nonlinearity effect," Opt. Express 21, 21423-21432 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-18-21423


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. J.  Xia, “Optical channel capacity – From Mb/s to Tb/s and beyond,” Opt. Fiber Technol. 17(5), 328–334 (2011). [CrossRef]
  2. S. J.  Savory, G.  Gavioli, E.  Torrengo, P.  Poggiolini, “Impact of interchannel nonlinearities on a split-step intrachannel nonlinear equalizer,” IEEE Photon. Technol. Lett. 22(10), 673–675 (2010). [CrossRef]
  3. W. Yan, Z. Tao, L. Dou, L. Li, S. Oda, T. Tanimura, T. Hoshida, and J. C. Rasmussen, “Low complexity digital perturbation back-propagation,” in Proc. ECOC 2011, paper Tu.3.A.2, 2011.
  4. S.  Watanabe, S.  Kaneko, T.  Chikama, “Long-haul fiber transmission using optical phase conjugation,” Opt. Fiber Technol. 2(2), 169–178 (1996). [CrossRef]
  5. A.  Chowdhury, G.  Raybon, R.-J.  Essiambre, J. H.  Sinsky, A.  Adamiecki, J.  Leuthold, C. R.  Doerr, S.  Chandrasekhar, “Compensation of intrachannel nonlinearities in 40-Gb/s pseudolinear systems using optical-phase conjugation,” J. Lightwave Technol. 23(1), 172–177 (2005). [CrossRef]
  6. S. L.  Jansen, D.  van den Borne, P. M.  Krummrich, S.  Spälter, G.-D.  Khoe, H.  de Waardt, “Long-haul DWDM transmission systems employing optical phase conjugation,” IEEE Sel. Top. Quantum Electron. 12(4), 505–520 (2006). [CrossRef]
  7. P.  Minzioni, “Nonlinearity compensation in a fiber-optic link by optical phase conjugation,” Fiber Integr. Opt. 28(3), 179–209 (2009). [CrossRef]
  8. P.  Minzioni, V.  Pusino, I.  Cristiani, L.  Marazzi, M.  Martinelli, C.  Langrock, M. M.  Fejer, V.  Degiorgio, “Optical phase conjugation in phase-modulated transmission systems: experimental comparison of different nonlinearity-compensation methods,” Opt. Express 18(17), 18119–18124 (2010). [CrossRef] [PubMed]
  9. M. D.  Pelusi, “WDM signal all-optical precompensation of Kerr nonlinearity in dispersion-managed fibers,” IEEE Photon. Technol. Lett. 25(1), 71–74 (2013). [CrossRef]
  10. R.  Khosravani, Y. W.  Song, Y.  Xie, L.-S.  Yan, A. E.  Willner, C. R.  Menyuk, “Bit-pattern-dependent polarization rotation in first-order PMD-compensated WDM systems,” Opt. Commun. 257(1), 191–196 (2006). [CrossRef]
  11. L. F.  Mollenauer, J. P.  Gordon, F.  Heismann, “Polarization scattering by soliton-soliton collisions,” Opt. Lett. 20(20), 2060–2062 (1995). [CrossRef] [PubMed]
  12. B. C.  Collings, L.  Boivin, “Nonlinear polarization evolution induced by cross-phase modulation and its impact on transmission systems,” IEEE Photon. Technol. Lett. 12(11), 1582–1584 (2000). [CrossRef]
  13. C.  Xie, “Impact of nonlinear and polarization effects in coherent systems,” Opt. Express 19(26), B915–B930 (2011). [CrossRef] [PubMed]
  14. A.  Mecozzi, F.  Matera, “Polarization scattering by intra-channel collisions,” Opt. Express 20(2), 1213–1218 (2012). [CrossRef] [PubMed]
  15. C.  Vinegoni, M.  Wegmuller, B.  Huttner, N.  Gisin, “Measurement of nonlinear polarization rotation in a highly birefringent optical fibre using a Faraday mirror,” J. Opt. A, Pure Appl. Opt. 2(4), 314–318 (2000). [CrossRef]
  16. M.  Martinelli, “A universal compensator for polarization changes induced by birefringence on a retracing beam,” Opt. Commun. 72(6), 341–344 (1989). [CrossRef]
  17. P.  Martelli, P.  Boffi, M.  Ferrario, L.  Marazzi, P.  Parolari, R.  Siano, V.  Pusino, P.  Minzioni, I.  Cristiani, C.  Langrock, M. M.  Fejer, M.  Martinelli, V.  Degiorgio, “All-optical wavelength conversion of a 100-Gb/s polarization-multiplexed signal,” Opt. Express 17(20), 17758–17763 (2009). [CrossRef] [PubMed]
  18. L. Marazzi, P. Parolari, P. Martelli, R. Siano, P. Boffi, M. Ferrario, A. Righetti, M. Martinelli, V. Pusino, P. Minzioni, I. Cristiani, V. Degiorgio, C. Langrock, and M. M. Fejer, “Real-time 100-Gb/s POLMUX RZ-DQPSK transmission over uncompensated 500 km of SSMF by optical phase conjugation,” in Proc OFC/NFOEC 2009, paper JWA44 (2009). [CrossRef]
  19. A.  Mecozzi, M.  Tabacchiera, F.  Matera, M.  Settembre, “Intra-channel nonlinearity in differentially phase-modulated transmission,” Opt. Express 19(5), 3990–3995 (2011). [CrossRef] [PubMed]
  20. F.  Curti, B.  Daino, Q.  Mao, F.  Matera, C. G.  Someda, “Concatenation of polarisation dispersion in single-mode fibres,” Electron. Lett. 25(4), 290–292 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited