OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 19 — Sep. 23, 2013
  • pp: 22962–22973
« Show journal navigation

Silicon photonics-wireless interface ICs for micro-/millimeter-wave fiber-wireless networks

Minsu Ko, Myung-Jae Lee, Holger Rücker, and Woo-Young Choi  »View Author Affiliations


Optics Express, Vol. 21, Issue 19, pp. 22962-22973 (2013)
http://dx.doi.org/10.1364/OE.21.022962


View Full Text Article

Acrobat PDF (2511 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present two types of Si photonics-wireless interface (PWI) integrated circuits (ICs) realized in standard Si technology. Our PWI ICs convert optical signals into radio-frequency (RF) signals for downlink remote antenna units in fiber-wireless networks. Characterization and modeling of Si avalanche photodetectors (APDs) fabricated in two different Si technologies are carried out and used for PWI IC design. A 5-GHz RF-over-fiber PWI IC composed of APD, preamplifier, and power amplifier (PA) is fabricated in 0.18-μm CMOS technology and its performance is verified by 54-Mb/s wireless local area network data transmission. A 60-GHz baseband-over-fiber PWI IC containing APD, baseband photoreceiver, 60-GHz binary phase-shift keying (BPSK) modulator, and 60-GHz PA is realized in 0.25-μm SiGe BiCMOS technology. Error-free transmission of 1.6-Gb/s BPSK data in 60 GHz with this PWI IC is successfully achieved.

© 2013 OSA

1. Introduction

The overall system cost of fiber-wireless network is strongly influenced by RAU costs because wireless technologies are increasingly requiring more cells having smaller coverage sizes. One promising solution for realizing cost-effective RAUs is using Si electronic-photonic integrated circuit (EPIC) technology in which both photonic devices and high-speed electronic circuits are integrated on a single Si platform. Si photonics has shown significant performance improvement over the years and high-speed Si modulators [6

6. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007). [CrossRef]

,7

7. G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of 2012 IEEE 9th International Conference on Group IV Photonics (GFP) (IEEE, 2012), pp. 1–3. [CrossRef]

] and Ge photodetectors (PDs) on Si [8

8. L. Vivien, D. Marris-Morini, J. Mangeney, P. Crozat, E. Cassan, S. Laval, J.-M. Fédéli, J. F. Damlencourt, and Y. Lecunff, “42 GHz waveguide germanium-on-silicon vertical PIN photodetector,” in Proceedings of 2008 IEEE 5th International Conference on Group IV Photonics (GFP) (IEEE, 2008), pp. 185–187. [CrossRef]

,9

9. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated 40GHz germanium waveguide photodetector for on-chip optical interconnects,” in Optical Fiber Communication Conference (OSA, 2009), paper OMR4. [CrossRef]

] have been realized. In addition, Si electronic circuits have become fast enough to cover millimeter-wave and even THz applications [10

10. E. Seok, D. Shim, C. Mao, R. Han, S. Sankaran, C. Cao, W. Knap, and K. O. Kenneth, “Progress and challenges towards terahertz CMOS integrated circuits,” IEEE J. Solid-State Circuits 45(8), 1554–1564 (2010). [CrossRef]

].

Figure 2
Fig. 2 Block diagrams of Si integrated RAUs for (a) RF-over-fiber, (b) IF-over-fiber, and (c) baseband-over-fiber optical data distribution schemes.
shows block diagrams of RAU architectures that are possible with Si EPIC technology. The RAU architecture depends on whether radio-frequency (RF), intermediate-frequency (IF), or baseband signals are transmitted over fiber. The RF-over-fiber scheme shown in Fig. 2(a) is the simplest because RAU does not have to perform any signal processing except O/E, E/O conversion and amplification. However, the bandwidth of photonic devices should be high enough to handle RF signals, which can be challenging especially for millimeter-wave applications. The IF-over-fiber scheme shown in Fig. 2(b) lessens the bandwidth requirement of photonic devices, but RAU has to perform frequency up-/down-conversion with an electrical frequency synthesizer. The complexity can be reduced with O/E mixers [11

11. M. Ko, J.-Y. Kim, M.-J. Lee, H. Rücker, and W.-Y. Choi, “A silicon balanced subharmonic optoelectronic mixer for 60-GHz fiber-wireless downlink application,” IEEE Photon. Technol. Lett. 23(23), 1805–1807 (2011). [CrossRef]

], which directly convert optical IF signals into electrical RF signals. The baseband-over-fiber RAU shown in Fig. 2(c) is the most complex because it has to perform data modulation and demodulation as well as up-/down-conversion. But this scheme can offer flexibility in network operation since MAC protocols for optical and wireless networks can be separated [5

5. M. Maier, N. Ghazisaidi, and M. Reisslein, “The audacity of fiber-wireless (FiWi) networks,” in Proceedings of ICST International Conference on Access Networks (AccessNets) (ICST, 2008), pp. 16–35.

].

In this paper, we report two types of PWI ICs realized in standard CMOS and BiCMOS technologies. First, equivalent circuit models for the Si avalanche PDs (APDs) that play a critical role in both of our PWI ICs are developed. The first type PWI IC realized in 0.18-μm CMOS technology detects 5-GHz modulated optical data, performs amplification, and produces 5-GHz wireless signal as is required for RF-over-fiber scheme. The initial simulation results for this PWI IC were reported in [13

13. M. Ko, J.-M. Lee, M.-J. Lee, and W.-Y. Choi, “A 5-GHz CMOS integrated radio-over-fiber receiver,” presented at the 8th Asia-Pacific Microwave Photonics Conference (APMP 2013), Gwangju, Korea, 22–24 Apr. 2013.

]. With this PWI IC, successful transmission of 54-Mb/s wireless local area network (WLAN) data is achieved. The second type PWI IC realized in 0.25-μm SiGe:C BiCMOS technology detects and amplifies baseband optical data, performs binary phase-shift keying (BPSK) modulation in 60 GHz, and produces 60-GHz BPSK signal for baseband-over-fiber scheme. Initial measurement results for this PWI IC were reported in [14

14. M. Ko, J.-S. Youn, M.-J. Lee, K.-C. Choi, H. Rücker, and W.-Y. Choi, “Silicon photonics-wireless interface IC for 60-GHz wireless link,” IEEE Photon. Technol. Lett. 24(13), 1112–1114 (2012). [CrossRef]

].

This paper is organized as follows. Section 2 gives the device characteristics and the equivalent circuit model of Si APD. Section 3 discusses the design, simulation, and WLAN data transmission results of 5-GHz PWI IC. Section 4 gives detailed circuit description and measurement results of 60-GHz PWI IC. Finally, Section 5 concludes this paper.

2. Si APDs

2.1 Device description of Si APD

Figure 3(a)
Fig. 3 (a) Cross-section view and (b) port configuration of APD.
shows the cross-section view of the APD used in our work. It is realized in standard CMOS or BiCMOS technology without any design rule violation. It is based on P+/N-well junction so that higher photodetection bandwidth can be achieved without slow diffusive photocurrent in the P-substrate region [15

15. M.-J. Lee and W.-Y. Choi, “Area-dependent photodetection frequency response characterization of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Trans. Electron. Dev. 60(3), 998–1004 (2013). [CrossRef]

]. Low intrinsic responsivity of the thin P+/N-well region is enhanced by avalanche multiplication. Undesired photocurrent contribution from P-substrate is prevented by collecting the output current at the P+ port. Figure 3(b) shows the port configuration used in our PWI ICs.

APDs realized in different technologies have slightly different characteristics due to different doping profiles. The APD realized in 0.18-μm CMOS technology for our 5-GHz PWI IC has the avalanche breakdown voltage of about 10.86 V, maximum DC responsivity of 7.09 A/W with avalanche gain of 548.1 at the incident optical power of −8 dBm. The APD fabricated in 0.25-μm BiCMOS technology used for our 60-GHz PWI IC has breakdown voltage of around 12.52 V, maximum DC responsivity and avalanche gain of 6.43 A/W and 482.0, respectively.

2.2 Modeling for Si APD

APD equivalent circuit models are essential for optimal design of the amplifier stage following the APD. Figure 4
Fig. 4 Small-signal equivalent circuit model of APD.
illustrates the APD model used in our work. Rj and Cj represent the junction resistance and capacitance of the P+/N-well depletion region. Rs represents the N-well resistance from the P+/N-well junction to the N-well electrodes. Cp is the parasitic capacitance between P+ and N-well electrodes. The transit time effect is modeled with a current-controlled current source and a first-order RC low-pass filter (LPF). In this work, APDs are biased such that they provide the very minimum avalanche gain necessary. This is because large APD gain reduces the receiver signal-to-noise ratio (SNR) resulting in worse receiver performance [16

16. J.-S. Youn, M.-J. Lee, K.-Y. Park, W.-Y. Choi, and H. Rücker, “Bit-error rate analysis of integrated optoelectronic receiver,” in Proceedings of Photonics Global Conference (PGC) (IEEE, 2012), pp. 1–3. [CrossRef]

]. With small APD gain, the avalanche gain process does not strongly influence APD dynamics and we can eliminate the inductive component from the complete APD equivalent circuit model reported in [17

17. M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008). [CrossRef]

] without losing too much accuracy.

The model parameters are extracted by fitting the simulation results to the measured characteristics at reference VPD of 9.6 V for CMOS APD and 11.7 V for BiCMOS APD. Each VPD is determined for the maximum PWI IC SNR performance. The values for passive components (Rj, Cj, Rs, and Cp) are first extracted from the measured input impedance, ΓPD, characteristics. Figures 5(a)
Fig. 5 (a),(b) Measured and fitted results of input impedance on impedance Smith chart normalized by 500 Ω and (c),(d) photodetection frequency responses of APDs realized with CMOS and BiCMOS technologies.
and 5(b) show the measured and fitted ΓPD on the impedance Smith chart normalized by 500 Ω. They do not show any inductive characteristics justifying our omission of the inductive component in the equivalent circuit model. Second, the 3-dB bandwidth is determined from the measured photodetection frequency response. Figures 5(c) and 5(d) show the measured and fitted responses. The APD parameters are listed in Table 1

Table 1. APD Parameters

table-icon
View This Table
.

3. 5-GHz PWI IC in standard CMOS technology

3.1 Circuit description of 5-GHz PWI IC

Figure 7
Fig. 7 Schematic of 5-GHz PWI IC.
shows the schematic of the 5-GHz PWI IC. The overall design is optimized at the operational frequency of 5.4 GHz. An 8-pF bypass on-chip capacitor provides AC ground path at the N-well port of the APD. The preamplifier is a one-stage cascode narrowband amplifier with a source degeneration inductor and a parallel RLC load. Gain and noise performances of the preamplifier are optimized by the impedance matching between APD and preamplifier [18

18. A. Leven, R. Reuter, and Y. Baeyens, “Unified analytical expressions for transimpedance and equivalent input noise current of optical receivers,” IEEE Trans. Microw. Theory Tech. 48(10), 1701–1706 (2000). [CrossRef]

]. Lshunt acts as both an impedance matching component and a DC current path for the APD. The PA is a three-stage amplifier designed to provide enough gain and power handling capacity for driving an external 50-Ω load.

Figure 8(a)
Fig. 8 Simulated (a) transimpedance gain and (b) input and output noise characteristics of 5-GHz PWI IC.
shows the simulated transimpedance gain at preamplifier output, vo1, and PA output, vo. The preamplifier peak gain is 62.3 dBΩ at 5.4 GHz and the overall gain is 80.4 dBΩ after the PA with a 50-Ω load. The 3-dB bandwidth is 0.6 GHz from 5.18 to 5.78 GHz. Figure 8(b) shows the simulated input-referred noise current and output noise spectrum. Noise simulation takes into account only the circuit noise. The minimum input noise current is 7.32 pA/√Hz at 5.35 GHz and, within 3-dB bandwidth, it is less than 7.8 pA/√Hz. The peak output noise power is −129.2 dBm/Hz at 5.47 GHz.

3.2 5-GHz RF-over-fiber wireless downlink demonstration

Figure 9
Fig. 9 Chip photo of 5-GHz PWI IC.
shows the chip photo of the 5-GHz PWI IC. The chip area including all probe pads is 0.9 mm × 1.8 mm. The IC consumes 155.7 mW from 1.8-V supply. The PA consumes most of the power.

Figure 10
Fig. 10 Demonstration setup for 54-Mb/s WLAN data transmission using 5-GHz PWI IC.
shows the experimental setup used for RF-over-fiber demonstration. A vector signal generator provides 54-Mb/s WLAN data in 5 GHz. An 850-nm electrooptic modulator (EOM) modulates light from an 850-nm laser diode with the WLAN signals. Modulating electrical power is set to −21 dBm in order to minimize the EOM nonlinearity. The optical signal is injected through a lensed fiber into the PWI IC in an on-wafer probing setup. The PWI IC converts the optical signal into the wireless signal whose spectrum is shown in the inset of Fig. 10. The output signal is down-converted and its error vector magnitude (EVM) performance is evaluated by the WLAN receiver consisting of a mixer, a frequency synthesizer, an amplifier, and a vector signal analyzer.

4. 60-GHz PWI IC in standard BiCMOS technology

Figure 12
Fig. 12 Block diagram of 60-GHz PWI IC for baseband-over-fiber RAU.
shows the block diagram of 60-GHz PWI IC realized for baseband-over-fiber applications. The PWI IC is divided into two parts, a baseband photoreceiver and a 60-GHz transmitter. The baseband photoreceiver is composed of APD, transimpedance amplifier (TIA), DC-balanced buffer, and variable-gain amplifier (VGA). The 60-GHz transmitter consists of 60-GHz BPSK modulator and 60-GHz PA. The entire circuit is integrated on a single substrate with IHP’s 0.25-μm SiGe:C BiCMOS SG25H3 technology [19

19. B. Heinemann, R. Barth, D. Knoll, H. Rücker, B. Tillack, and W. Winkler, “High-performance BiCMOS technologies without epitaxially-buried subcollectors and deep trenches,” Semicond. Sci. Technol. 22(1), S153–S157 (2007). [CrossRef]

].

4.1 Circuit description of 60-GHz PWI IC

Figure 13(a)
Fig. 13 Schematics of (a) TIA, (b) DC-balanced buffer, and (c) VGA in 60-GHz PWI IC.
shows the schematics of TIA, which is a two-stage common-source shunt-feedback differential amplifier. Even though input light is single-ended, a dummy APD is used for symmetry. Figure 13(b) shows the DC-balanced buffer composed of a fT-doubler amplifier and an LPF having the cut-off frequency of 1 MHz. This buffer converts pseudo-differential TIA output into fully differential. Figure 13(c) shows the schematic of the VGA [20

20. G. S. Sahota and C. J. Persico, “High dynamic range variable-gain amplifier for CDMA wireless applications,” in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 1997), pp. 374–375. [CrossRef]

]. The gain is varied by changing on-resistance of the MOS emitter-degeneration variable resistors with the gain control voltage VCTRL.

Figure 14(a)
Fig. 14 Simulated (a) transimpedance gain and input noise current of TIA with DC-balanced buffer and (b) total transimpedance gain of baseband photoreceiver at VGA output.
shows the simulated TIA transimpedance gain and input-referred noise current with the DC-balanced buffer. The low-frequency gain is about 68 dBΩ and the 3-dB photodetection bandwidth is about 2.7 GHz. The low-frequency input noise current is 4.5 pA/√Hz and, within the signal bandwidth of 2.7 GHz, it is 0.317 μArms. Figure 14(b) shows the simulated low-frequency transimpedance gain of the baseband photoreceiver measured at the VGA output as a function of the gain control voltage. The gain range is 20 dB from −10 to 10 dB as the gain control voltage varies from 1.9 to 2.3 V.

The millimeter-wave transmitter is composed of 60-GHz BPSK modulator and PA. Figure 15(a)
Fig. 15 Schematics of (a) BPSK modulator and (b) PA in 60-GHz PWI IC.
shows the schematic of 60-GHz BPSK modulator, which has a double-balanced Gilbert-cell structure with 60-GHz differential local-oscillator (LO) input. A balun is used as a load inductor to convert differential modulator output signals into single-ended for PA input. Figure 15(b) shows the schematic of 60-GHz PA which is a one-stage single-ended cascode amplifier. It has an emitter-degeneration inductor to ensure stable operation. The PA output impedance is optimized for maximum power delivery to 50-Ω external load.

Figure 16(a)
Fig. 16 Simulated voltage conversion gain of 60-GHz transmitter at different (a) LO frequencies and (b) IF frequencies.
shows simulated voltage conversion gain of 60-GHz transmitter at different LO frequencies with 100-MHz IF and 3-dBm LO. Since the BPSK modulator is a double-sideband modulator, conversion gains for lower-sideband fLOfIF, upper-sideband fLO + fIF, and sum of these two are shown. The peak gain for the sum is about 15.8 dB at 55 GHz. The 3-dB bandwidth is over 14 GHz from 50 to 64 GHz. Figure 16(b) shows voltage conversion gain at different IF frequencies with 3-dBm 59-GHz LO. Responses of two sidebands are not symmetric and the upper-sideband response has lower 3-dB bandwidth of 6 GHz. The combined bandwidth of both sidebands is about 8.9 GHz. This indicates that the IF bandwidth is limited by the baseband photoreceiver, not by the 60-GHz transmitter.

4.2 60-GHz baseband-over-fiber wireless downlink demonstration

Figure 17
Fig. 17 Chip photo of 60-GHz PWI IC.
shows the chip photo of 60-GHz PWI IC. The fabricated chip is characterized in an on-wafer probing setup. The chip area including probe pads is 0.5 mm × 1.42 mm. Total power consumption is 163.3 mW, where the baseband photoreceiver consumes 51.4 mW at 2.5-V supply and the 60-GHz transmitter consumes 111.9 mW at 3-V supply.

Figure 19(a)
Fig. 19 Measured (a) BER at different optical input powers and eye diagrams of demodulated data at optical input powers of (b) −6 and (c) −3 dBm.
shows measured BER at different optical input powers. The lowest BER measured with our 60-GHz PWI IC was 5.36 × 10−10 at −4-dBm optical input power. For the optical input powers of −3, −2, −1, and 0 dBm, our PWI IC did not produce any errors at least for 1011 pseudo random bits, which correspond to measuring time of 62.5 seconds with 1.6-Gb/s data rate. Eye diagrams of demodulated data at the optical powers of −6 and −3 dBm are shown in Figs. 19(b) and 19(c). The eye diagram shows very thick transition lines due to intrinsic timing errors in our demodulator [21

21. K.-C. Choi, M. Ko, D. Kim, and W.-Y. Choi, “Demonstration of 60-GHz link using a 1.6-Gb/s mixed-mode BPSK demodulator,” IEICE Trans. Electron. E93-C(12), 1704–1707 (2010). [CrossRef]

].

5. Conclusion

A 5-GHz RF-over-fiber PWI IC and a 60-GHz baseband-over-fiber PWI IC are successfully realized in standard Si technology. The performance of each PWI IC is verified with data transmission in fiber-wireless downlink. Although these PWI ICs have limited functionalities to be used in applications, they demonstrate the feasibility of applying Si EPIC technology for realizing cost-effective and compact RAUs in future fiber-wireless networks.

Acknowledgments

This work was supported by the National Research Foundation of Korea funded by the Korean Government (MEST) under Grant 2012R1A2A1A01009233. The authors would like to thank IC Design Education Center (IDEC) for EDA software support.

References and links

1.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007). [CrossRef]

2.

N. J. Gomes, A. Nkansah, and D. Wake, “Radio-over-MMF techniques—part I: RF to microwave frequency systems,” J. Lightwave Technol. 26(15), 2388–2395 (2008). [CrossRef]

3.

A. M. J. Koonen and M. G. Larrodé, “Radio-over-MMF techniques—part II: microwave to millimeter-wave systems,” J. Lightwave Technol. 26(15), 2396–2408 (2008). [CrossRef]

4.

C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K.-L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol. 28(4), 390–405 (2010). [CrossRef]

5.

M. Maier, N. Ghazisaidi, and M. Reisslein, “The audacity of fiber-wireless (FiWi) networks,” in Proceedings of ICST International Conference on Access Networks (AccessNets) (ICST, 2008), pp. 16–35.

6.

L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett. 43(22), 1196–1197 (2007). [CrossRef]

7.

G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of 2012 IEEE 9th International Conference on Group IV Photonics (GFP) (IEEE, 2012), pp. 1–3. [CrossRef]

8.

L. Vivien, D. Marris-Morini, J. Mangeney, P. Crozat, E. Cassan, S. Laval, J.-M. Fédéli, J. F. Damlencourt, and Y. Lecunff, “42 GHz waveguide germanium-on-silicon vertical PIN photodetector,” in Proceedings of 2008 IEEE 5th International Conference on Group IV Photonics (GFP) (IEEE, 2008), pp. 185–187. [CrossRef]

9.

S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated 40GHz germanium waveguide photodetector for on-chip optical interconnects,” in Optical Fiber Communication Conference (OSA, 2009), paper OMR4. [CrossRef]

10.

E. Seok, D. Shim, C. Mao, R. Han, S. Sankaran, C. Cao, W. Knap, and K. O. Kenneth, “Progress and challenges towards terahertz CMOS integrated circuits,” IEEE J. Solid-State Circuits 45(8), 1554–1564 (2010). [CrossRef]

11.

M. Ko, J.-Y. Kim, M.-J. Lee, H. Rücker, and W.-Y. Choi, “A silicon balanced subharmonic optoelectronic mixer for 60-GHz fiber-wireless downlink application,” IEEE Photon. Technol. Lett. 23(23), 1805–1807 (2011). [CrossRef]

12.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006). [CrossRef]

13.

M. Ko, J.-M. Lee, M.-J. Lee, and W.-Y. Choi, “A 5-GHz CMOS integrated radio-over-fiber receiver,” presented at the 8th Asia-Pacific Microwave Photonics Conference (APMP 2013), Gwangju, Korea, 22–24 Apr. 2013.

14.

M. Ko, J.-S. Youn, M.-J. Lee, K.-C. Choi, H. Rücker, and W.-Y. Choi, “Silicon photonics-wireless interface IC for 60-GHz wireless link,” IEEE Photon. Technol. Lett. 24(13), 1112–1114 (2012). [CrossRef]

15.

M.-J. Lee and W.-Y. Choi, “Area-dependent photodetection frequency response characterization of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Trans. Electron. Dev. 60(3), 998–1004 (2013). [CrossRef]

16.

J.-S. Youn, M.-J. Lee, K.-Y. Park, W.-Y. Choi, and H. Rücker, “Bit-error rate analysis of integrated optoelectronic receiver,” in Proceedings of Photonics Global Conference (PGC) (IEEE, 2012), pp. 1–3. [CrossRef]

17.

M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett. 29(10), 1115–1117 (2008). [CrossRef]

18.

A. Leven, R. Reuter, and Y. Baeyens, “Unified analytical expressions for transimpedance and equivalent input noise current of optical receivers,” IEEE Trans. Microw. Theory Tech. 48(10), 1701–1706 (2000). [CrossRef]

19.

B. Heinemann, R. Barth, D. Knoll, H. Rücker, B. Tillack, and W. Winkler, “High-performance BiCMOS technologies without epitaxially-buried subcollectors and deep trenches,” Semicond. Sci. Technol. 22(1), S153–S157 (2007). [CrossRef]

20.

G. S. Sahota and C. J. Persico, “High dynamic range variable-gain amplifier for CDMA wireless applications,” in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 1997), pp. 374–375. [CrossRef]

21.

K.-C. Choi, M. Ko, D. Kim, and W.-Y. Choi, “Demonstration of 60-GHz link using a 1.6-Gb/s mixed-mode BPSK demodulator,” IEICE Trans. Electron. E93-C(12), 1704–1707 (2010). [CrossRef]

OCIS Codes
(040.6040) Detectors : Silicon
(250.3140) Optoelectronics : Integrated optoelectronic circuits
(250.1345) Optoelectronics : Avalanche photodiodes (APDs)
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Integrated Microwave Photonics

History
Original Manuscript: June 4, 2013
Revised Manuscript: August 8, 2013
Manuscript Accepted: August 8, 2013
Published: September 23, 2013

Virtual Issues
Microwave Photonics (2013) Optics Express

Citation
Minsu Ko, Myung-Jae Lee, Holger Rücker, and Woo-Young Choi, "Silicon photonics-wireless interface ICs for micro-/millimeter-wave fiber-wireless networks," Opt. Express 21, 22962-22973 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-19-22962


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics1(6), 319–330 (2007). [CrossRef]
  2. N. J. Gomes, A. Nkansah, and D. Wake, “Radio-over-MMF techniques—part I: RF to microwave frequency systems,” J. Lightwave Technol.26(15), 2388–2395 (2008). [CrossRef]
  3. A. M. J. Koonen and M. G. Larrodé, “Radio-over-MMF techniques—part II: microwave to millimeter-wave systems,” J. Lightwave Technol.26(15), 2396–2408 (2008). [CrossRef]
  4. C. Lim, A. Nirmalathas, M. Bakaul, P. Gamage, K.-L. Lee, Y. Yang, D. Novak, and R. Waterhouse, “Fiber-wireless networks and subsystem technologies,” J. Lightwave Technol.28(4), 390–405 (2010). [CrossRef]
  5. M. Maier, N. Ghazisaidi, and M. Reisslein, “The audacity of fiber-wireless (FiWi) networks,” in Proceedings of ICST International Conference on Access Networks (AccessNets) (ICST, 2008), pp. 16–35.
  6. L. Liao, A. Liu, D. Rubin, J. Basak, Y. Chetrit, H. Nguyen, R. Cohen, N. Izhaky, and M. Paniccia, “40 Gbit/s silicon optical modulator for high-speed applications,” Electron. Lett.43(22), 1196–1197 (2007). [CrossRef]
  7. G. Li, X. Zheng, H. Thacker, J. Yao, Y. Luo, I. Shubin, K. Raj, J. E. Cunningham, and A. V. Krishnamoorthy, “40 Gb/s thermally tunable CMOS ring modulator,” in Proceedings of 2012 IEEE 9th International Conference on Group IV Photonics (GFP) (IEEE, 2012), pp. 1–3. [CrossRef]
  8. L. Vivien, D. Marris-Morini, J. Mangeney, P. Crozat, E. Cassan, S. Laval, J.-M. Fédéli, J. F. Damlencourt, and Y. Lecunff, “42 GHz waveguide germanium-on-silicon vertical PIN photodetector,” in Proceedings of 2008 IEEE 5th International Conference on Group IV Photonics (GFP) (IEEE, 2008), pp. 185–187. [CrossRef]
  9. S. Assefa, F. Xia, S. W. Bedell, Y. Zhang, T. Topuria, P. M. Rice, and Y. A. Vlasov, “CMOS-integrated 40GHz germanium waveguide photodetector for on-chip optical interconnects,” in Optical Fiber Communication Conference (OSA, 2009), paper OMR4. [CrossRef]
  10. E. Seok, D. Shim, C. Mao, R. Han, S. Sankaran, C. Cao, W. Knap, and K. O. Kenneth, “Progress and challenges towards terahertz CMOS integrated circuits,” IEEE J. Solid-State Circuits45(8), 1554–1564 (2010). [CrossRef]
  11. M. Ko, J.-Y. Kim, M.-J. Lee, H. Rücker, and W.-Y. Choi, “A silicon balanced subharmonic optoelectronic mixer for 60-GHz fiber-wireless downlink application,” IEEE Photon. Technol. Lett.23(23), 1805–1807 (2011). [CrossRef]
  12. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006). [CrossRef]
  13. M. Ko, J.-M. Lee, M.-J. Lee, and W.-Y. Choi, “A 5-GHz CMOS integrated radio-over-fiber receiver,” presented at the 8th Asia-Pacific Microwave Photonics Conference (APMP 2013), Gwangju, Korea, 22–24 Apr. 2013.
  14. M. Ko, J.-S. Youn, M.-J. Lee, K.-C. Choi, H. Rücker, and W.-Y. Choi, “Silicon photonics-wireless interface IC for 60-GHz wireless link,” IEEE Photon. Technol. Lett.24(13), 1112–1114 (2012). [CrossRef]
  15. M.-J. Lee and W.-Y. Choi, “Area-dependent photodetection frequency response characterization of silicon avalanche photodetectors fabricated with standard CMOS technology,” IEEE Trans. Electron. Dev.60(3), 998–1004 (2013). [CrossRef]
  16. J.-S. Youn, M.-J. Lee, K.-Y. Park, W.-Y. Choi, and H. Rücker, “Bit-error rate analysis of integrated optoelectronic receiver,” in Proceedings of Photonics Global Conference (PGC) (IEEE, 2012), pp. 1–3. [CrossRef]
  17. M.-J. Lee, H.-S. Kang, and W.-Y. Choi, “Equivalent circuit model for Si avalanche photodetectors fabricated in standard CMOS process,” IEEE Electron Device Lett.29(10), 1115–1117 (2008). [CrossRef]
  18. A. Leven, R. Reuter, and Y. Baeyens, “Unified analytical expressions for transimpedance and equivalent input noise current of optical receivers,” IEEE Trans. Microw. Theory Tech.48(10), 1701–1706 (2000). [CrossRef]
  19. B. Heinemann, R. Barth, D. Knoll, H. Rücker, B. Tillack, and W. Winkler, “High-performance BiCMOS technologies without epitaxially-buried subcollectors and deep trenches,” Semicond. Sci. Technol.22(1), S153–S157 (2007). [CrossRef]
  20. G. S. Sahota and C. J. Persico, “High dynamic range variable-gain amplifier for CDMA wireless applications,” in Proceedings of IEEE International Solid-State Circuits Conference (IEEE, 1997), pp. 374–375. [CrossRef]
  21. K.-C. Choi, M. Ko, D. Kim, and W.-Y. Choi, “Demonstration of 60-GHz link using a 1.6-Gb/s mixed-mode BPSK demodulator,” IEICE Trans. Electron.E93-C(12), 1704–1707 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited