OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 2 — Jan. 28, 2013
  • pp: 1465–1472
« Show journal navigation

Asymmetric wave propagation in planar chiral fibers

Dana Shemuly, Zachary M. Ruff, Alexander M. Stolyarov, Grisha Spektor, Steven G. Johnson, Yoel Fink, and Ofer Shapira  »View Author Affiliations


Optics Express, Vol. 21, Issue 2, pp. 1465-1472 (2013)
http://dx.doi.org/10.1364/OE.21.001465


View Full Text Article

Acrobat PDF (4058 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the realization of a two-dimensional chiral optical waveguide with an infinite translational symmetry that exhibits asymmetric wave propagation. The low-symmetry geometry of the cross-section that lacks any rotational and mirror symmetries shows in-principal directional asymmetric polarization rotation. We use general symmetry arguments to provide qualitative analysis of the waveguide's eigenstates and numerically corroborate this using finite element simulation. We show that despite the only perturbative break of time-reversal symmetry via small modal losses, the structure supports a non-degenerate pair of co-rotating elliptical modes. We fabricated meters long fiber with a spiral structure and studied its optical properties.

© 2013 OSA

In the Bragg fibers, modes with angular momentum zero can be classified as either having electric field in the plane of propagation, TM (Eϕ = 0), or perpendicular to the plane, TE (Er = Ez = 0). Non-zero angular momentum modes (m≠0) are called hybrid and classified according to whether they are mostly TE (HE) or TM (EH). In the case of metallic waveguide, all the modes are either TE (Ez = 0) or TM (Hz = 0); there are no hybrid modes. The double degeneracy of modes with m>0 and mode orthogonality suggests that the transverse polarization space is spanned by a linear combination of the two modes. In this way we get the linearly polarized TE11 mode, in metallic waveguide, or HE11 mode, in the Bragg fiber. These modes are of interest as they are the lowest energy modes and can couple efficiently to a linearly polarized Gaussian laser beam.

In the spiral fiber, rotational symmetry no longer exists. The “angular momentum”, m, will no longer be conserved and the degeneracy will be broken. Since we only have non-degenerate modes, we can no longer use linear combination to achieve the linearly polarized modes. As the mirror symmetry in ϕ disappears, so does the purely polarized mode, and we are left with only the hybrid modes EH/HE. For convenience we will call the lowest-loss azimuthally polarized mode in the spiral fiber the “TE01” mode and the two lowest energy modes “HE11”. A very interesting effect of the break of symmetry is a result of the break of the rotation symmetry around r, i.e. the fiber is no longer the same on both sides- when viewed from the + z side a left handed spiral can be seen while a right handed spiral will be seen from the –z direction. In the spiral fiber this symmetry is replaced with a planar chiral symmetry: the structure is invariant under the reflection z→-z. In effect, this means that the fiber becomes directional, i.e., coupling from the + z direction or from the –z direction will have different results. This is due to the fact that the fiber modes in the spiral fiber from the + z direction are the mirror image of the modes in the –z direction; whereas, in the metallic waveguide or Bragg fiber, they are the same. It is important to note that all structures have the z→-z symmetry, but the added ϕ→-ϕ symmetry in the later structures means the modes on the + z and –z side are not only a mirror reflection of each other but are identical.

Though the structure of the spiral fiber is similar to that of the Bragg fiber, analytical analysis of the spiral fiber is much more complicated. The cylindrical symmetries that facilitated the Bragg fiber problem no longer exist in the spiral fibers. Using perturbation methods is problematic as they can only be used when the shift in boundary is much smaller than a wavelength [20

20. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002). [CrossRef] [PubMed]

], while in the spiral fiber case, the difference in structure between the Bragg fiber and the spiral fiber near the “seam”, the line along the fiber where the spiral begins, is about half a wavelength. On the other hand, the non-analytical form of the spiral (discontinuity between ϕ = 0 and ϕ = 2π) prohibits the use of methods such as transformation to curvilinear coordinates [21

21. M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, and Y. Fink, “Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates,” Opt. Express 10(21), 1227–1243 (2002). [CrossRef] [PubMed]

]. Instead we have used a commercial finite element simulation (COMSOL) to model the 2D cross section of the fiber. The materials in the simulation have complex index-of-refraction of: 2.27-10−6i (chalcogenide glass) and 1.57-10−3i (polymer). The losses of the modes obtained by the simulation are dependent on the fiber structure but are only ten times larger than the losses of a comparable Bragg fiber.

Two modes of the spiral fiber, the “HE11” and the “TE01” as obtained from the simulation, are shown in Fig. 2
Fig. 2 Full comparison of the TE01 and HE11 modes between the spiral fiber, Bragg fiber and the metallic waveguide. The top pictures show the simulation results for the intensity profiles of the HE11 modes with the polarization shown schematically on the axes to the right of the picture. βi is the wavevector of the ith mode. The bottom pictures are the simulation results for the TE01 modes. “Seam” position for the spiral fiber is indicated on the bottom as well as beam propagation direction.
. As we have discussed before, the HE11 modes of the metallic waveguide and the Bragg fiber are doubly degenerate and linearly polarized. In the spiral fiber the degeneracy is broken and the modes become elliptically polarized. We can also see that the modes of the fiber on the forward side are a mirror reflection of the modes on the backward side as expected due to the fiber symmetry. It is interesting to notice that the modes on one side are both elliptically polarized and right-handed, while those on the other side are both left-handed.

Another interesting mode is the TE01 mode, the azimuthally polarized lowest-loss mode. In the metallic waveguide and Bragg fiber, this mode takes the familiar doughnut shape. In the spiral fiber the mode is still azimuthally polarized and the lowest-loss mode, but it no longer has the symmetrical doughnut shape. Instead, the mode is now asymmetric with higher intensity along one axis of the mode and lower intensity on the perpendicular axis. This asymmetry can be seen in asymmetrical fibers other than the spiral fiber, such as a Bragg fiber with an elliptical core. What makes the spiral fiber unique is the angle of the asymmetry axis with respect to the asymmetry of the structure. Whereas in the elliptical fiber, for example, the TE01 axes are aligned with the core ellipse axes, in the spiral fiber the “TE01” axes form a 45° angle with the “seam”. As with the “HE11”, when the fiber is rotated (from + z to –z), the resulting mode is a mirror image of the original mode.

We verified the simulation results by measuring the “TE01” mode in our fibers. A spiral fiber was fabricated using the thermal drawing technique [22

22. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002). [CrossRef] [PubMed]

, 23

23. K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004). [CrossRef] [PubMed]

]. The spiral structure is achieved by rolling a low-index of refraction material (polymer) covered by a high-index of refraction material (chalcogenide glass) on a rod and then extracting the rod. Scanning electron microscopy (SEM) pictures of the cross-section that highlight the spiral structure and the “seam” can be seen in Fig. 3
Fig. 3 SEM of a spiral fiber cross section [24]. The light gray are glass layers made of chalcogenide glass (As2S3) the dark gray are polymer layers and cladding made of Poly(ether imide) (PEI). The pictures on the right highlight the spiral nature of the structure and show the “seam”- the line along the core surface where the spiral begins.
. We have used fibers made from two sets of materials (poly (ether imide)/As2S3 or polycarbonate/As25S75) whose band gaps were centered in different wavelengths (1500nm-1600nm) and whose core sizes vary (from diameter of 50um to 70um, or, in wavelength units: 30λ-45λ). To measure the mode we have coupled a collimated tunable light source (Ti:Sapph laser with OPO- Coherent Mira 900 and Mira-OPO) to the fiber using a lens. We have imaged the output onto a camera (Sensors unlimited SU320) using an objective. A linear polarizer was used in all experiments to verify the output was indeed azimuthally polarized. The “TE01” was generated using a method described in details in Shemuly D. et al [24

24. D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express 20(6), 6029–6035 (2012). [CrossRef] [PubMed]

]. In all measurements an asymmetric “TE01” was seen where the axis of the asymmetry was at an angle of around 45° to the “seam”, in accordance with the simulation results. We have also measured the “TE01” from both sides of the same fiber samples. In these measurements the “TE01” axis was reflected with respect to the fiber rotation axis, as expected, since the “TE01” from one side of the fiber should be a mirror image of the “TE01” from the other side. An example of a measurement of the “TE01” is presented in Fig. 4
Fig. 4 Simulation and measurements [24] results of the “TE01” from both sides of the fiber. The top pictures are the output without a polarizer, the two lines pictures are with linear polarizer (polarizer orientation is marked with a black arrow in the middle). The yellow triangle marks the position of the “seam”.
along with the corresponding simulation result.

An interesting effect of the break of degeneracy of the “HE11” modes is the appearance of polarization rotation. A linearly polarized Gaussian beam will most efficiently couple to a linear combination of the two “HE11” modes. In a metallic waveguide or Bragg fiber, these modes are degenerate, and the output will maintain the input polarization plane. In the spiral fiber the modes are non-degenerate; they travel at different speeds and have different losses. This will result in a rotation of the polarization of light in a similar manner to the effect of propagation in chiral media. Since the “HE11” modes from one side of the fiber are a mirror image of the modes from the other side, the direction of the polarization rotation is dependent on the direction of coupling. The polarization of the light is not only rotated but is no longer linear (as both modes are elliptically polarized).

The magnitude of the rotation and the divergence from linear polarization are dependent on several parameters: the “HE11” modes' losses and propagation constants, the angle of input polarization with respect to the “seam” of the fiber, and the fiber length. At the fiber input a linearly polarized Gaussian beam will couple to the two “HE11” modes:Ein=A1E"HE11"(1)+A2E"HE11"(2)=A1f1(r,θ)eiωt+A2f2(r,θ)eiωt, where Ein is the input beam field, E(i)”HE11” (i = 1,2) are the “HE11” modes' fields, Ai are the linear sum coefficients, fi (i = 1,2) describes the vector fields' dependence on r and θ, and ω is the frequency (assuming we are working at a single frequency). After propagating through the fiber, each mode will accumulate different attenuations: Eout=A1f1(r,θ)eiωteik1z+A2f2(r,θ)eiωteik2z, where ki (i = 1,2) is the complex wave vector component in z, which can be described as ki = βi-iδi, where β, the real part, is the propagation constant, and δ, the imaginary part, is the mode's loss. The capability of the fiber to rotate and change the polarization of light could enable in-fiber polarization rotation and manipulation without the need to couple light in and out from a fiber to bulk optical components.

Acknowledgments

The authors would like to thank Professor Joannopoulos for his help and encouragement. This work was supported in part by the MRSEC Program of the US NSF under award number DMR-0819762 and also in part by the US Army Research Office through the ISN at MIT under contract no. W911NF-07-D-0004.

References and links

1.

I. Tinoco and M. P. Freeman, “The optical activity of oriented copper helices, I. Experimental,” J. Phys. Chem. 61(9), 1196–1200 (1957). [CrossRef]

2.

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett. 32(7), 856–858 (2007). [CrossRef] [PubMed]

3.

E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett. 90(22), 223113 (2007). [CrossRef]

4.

M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 21(46), 4680–4682 (2009). [CrossRef]

5.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009). [CrossRef] [PubMed]

6.

J. B. Pendry, “Time reversal and negative refraction,” Science 322(5898), 71–73 (2008). [CrossRef] [PubMed]

7.

A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express 16(17), 12559–12570 (2008). [CrossRef] [PubMed]

8.

F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett. 100(1), 013904 (2008). [CrossRef] [PubMed]

9.

Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature 461(7265), 772–775 (2009). [CrossRef] [PubMed]

10.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef] [PubMed]

11.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97(16), 167401 (2006). [CrossRef] [PubMed]

12.

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, (2nd ed. Princeton University Press, Princeton, Oxford, 2008).

13.

J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, Massachusetts, 2000).

14.

L. Hecht and L. D. Barron, “Rayleigh and Raman optical activity from chiral surfaces,” Chem. Phys. Lett. 225(4-6), 525–530 (1994). [CrossRef]

15.

L. R. Arnaut and L. E. Davis, “Dispersion characteristics of planar chiral structure,” in Proceedings of the International Conference on Electromagnetics in Advnaced Applications, Swanley, UK, 1995 (Nexus Media), 381–388.

16.

R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B 80(15), 153104 (2009). [CrossRef]

17.

V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett. 7(7), 1996–1999 (2007). [CrossRef]

18.

E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J. 43, 1783–1809 (1964).

19.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978). [CrossRef]

20.

S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(6), 066611 (2002). [CrossRef] [PubMed]

21.

M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, and Y. Fink, “Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates,” Opt. Express 10(21), 1227–1243 (2002). [CrossRef] [PubMed]

22.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420(6916), 650–653 (2002). [CrossRef] [PubMed]

23.

K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004). [CrossRef] [PubMed]

24.

D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express 20(6), 6029–6035 (2012). [CrossRef] [PubMed]

25.

C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett. 104(25), 253902 (2010). [CrossRef] [PubMed]

26.

M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 19(2), 207–210 (2007). [CrossRef]

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.7370) Optical devices : Waveguides
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: November 8, 2012
Revised Manuscript: December 21, 2012
Manuscript Accepted: December 30, 2012
Published: January 14, 2013

Citation
Dana Shemuly, Zachary M. Ruff, Alexander M. Stolyarov, Grisha Spektor, Steven G. Johnson, Yoel Fink, and Ofer Shapira, "Asymmetric wave propagation in planar chiral fibers," Opt. Express 21, 1465-1472 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-2-1465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Tinoco and M. P. Freeman, “The optical activity of oriented copper helices, I. Experimental,” J. Phys. Chem.61(9), 1196–1200 (1957). [CrossRef]
  2. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007). [CrossRef] [PubMed]
  3. E. Plum, V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, “Giant optical gyrotropy due to electromagnetic coupling,” Appl. Phys. Lett.90(22), 223113 (2007). [CrossRef]
  4. M. Thiel, M. S. Rill, G. von Freymann, and M. Wegener, “Three-dimensional bi-chiral photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)21(46), 4680–4682 (2009). [CrossRef]
  5. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009). [CrossRef] [PubMed]
  6. J. B. Pendry, “Time reversal and negative refraction,” Science322(5898), 71–73 (2008). [CrossRef] [PubMed]
  7. A. Drezet, C. Genet, J. Y. Laluet, and T. W. Ebbesen, “Optical chirality without optical activity: How surface plasmons give a twist to light,” Opt. Express16(17), 12559–12570 (2008). [CrossRef] [PubMed]
  8. F. D. M. Haldane and S. Raghu, “Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry,” Phys. Rev. Lett.100(1), 013904 (2008). [CrossRef] [PubMed]
  9. Z. Wang, Y. D. Chong, J. D. Joannopoulos, and M. Soljacić, “Observation of unidirectional backscattering-immune topological electromagnetic states,” Nature461(7265), 772–775 (2009). [CrossRef] [PubMed]
  10. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  11. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett.97(16), 167401 (2006). [CrossRef] [PubMed]
  12. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, (2nd ed. Princeton University Press, Princeton, Oxford, 2008).
  13. J. A. Kong, Electromagnetic Wave Theory (EMW Publishing, Cambridge, Massachusetts, 2000).
  14. L. Hecht and L. D. Barron, “Rayleigh and Raman optical activity from chiral surfaces,” Chem. Phys. Lett.225(4-6), 525–530 (1994). [CrossRef]
  15. L. R. Arnaut and L. E. Davis, “Dispersion characteristics of planar chiral structure,” in Proceedings of the International Conference on Electromagnetics in Advnaced Applications, Swanley, UK, 1995 (Nexus Media), 381–388.
  16. R. Singh, E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, “Terahertz metamaterial with asymmetric transmission,” Phys. Rev. B80(15), 153104 (2009). [CrossRef]
  17. V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, “Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures,” Nano Lett.7(7), 1996–1999 (2007). [CrossRef]
  18. E. A. Marcatili and R. A. Schmeltzer, “Hollow metallic and dielectric waveguides for long distance optical transmission and lasers,” Bell Syst. Tech. J.43, 1783–1809 (1964).
  19. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am.68(9), 1196–1201 (1978). [CrossRef]
  20. S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, and Y. Fink, “Perturbation theory for Maxwell’s equations with shifting material boundaries,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(6), 066611 (2002). [CrossRef] [PubMed]
  21. M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, and Y. Fink, “Geometric variations in high index-contrast waveguides, coupled mode theory in curvilinear coordinates,” Opt. Express10(21), 1227–1243 (2002). [CrossRef] [PubMed]
  22. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature420(6916), 650–653 (2002). [CrossRef] [PubMed]
  23. K. Kuriki, O. Shapira, S. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express12(8), 1510–1517 (2004). [CrossRef] [PubMed]
  24. D. Shemuly, A. M. Stolyarov, Z. M. Ruff, L. Wei, Y. Fink, and O. Shapira, “Preparation and transmission of low-loss azimuthally polarized pure single mode in multimode photonic band gap fibers,” Opt. Express20(6), 6029–6035 (2012). [CrossRef] [PubMed]
  25. C. Menzel, C. Helgert, C. Rockstuhl, E. B. Kley, A. Tünnermann, T. Pertsch, and F. Lederer, “Asymmetric Transmission of Linearly Polarized Light at Optical Metamaterials,” Phys. Rev. Lett.104(25), 253902 (2010). [CrossRef] [PubMed]
  26. M. Thiel, M. Decker, M. Deubel, M. Wegener, S. Linden, and G. von Freymann, “Polarization stop bands in chiral polymeric three-dimensional photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)19(2), 207–210 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited