OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23188–23196
« Show journal navigation

Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses

Haohua Tu, Jesper Lægsgaard, Rui Zhang, Shi Tong, Yuan Liu, and Stephen A. Boppart  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23188-23196 (2013)
http://dx.doi.org/10.1364/OE.21.023188


View Full Text Article

Acrobat PDF (1960 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We predict and realize the targeted wavelength conversion from the 1550-nm band of a fs Er:fiber laser to an isolated band inside 370-850 nm, corresponding to a blue-shift of 700-1180 nm. The conversion utilizes resonant dispersive wave generation in widely available optical fibers with good efficiency (~7%). The converted band has a large pulse energy (~1 nJ), high spectral brightness (~1 mW/nm), and broad Gaussian-like spectrum compressible to clean transform-limited ~17 fs pulses. The corresponding coherent fiber sources open up portable applications of optical parametric oscillators and dual-output synchronized ultrafast lasers.

© 2013 OSA

1. Introduction

The ~1550-nm wavelength of an Er:fiber laser has not been converted to the UV-visible region in the fundamental mode of a uniform silica-based fiber, possibly due to the large (optical) frequency up-conversion ratio equivalent to third (or fourth) harmonic generation. However, the 800-nm μJ pulses from a Ti:sapphire amplifier have been successfully converted to deep-UV (down to 200 nm) dispersive waves in an Ar-filled hollow-core fiber with surprisingly high efficiencies (~7%) (Table 1) [7

7. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011). [CrossRef] [PubMed]

]. Also, this effect has not only been explained by the reduced Maxwell’s equations [2

2. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001). [CrossRef] [PubMed]

], but also equally well by the generalized nonlinear Schrödinger equation (GNLSE) under the slowly varying envelope approximation [5

5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

], indicating that complex theoretical models may not be necessary in sub-cycle regime modeling [7

7. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011). [CrossRef] [PubMed]

]. Moreover, the large frequency up-conversion ratio has been attributed to the nonlinear symmetry breaking intrinsic to dispersion wave generation [9

9. M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109(22), 223904 (2012). [CrossRef] [PubMed]

], and is thus not restricted to the Ar-filled fiber. It is therefore of high interest to explore relatively simple GNLSE models using lower energy pump pulses and more common solid-core fibers, and to predict if biased spectral transformation toward the high frequency end could be realized in the compact fs Er:fiber platform.

2. Theory

The fibers under investigation consist of a large mode-area PCF (LMA-8, NKT Photonics A/S), and another PCF with a smaller core (NL-3.3-890-02, Thorlabs Inc.). The LMA-8 belongs to a class of PCFs fully characterized by only two cross-sectional parameters, i.e., hole-to-hole distance Λ and hole diameter d, whereas the NL-3.3-890-02 has a very high air-filling fraction (>88%) and therefore a slightly more complex structure. For both fibers, however, the dispersion curve, zero-dispersion wavelength (λZDW), and effective area may easily be calculated by e.g. the plane-wave method (Table 2

Table 2. Observed bright RDW with Gaussian-like spectra from commercial PCFs (NKT Photonics A/S) and standard fiber (SMF-28) pumped by approximated 1550-nm 80-fs (FWHM) unchirped Gaussian pulses.

table-icon
View This Table
| View All Tables
). The pump pulses are assumed to be 1550-nm unchirped 80-fs (FWHM) 50-MHz Gaussian pulses, which approximate those of the fs Er:fiber platform [6

6. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010). [CrossRef]

]. A 9-cm LMA-8 (NL-3.3-890-02) fiber is pumped by an input pulse energy of 23.4-nJ (9-nJ), corresponding to a soliton order of N = 4.9 (N = 6.1) (Table 2). Given these data, we solve a fairly “standard” GNLSE using the general formalism of a recent study [10

10. J. Lægsgaard, “Modeling of nonlinear propagation in fiber tapers,” J. Opt. Soc. Am. B 29(11), 3183–3191 (2012). [CrossRef]

].

In comparison to [7

7. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011). [CrossRef] [PubMed]

], the calculated spectral broadening in Figs. 1(a)
Fig. 1 Calculated spectral (a, c) and temporal (b, d) evolution of a transform-limited 80-fs (FWHM) Gaussian pulse along a 9-cm NL-3.3-890-02 fiber with 9-nJ input pulse energy (a, b), and a 9-cm LMA-8 fiber with 23.4-nJ input pulse energy (c, d). The dashed lines in the spectral domain separate the normal (short wavelengths) and anomalous (long wavelengths) dispersion regimes, while the insets in the temporal domain are magnified images showing RDW generation at maximum input pulse compression.
-1(d) exhibits similar dispersion wave generation with no influence (blue-shift) from the pulse trapping [4

4. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007). [CrossRef]

]. For the LMA-8 (NL-3.3-890-02) fiber, the dispersive wave emits at 604 nm (360 nm), and diverts ~8% (0.1%) of energy from the input pump pulse. These are extraordinary results because comparable conversion efficiency and frequency up-conversion ratio are obtained at 50 times lower pump pulse energies than those reported previously [7

7. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011). [CrossRef] [PubMed]

]. The NL-3.3-890-02 case [Fig. 1(a)] sets a record frequency up-conversion ratio (>4) for solid-core fibers, which easily surpasses that of the pulse-trapping expanded continuum generation (<3) [3

3. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010). [CrossRef]

]. The cascading processes of the latter have been widely believed to provide the largest blue extension.

Of more practical interest is the dispersive wave generated in the LMA-8 fiber, which retains a “resonant” nature at surprisingly high average power of ~100 mW (pulse energy of ~2 nJ). The characteristic features of a resonant dispersion wave (RDW) include: (1) sudden and complete generation within a short (a few mm) fiber segment corresponding to maximum input pulse compression [7

7. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011). [CrossRef] [PubMed]

, 11

11. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004). [CrossRef] [PubMed]

]; (2) isolated Gaussian-like spectrum far from the pump spectrum, with no non-specific continuum features in between [12

12. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17(12), 9858–9872 (2009). [CrossRef] [PubMed]

]; and (3) a central wavelength dictated by a nonlinear-phase-corrected phase-matching condition [2

2. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001). [CrossRef] [PubMed]

, 12

12. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17(12), 9858–9872 (2009). [CrossRef] [PubMed]

, 13

13. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010). [CrossRef] [PubMed]

]. While the former two are confirmed in Figs. 1(c), 1(d), the third feature can be verified by reproducing the resonant wavelength of 604 nm (within 5 nm) with the phase-matching condition. The RDW generation was predicted in 1986 [14

14. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986). [CrossRef] [PubMed]

], and was often termed as “Cherenkov radiation” [15

15. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995). [CrossRef] [PubMed]

] in the literature. Visible RDW has only been observed in highly nonlinear fibers, and has been limited to an average power of a few mW [11

11. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004). [CrossRef] [PubMed]

13

13. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010). [CrossRef] [PubMed]

, 16

16. X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37(13), 2769–2771 (2012). [CrossRef] [PubMed]

], beyond which a dramatic spectral transformation toward continuum generation occurs at rather short (10 cm) fiber lengths [17

17. M. Hu, C. Y. Wang, L. Chai, and A. Zheltikov, “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Express 12(9), 1932–1937 (2004). [CrossRef] [PubMed]

]. Thus, the prediction of this high power continuum-free visible RDW in a low-nonlinearity fiber is unusual. Another unexpected aspect is the enlarged RDW bandwidth over the pump bandwidth to support sub-20-fs pulse compression (see below). Previously reported broadband RDW has demanded ultrashort 10-fs pumping [13

13. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010). [CrossRef] [PubMed]

] or fiber tapering [18

18. F. Lu and W. H. Knox, “Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers,” J. Opt. Soc. Am. B 23(6), 1221 (2006). [CrossRef]

].

The above modeling has predicted an overlooked but practically useful operation regime of the fs Er:fiber platform, which has long been restricted to the Ge-doped fibers [6

6. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010). [CrossRef]

]. By simply increasing the pump pulse energy above 24 nJ, this platform would have benefited from the well-established PCF technologies [19

19. P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]

].

3. Experiment

The existing fs Er:fiber lasers rarely generate >10 nJ pulses, in sharp contrast to their more matured Yb fiber laser counterparts [20

20. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63 (2010). [CrossRef]

]. The state-of-the-art Er:fiber system employing an Er/Yb co-doping technique produces 16-nJ 450-fs compressed pulses [21

21. I. Pavlov, E. Ilbey, E. Dülgergil, A. Bayri, and F. Ö. Ilday, “High-power high-repetition-rate single-mode Er-Yb-doped fiber laser system,” Opt. Express 20(9), 9471–9475 (2012). [CrossRef] [PubMed]

], which are inadequate for generating the intended RDW. Here we adopt a similar all-fiber MOPA design based on a passively mode-locked Er:fiber oscillator (Fig. 2
Fig. 2 Portable RDW fiber source consisting of a rack-mounted laser box, a delivery fiber, and a fiber-pumping apparatus on an optical breadboard.
). Critical improvements over [21

21. I. Pavlov, E. Ilbey, E. Dülgergil, A. Bayri, and F. Ö. Ilday, “High-power high-repetition-rate single-mode Er-Yb-doped fiber laser system,” Opt. Express 20(9), 9471–9475 (2012). [CrossRef] [PubMed]

] include: (1) shortened pulse duration of ~80-fs (FWHM) [Fig. 3(a)
Fig. 3 Properties of RDW from a 9-cm LMA-8 fiber. (a) Temporal profiles of pump pulse (brown, top panel), approximated 80-fs Gaussian pulse (green, top panel), uncompressed (blue, bottom panel) and compressed (red, bottom panel) 1.7-nJ RDW pulse; (b) Spectra of pump pulse centered at 1550 nm (brown, top panel), approximated 80-fs Gaussian pulse (green, top panel), 1.7-nJ RDW pulse centered at 620 nm (red, bottom panel), and threshold RDW pulse centered at 679 nm (black, bottom panel); (c) Observed (black) and GNLSE-modeled (green) relations of RDW pulse energy vs. input pulse energy; (d) Observed (black) and GNLSE-modeled (green) RDW spectra at several RDW pulse energies; (e) Second harmonic generation (SHG) signal spectra of uncompressed (blue) and compressed (red) 1.7-nJ RDW pulses. Inset: MIIPS trace of compressed 1.7-nJ RDW pulse.
] and increased pulse energy of 46 nJ at 50-MHz (2.3 W average power), despite the self-phase modulation-induced spectral distortion [Fig. 3(b)]; (2) all-polarization-maintaining single-mode fibers and components for polarized output and environmental stability; and (3) commercialized setup (Mendocino FPL-05C, Calmar Laser, Inc.) consisting of an air-cooled laser box (48x50x18 cm, controller included), a 0.5-m delivery fiber, and a compact (4x4x18 cm) laser head of free-space compressor (Fig. 2). The laser head and the fiber-pumping apparatus [12

12. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17(12), 9858–9872 (2009). [CrossRef] [PubMed]

] are mounted on a small optical breadboard (40x30 cm), which can be moved to a wheeled cart where the laser box can be rack mounted, making the whole system portable. Optimized aspheric lenses allow 60-85% coupling efficiency of pump pulse energy to one of several 9-cm cleaved fibers, with progressively varying core diameter and dispersion (Table 2).

Indeed, the red RDW emission in the LMA-8 fiber is visibly detected when the input pulse energy (measured as fiber output pulse energy assuming zero transmission loss) reaches a threshold [12

12. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17(12), 9858–9872 (2009). [CrossRef] [PubMed]

]. Beyond that, the pulse energy of the RDW increases with the input pulse energy according to a conversion efficiency of ~7% [Fig. 3(c)]. With increasing pulse energy, the RDW spectrum undergoes a blue-shift and broadening, but retains its Gaussian-like spectrum, until it is finally disrupted by an interference-like effect [Fig. 3(d)]. By approximating the pump pulses with 80-fs (FWHM) Gaussian pulses in Figs. 3(a) and 3(b), the GNLSE model quantitatively reproduces the observed power-dependent RDW pulse energy and spectrum in Figs. 3(c) and 3(d), confirming the predicted 100-mW-level (~2 nJ) RDW [Fig. 1(c)]. The progressive evolution of a Gaussian-like spectrum in Fig. 3(d) results in broad wavelength tuning (595-670 nm) and pedestal-free 17-fs pulse compression (see below). Interestingly, the optical fiber cleans up and shortens the complex input (fiber laser) pulses through a blue-shifted wavelength conversion in Figs. 3(a) and 3(b), in contrast to the widely recognized and used red-shifted soliton generation.

Other PCFs, along with the standard telecommunication fiber (SMF-28), produce RDWs throughout 370-850 nm with comparable conversion efficiencies (Fig. 4
Fig. 4 RDW spectra at threshold input pulse energies (broken curves) and higher input pulse energies (solid curves) from a series of 9-cm fibers, along with RDW pulse energies at the higher input pulse energies.
), presumably due to different dispersion and nonlinearity properties. The RDW from each PCF undergoes a large (>700 nm) blue-shift from the pump wavelength, retains the Gaussian-like spectrum before the interference-like disruption, and aligns itself with the input pulse in polarization with an extinction ratio of >25 dB. Thus, the RDW generated from a polarization-maintaining PCF (LMA-5-PM) approximates that from its non-polarization-maintaining counterpart (LMA-5) (Table 2), if the input polarization is aligned with a principal axis of the fiber. The RDW from the SMF-28 fiber is similarly polarized, but suffers spectral distortion even at the threshold, possibly due to the solitonic interaction before the pulse trapping [13

13. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010). [CrossRef] [PubMed]

]. The predicted RDW in NL-3.3-890-02 with >4 frequency up-conversion ratio [Fig. 1(a)] is also confirmed, although at somewhat longer wavelength (378 nm) and lower input pulse energy (~5.8 nJ) (Fig. 4). The discrepancies may be attributed to the combined effects of fiber dispersion inaccuracy, pump pulse uncertainty, and Raman-induced fiber transmission loss (estimated to be ~2 nJ for the 9 nJ input pulse energy). Even so, the sub-cycle regime GNLSE modeling predicts this unexpected phenomenon reasonably well. Higher energy input pulses would be preferentially converted to an intermodal third-harmonic band (Fig. 4), not the RDW.

Finally, we evaluate the coherence of the RDW source. Typical fs-induced fiber supercontinuum [1

1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]

] has insufficient coherence for transform-limited pulse compression, even though the full phase compensation of a spatial light modulator-based 4f pulse shaper is employed [22

22. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22(3), 687 (2005). [CrossRef]

]. Thus, this pulse compression is usually conducted on the supercontinuum generated completely in a normal dispersion regime of the fiber [23

23. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett. 37(12), 2172–2174 (2012). [CrossRef] [PubMed]

, 24

24. B. Metzger, A. Steinmann, and H. Giessen, “High-power widely tunable sub-20 fs Gaussian laser pulses for ultrafast nonlinear spectroscopy,” Opt. Express 19(24), 24354–24360 (2011). [CrossRef] [PubMed]

], using techniques such as the multiphoton intrapulse interference phase scan (MIIPS) [25

25. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23(4), 750 (2006). [CrossRef]

]. By the use of a MIIPS-assisted 4f pulse shaper (FemtoJock, Biophotonics Solutions Inc.), we achieve high quality transform-limited compression of the 1.7-nJ RDW from the LMA-8 fiber in Fig. 3(a) and 3(b) as that reported previously [23

23. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett. 37(12), 2172–2174 (2012). [CrossRef] [PubMed]

, 24

24. B. Metzger, A. Steinmann, and H. Giessen, “High-power widely tunable sub-20 fs Gaussian laser pulses for ultrafast nonlinear spectroscopy,” Opt. Express 19(24), 24354–24360 (2011). [CrossRef] [PubMed]

], as indicated by the 15-fold increase of the second-harmonic signal after compression and the straight parallel MIIPS traces free of non-specific components [Fig. 3(e)] [25

25. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23(4), 750 (2006). [CrossRef]

]. The compressed RDW is a clean 17-fs (FWHM) pulse [Fig. 3(a), bottom panel], corresponding to an 8-cycle pulse at 620 nm. Because the chirp of the RDW pulse is largely linear, a simple linear compressor would lead to 25-fs (FWHM) compression. Similar compressibility is generally applicable to other RDW pulse energies or the RDWs from other fibers (including SMF-28). However, the interference-like disruption appears to negatively impact the compression quality, and is therefore avoided by operating at low soliton orders of N<6 (Table 2).

4. Discussions and perspectives

The above compression results reinforces the high coherence of RDW that has been demonstrated using alternative techniques such as spectral interferometry [18

18. F. Lu and W. H. Knox, “Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers,” J. Opt. Soc. Am. B 23(6), 1221 (2006). [CrossRef]

] (or prism-pair pulse compression [6

6. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010). [CrossRef]

]), and has been directly linked to the low optical amplitude [18

18. F. Lu and W. H. Knox, “Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers,” J. Opt. Soc. Am. B 23(6), 1221 (2006). [CrossRef]

] (or phase [6

6. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010). [CrossRef]

]) noise at low soliton orders of N<10 (Table 1) [5

5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

]. Thus, our RDW fiber source operated at N<6 approximates a solid-state optical parametric oscillator (OPO) in spectrum shape, polarization, pulse energy, average power, and coherence (or optical noise), except for a (perhaps more desirable) broader bandwidth or shorter pulse duration. In comparison to the fs Yb:fiber platform [16

16. X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37(13), 2769–2771 (2012). [CrossRef] [PubMed]

], the Er platform has the advantage that anomalous dispersion at the pump wavelength can be achieved in large-core fibers (Table 2), thus facilitating RDW power scaling and simplifying the cascaded fusion splicing [26

26. J. W. Nicholson, R. Bise, J. Alonzo, T. Stockert, D. J. Trevor, F. Dimarcello, E. Monberg, J. M. Fini, P. S. Westbrook, K. Feder, and L. Grüner-Nielsen, “Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber,” Opt. Lett. 33(1), 28–30 (2008). [CrossRef] [PubMed]

] to build more robust all-fiber RDW sources [16

16. X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37(13), 2769–2771 (2012). [CrossRef] [PubMed]

]. By the use of a higher repetition rate (~250 MHz) fs Er:fiber master oscillator (Fig. 2) widely used in fiber frequency comb sources, the RDW power may be further increased. Our prototypical RDW source has been operated outside of the optical laboratory and has shown strong resistance to mechanical and thermal disturbances. This combination of reliability, simplicity, compactness, and cost effectiveness is difficult, if not impossible, to realize in OPO-type solid-state lasers. The integration of the existing fs Er:fiber platform and its well-documented branched configuration [6

6. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010). [CrossRef]

] into this RDW source should facilitate various (portable) ultrafast applications that demand two synchronized pulse chains with broad spectral coverage. Strongly blue-shifted (>700 nm) RDW sources may also be built upon Tm or other rare-earth-doped fiber technologies for extended spectral coverage.

Acknowledgments

The authors are grateful to Dr. Lasse Leick (NKT Photonics A/S) for helpful information on PCFs. This research was supported in part by grants from the National Institutes of Health (R01 CA166309 and R01 EB013723) and the National Science Foundation (CBET 10-33906). Jesper Lægsgaard acknowledges financial support from the Danish Council for Independent Research - Technology and Production Sciences (FTP). Additional information can be found at: http://biophotonics.illinois.edu/

References and links

1.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]

2.

A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett. 87(20), 203901 (2001). [CrossRef] [PubMed]

3.

J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt. 12(11), 113001 (2010). [CrossRef]

4.

A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics 1(11), 653–657 (2007). [CrossRef]

5.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

6.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4(1), 33–36 (2010). [CrossRef]

7.

N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett. 106(20), 203901 (2011). [CrossRef] [PubMed]

8.

H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev. 7(5), 628–645 (2013).

9.

M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett. 109(22), 223904 (2012). [CrossRef] [PubMed]

10.

J. Lægsgaard, “Modeling of nonlinear propagation in fiber tapers,” J. Opt. Soc. Am. B 29(11), 3183–3191 (2012). [CrossRef]

11.

I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express 12(1), 124–135 (2004). [CrossRef] [PubMed]

12.

H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express 17(12), 9858–9872 (2009). [CrossRef] [PubMed]

13.

G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett. 35(14), 2361–2363 (2010). [CrossRef] [PubMed]

14.

P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett. 11(7), 464–466 (1986). [CrossRef] [PubMed]

15.

N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A 51(3), 2602–2607 (1995). [CrossRef] [PubMed]

16.

X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett. 37(13), 2769–2771 (2012). [CrossRef] [PubMed]

17.

M. Hu, C. Y. Wang, L. Chai, and A. Zheltikov, “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Express 12(9), 1932–1937 (2004). [CrossRef] [PubMed]

18.

F. Lu and W. H. Knox, “Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers,” J. Opt. Soc. Am. B 23(6), 1221 (2006). [CrossRef]

19.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]

20.

D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63 (2010). [CrossRef]

21.

I. Pavlov, E. Ilbey, E. Dülgergil, A. Bayri, and F. Ö. Ilday, “High-power high-repetition-rate single-mode Er-Yb-doped fiber laser system,” Opt. Express 20(9), 9471–9475 (2012). [CrossRef] [PubMed]

22.

B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B 22(3), 687 (2005). [CrossRef]

23.

Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett. 37(12), 2172–2174 (2012). [CrossRef] [PubMed]

24.

B. Metzger, A. Steinmann, and H. Giessen, “High-power widely tunable sub-20 fs Gaussian laser pulses for ultrafast nonlinear spectroscopy,” Opt. Express 19(24), 24354–24360 (2011). [CrossRef] [PubMed]

25.

B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B 23(4), 750 (2006). [CrossRef]

26.

J. W. Nicholson, R. Bise, J. Alonzo, T. Stockert, D. J. Trevor, F. Dimarcello, E. Monberg, J. M. Fini, P. S. Westbrook, K. Feder, and L. Grüner-Nielsen, “Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber,” Opt. Lett. 33(1), 28–30 (2008). [CrossRef] [PubMed]

OCIS Codes
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: July 11, 2013
Manuscript Accepted: September 9, 2013
Published: September 24, 2013

Citation
Haohua Tu, Jesper Lægsgaard, Rui Zhang, Shi Tong, Yuan Liu, and Stephen A. Boppart, "Bright broadband coherent fiber sources emitting strongly blue-shifted resonant dispersive wave pulses," Opt. Express 21, 23188-23196 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23188


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  2. A. V. Husakou and J. Herrmann, “Supercontinuum generation of higher-order solitons by fission in photonic crystal fibers,” Phys. Rev. Lett.87(20), 203901 (2001). [CrossRef] [PubMed]
  3. J. C. Travers, “Blue extension of optical fibre supercontinuum generation,” J. Opt.12(11), 113001 (2010). [CrossRef]
  4. A. V. Gorbach and D. V. Skryabin, “Light trapping in gravity-like potentials and expansion of supercontinuum spectra in photonic-crystal fibres,” Nat. Photonics1(11), 653–657 (2007). [CrossRef]
  5. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  6. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics4(1), 33–36 (2010). [CrossRef]
  7. N. Y. Joly, J. Nold, W. Chang, P. Hölzer, A. Nazarkin, G. K. L. Wong, F. Biancalana, and P. St. J. Russell, “Bright spatially coherent wavelength-tunable deep-UV laser source using an Ar-filled photonic crystal fiber,” Phys. Rev. Lett.106(20), 203901 (2011). [CrossRef] [PubMed]
  8. H. Tu and S. A. Boppart, “Coherent fiber supercontinuum for biophotonics,” Laser Photonics Rev.7(5), 628–645 (2013).
  9. M. Erkintalo, Y. Q. Xu, S. G. Murdoch, J. M. Dudley, and G. Genty, “Cascaded phase matching and nonlinear symmetry breaking in fiber frequency combs,” Phys. Rev. Lett.109(22), 223904 (2012). [CrossRef] [PubMed]
  10. J. Lægsgaard, “Modeling of nonlinear propagation in fiber tapers,” J. Opt. Soc. Am. B29(11), 3183–3191 (2012). [CrossRef]
  11. I. Cristiani, R. Tediosi, L. Tartara, and V. Degiorgio, “Dispersive wave generation by solitons in microstructured optical fibers,” Opt. Express12(1), 124–135 (2004). [CrossRef] [PubMed]
  12. H. Tu and S. A. Boppart, “Optical frequency up-conversion by supercontinuum-free widely-tunable fiber-optic Cherenkov radiation,” Opt. Express17(12), 9858–9872 (2009). [CrossRef] [PubMed]
  13. G. Chang, L.-J. Chen, and F. X. Kärtner, “Highly efficient Cherenkov radiation in photonic crystal fibers for broadband visible wavelength generation,” Opt. Lett.35(14), 2361–2363 (2010). [CrossRef] [PubMed]
  14. P. K. A. Wai, C. R. Menyuk, Y. C. Lee, and H. H. Chen, “Nonlinear pulse propagation in the neighborhood of the zero-dispersion wavelength of monomode optical fibers,” Opt. Lett.11(7), 464–466 (1986). [CrossRef] [PubMed]
  15. N. Akhmediev and M. Karlsson, “Cherenkov radiation emitted by solitons in optical fibers,” Phys. Rev. A51(3), 2602–2607 (1995). [CrossRef] [PubMed]
  16. X. Liu, J. Lægsgaard, U. Møller, H. Tu, S. A. Boppart, and D. Turchinovich, “All-fiber femtosecond Cherenkov radiation source,” Opt. Lett.37(13), 2769–2771 (2012). [CrossRef] [PubMed]
  17. M. Hu, C. Y. Wang, L. Chai, and A. Zheltikov, “Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,” Opt. Express12(9), 1932–1937 (2004). [CrossRef] [PubMed]
  18. F. Lu and W. H. Knox, “Generation, characterization, and application of broadband coherent femtosecond visible pulses in dispersion micromanaged holey fibers,” J. Opt. Soc. Am. B23(6), 1221 (2006). [CrossRef]
  19. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  20. D. J. Richardson, J. Nilsson, and W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B27(11), B63 (2010). [CrossRef]
  21. I. Pavlov, E. Ilbey, E. Dülgergil, A. Bayri, and F. Ö. Ilday, “High-power high-repetition-rate single-mode Er-Yb-doped fiber laser system,” Opt. Express20(9), 9471–9475 (2012). [CrossRef] [PubMed]
  22. B. Schenkel, R. Paschotta, and U. Keller, “Pulse compression with supercontinuum generation in microstructure fibers,” J. Opt. Soc. Am. B22(3), 687 (2005). [CrossRef]
  23. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012). [CrossRef] [PubMed]
  24. B. Metzger, A. Steinmann, and H. Giessen, “High-power widely tunable sub-20 fs Gaussian laser pulses for ultrafast nonlinear spectroscopy,” Opt. Express19(24), 24354–24360 (2011). [CrossRef] [PubMed]
  25. B. Xu, J. M. Gunn, J. M. D. Cruz, V. V. Lozovoy, and M. Dantus, “Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses,” J. Opt. Soc. Am. B23(4), 750 (2006). [CrossRef]
  26. J. W. Nicholson, R. Bise, J. Alonzo, T. Stockert, D. J. Trevor, F. Dimarcello, E. Monberg, J. M. Fini, P. S. Westbrook, K. Feder, and L. Grüner-Nielsen, “Visible continuum generation using a femtosecond erbium-doped fiber laser and a silica nonlinear fiber,” Opt. Lett.33(1), 28–30 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited