OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23261–23271
« Show journal navigation

Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA

M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23261-23271 (2013)
http://dx.doi.org/10.1364/OE.21.023261


View Full Text Article

Acrobat PDF (1966 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a mid-infrared Raman-soliton continuum extending from 1.9 to 3 µm in a highly germanium-doped silica-clad fiber, pumped by a nanotube mode-locked thulium-doped fiber system, delivering 12 kW sub-picosecond pulses at 1.95 µm. This simple and robust source of light covers a portion of the atmospheric transmission window.

© 2013 OSA

1. Introduction

Over the past decade, supercontinuum sources in the near-infrared (IR), utilizing silica-based photonic crystal fibers (PCFs), have become a commercial success [1

1. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009). [CrossRef]

]. Typically, such systems are pumped by a master oscillator power fiber amplifier (MOPFA) [2

2. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009). [CrossRef] [PubMed]

, 3

3. K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express 18(6), 5426–5432 (2010). [CrossRef] [PubMed]

], employing ytterbium (Yb) doped fiber technology, and can cover the transparency window of silica (~0.35 – 2.2 µm [4

4. M. J. F. Digonnet, Rare earth doped fiber lasers and amplifiers (Marcel Dekker, New York, NY, USA, 1993).

, 5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

]), with high-average spectral power [2

2. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009). [CrossRef] [PubMed]

, 3

3. K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express 18(6), 5426–5432 (2010). [CrossRef] [PubMed]

, 6

6. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006). [CrossRef] [PubMed]

].

There is widespread interest in extending the long wavelength edge of the supercontinuum beyond the region where pure silica can be employed, for applications such as spectroscopy of trace gases [7

7. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002). [CrossRef]

], chemical kinetics [8

8. L. Rimai, E. W. Kaiser, E. Schwab, and E. C. Lim, “Application of time-resolved infrared spectral photography to chemical kinetics,” Appl. Opt. 31(3), 350–357 (1992). [CrossRef] [PubMed]

] and military counter measures [9

9. G. Sepp and R. Protz, “Laser beam source for a directional infrared countermeasures (DIRCM) weapon system,” US 6587486 B1 (2003).

]. Progress in this regard has been made using fluoride [10

10. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15(3), 865–871 (2007). [CrossRef] [PubMed]

, 11

11. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006). [CrossRef] [PubMed]

] and chalcogenide [12

12. J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009). [CrossRef]

] glass fibers, in particular ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) [10

10. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15(3), 865–871 (2007). [CrossRef] [PubMed]

, 11

11. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006). [CrossRef] [PubMed]

, 13

13. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. F. L. Terry Jr, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~1.9 to 4.5 µm in ZBLAN fiber with high average power generation beyond 3.8 µm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28(10), 2486–2498 (2011). [CrossRef]

] and tellurite [14

14. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef] [PubMed]

, 15

15. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009). [CrossRef] [PubMed]

] glasses, because of their enhanced transmission in the mid-IR [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

, 10

10. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15(3), 865–871 (2007). [CrossRef] [PubMed]

16

16. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007). [CrossRef]

]. Step-index fibers fabricated from soft glasses, with transmission windows extending up to 5 µm, have been used to demonstrate supercontinua covering the 1 – 4 µm region [10

10. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15(3), 865–871 (2007). [CrossRef] [PubMed]

, 11

11. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006). [CrossRef] [PubMed]

], pumped by high-power multi-stage erbium (Er) doped fiber lasers operating near the low anomalous dispersion region of the fiber [10

10. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15(3), 865–871 (2007). [CrossRef] [PubMed]

, 11

11. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006). [CrossRef] [PubMed]

]. An alternative approach targets the development of PCFs made from tellurite [14

14. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef] [PubMed]

, 15

15. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009). [CrossRef] [PubMed]

], including short length tapers [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

], because of their high nonlinear coefficients and broad mid-IR transparency [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

, 14

14. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef] [PubMed]

, 15

15. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009). [CrossRef] [PubMed]

].

While fluoride glass fibers have superior transmission beyond 2 µm compared to silica [10

10. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15(3), 865–871 (2007). [CrossRef] [PubMed]

, 11

11. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006). [CrossRef] [PubMed]

], they are non-resistant to moisture [17

17. D. Ravaine and G. Perera, “Corrosion Studies of Various Heavy-Metal Fluoride Glasses in Liquid Water: Application to Fluoride-Ion-Selective Electrode,” J. Am. Ceram. Soc. 69(12), 852–857 (1986). [CrossRef]

] and, as such, degrade in air over time [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

, 17

17. D. Ravaine and G. Perera, “Corrosion Studies of Various Heavy-Metal Fluoride Glasses in Liquid Water: Application to Fluoride-Ion-Selective Electrode,” J. Am. Ceram. Soc. 69(12), 852–857 (1986). [CrossRef]

]. In addition, poor compatibility with silica [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

] reduces their potential for realizing fully fiber-integrated systems. Although chalcogenides are hydrophobic [18

18. P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B. 119, 355–362 (2006).

], consequently more stable against corrosion [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

], the fabrication of compound glass fibers exhibiting single-mode performance is complex [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

].

Recently, Raman-soliton continuum generation was demonstrated in a highly-doped GeO2 silica-clad fiber, using an Er-based pump source [24

24. E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20(24), 27102–27107 (2012). [CrossRef] [PubMed]

, 25

25. V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-caldding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012). [CrossRef]

]. The bandwidth of the continuum exceeded 1000 nm, with the long-wavelength limit at 2.5 µm [24

24. E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20(24), 27102–27107 (2012). [CrossRef] [PubMed]

, 25

25. V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-caldding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012). [CrossRef]

]. Extension of the infrared edge of the continuum can be achieved using a longer wavelength pump source [26

26. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012). [CrossRef]

, 27

27. W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013). [CrossRef] [PubMed]

]. Examples of suitable pump systems include: broadly tunable, ultrashort pulse optical parametric amplifiers (OPAs) and optical parametric oscillators (OPOs) [25

25. V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-caldding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012). [CrossRef]

28

28. C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett. 10(1), 015101 (2013). [CrossRef]

] and, more recently [13

13. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. F. L. Terry Jr, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~1.9 to 4.5 µm in ZBLAN fiber with high average power generation beyond 3.8 µm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28(10), 2486–2498 (2011). [CrossRef]

], thulium-(Tm) doped fiber-based systems [13

13. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. F. L. Terry Jr, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~1.9 to 4.5 µm in ZBLAN fiber with high average power generation beyond 3.8 µm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28(10), 2486–2498 (2011). [CrossRef]

]. OPAs and OPOs, however, are complex and expensive systems and cannot deliver the benefit of a compact design, efficient heat dissipation, and alignment-free operation offered by fiber lasers [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

].

Ultrafast sources based on Tm-doped fibers operating around 2 μm are becoming increasingly important to address demands for mid-IR sources [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

]. Tm-based mode-locked oscillators have previously been reported employing nonlinear polarization rotation (NPR) and semiconductor saturable absorber mirrors (SESAMs) [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

]. NPR and SESAMs, however, can suffer from environmental sensitivity or require complex fabrication [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

]. Carbon nanotubes (CNTs) [28

28. C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett. 10(1), 015101 (2013). [CrossRef]

33

33. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008). [CrossRef] [PubMed]

] and graphene [29

29. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012). [CrossRef]

, 31

31. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]

, 34

34. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012). [CrossRef] [PubMed]

37

37. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010). [CrossRef]

], have emerged as alternative saturable absorbers (SA) with ultrafast recovery time [38

38. J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett. 90(5), 057404 (2003). [CrossRef] [PubMed]

40

40. A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B 88(3), 035430 (2013). [CrossRef]

], able to support short pulses, and with a number of favorable properties, such as broadband operation [34

34. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012). [CrossRef] [PubMed]

, 38

38. J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett. 90(5), 057404 (2003). [CrossRef] [PubMed]

], and ease of fabrication [31

31. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]

, 35

35. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]

, 41

41. F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15(12), 564–589 (2012). [CrossRef]

] and integration [30

30. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012). [CrossRef]

] into all-fiber configurations. While broadband operation is an intrinsic property of graphene [35

35. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]

], in CNTs this can be achieved using a distribution of tube diameters [34

34. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012). [CrossRef] [PubMed]

]. A variety of techniques have been implemented in order to integrate CNTs and graphene into lasers [29

29. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012). [CrossRef]

]. CNTs and graphene embedded in polymer matrices can be easily integrated into a range of photonic systems [31

31. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]

, 35

35. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]

]. CNTs can be homogeneously embedded into polymer matrices, resulting in high quality composites [31

31. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]

, 42

42. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater. 20(21), 4040–4043 (2008). [CrossRef]

], exhibiting large modulation depths [30

30. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012). [CrossRef]

, 33

33. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008). [CrossRef] [PubMed]

, 42

42. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater. 20(21), 4040–4043 (2008). [CrossRef]

, 43

43. R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E 44(6), 1078–1081 (2012). [CrossRef]

], preferred for fiber lasers [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

].

Here, we report the generation of a Raman-soliton continuum, extending beyond 2.5 µm, pumped at 1.95 µm with 12 kW peak power pulses delivered from a nanotube-mode-locked Tm-based MOPFA, in an optimized 3.4 m length of 75 mol. % GeO2 fiber. We use CNTs with diameter ~1.7 nm, in order to achieve a strong absorption in the:2 μm range [44

44. R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot,” Nano Lett. 3(9), 1235–1238 (2003). [CrossRef]

, 45

45. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999). [CrossRef]

]. The CNTs are embedded in a polymer matrix, thus forming our SA to mode-lock the seed laser of the MOPFA. This approach provides a robust, long-term stable source of radiation in an important band, coincident with a portion of the atmospheric transmission window.

2. Seed laser

The schematic of the seed oscillator is shown in Fig. 1
Fig. 1 Schematic of the mode-locked oscillator. TDFA: thulium-doped fiber amplifier, ISO: isolator, BPF: bandpass filter, OC: fiber output coupler, CNT SA: carbon nanotube saturable absorber, PC: polarization controller.
. This consists of all-fiber integrated components, in order to have an environmentally stable and compact system. A Tm–doped fiber amplifier, with integrated optical isolator (ISO), provides a peak small signal gain of ~25 dB at 1.94 µm, with gain available over a broad bandwidth (full width at half maximum, FWHM ~60 nm), suitable to support the generation of short pulses. A fiber pigtailed air-gap (20% insertion loss) is used to include an intra-cavity band-pass filter (BPF) for pulse stabilization, with 80% maximum transmission and 11 nm bandwidth, centered at ~1.94 µm. The output signal is delivered through a 30:70 fiber coupler. A polarization controller (PC) allows continuous adjustment of the intra-cavity polarization state.

The SA is designed to have absorption coincident with the operating wavelength of the oscillator, centered at 1.94 µm. We use CNTs produced by Catalytic Chemical Vapor Deposition (CCVD) of CH4 over Mg1-xCoxO solid solution containing Mo oxide [46

46. E. Flahaut, C. Laurent, and A. Peigney, “Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation,” Carbon 43(2), 375–383 (2005). [CrossRef]

]. The catalyst and byproducts are dissolved by treatment with concentrated aqueous HCl solution [46

46. E. Flahaut, C. Laurent, and A. Peigney, “Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation,” Carbon 43(2), 375–383 (2005). [CrossRef]

]. The remaining carbon-encapsulated catalytic nanoparticles are removed by air oxidation at 450°C for 1 h in an open furnace, followed by HCl washing to dissolve metal oxides formed during the oxidation step [47

47. S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, “Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation,” Chem. Phys. Lett. 402(4-6), 422–427 (2005). [CrossRef]

, 48

48. S. Osswald, E. Flahaut, and Y. Gogotsi, “In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes,” Chem. Mater. 18(6), 1525–1533 (2006). [CrossRef]

]. In order to further purify the sample, oxidation in air at higher temperature (570°C) is carried out for a shorter time (30 min) [48

48. S. Osswald, E. Flahaut, and Y. Gogotsi, “In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes,” Chem. Mater. 18(6), 1525–1533 (2006). [CrossRef]

]. The residual material is further washed with HCl to dissolve the remaining metal oxides [47

47. S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, “Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation,” Chem. Phys. Lett. 402(4-6), 422–427 (2005). [CrossRef]

, 48

48. S. Osswald, E. Flahaut, and Y. Gogotsi, “In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes,” Chem. Mater. 18(6), 1525–1533 (2006). [CrossRef]

].

A polymer composite is then fabricated via solution processing [30

30. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012). [CrossRef]

33

33. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008). [CrossRef] [PubMed]

, 42

42. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater. 20(21), 4040–4043 (2008). [CrossRef]

]. Purified CNTs are dispersed using a tip sonicator (Branson 540 A, 20kHz) in water with sodium dodecylbenzene sulfonate (SDBS) as surfactant for 4 h. The dispersion is then ultracentrifuged (Sorvall WX Ultra) at 100,000 g, where g is the gravitational acceleration, for 30 mins. The top 70% dispersion, free from insoluble particles and CNT aggregates, is then decanted. 4 ml are mixed with 120 mg polyvinyl alcohol (PVA) and ultrasonicated again for 30 mins, obtaining a homogeneous and stable dispersion. We use water as the solvent, due to its low boiling point compared to common organic solvents used to disperse CNTs, such as N-Methyl Pyrrolidone (NMP) [31

31. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]

] with a boiling point of 206° C [54

54. T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C 111(34), 12594–12602 (2007). [CrossRef]

]. SDBS is used as the surfactant for its ability to produce small CNT bundles [55

55. F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C 114(41), 17267–17285 (2010). [CrossRef]

], unlike bile salts, e.g. sodium cholate, more effective in the dispersion of individual nanotubes [55

55. F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C 114(41), 17267–17285 (2010). [CrossRef]

]. PVA is used for its compatibility with water [31

31. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]

]. The CNT-polymer mixture is drop-cast in a petri dish. Slow evaporation, over 4-5 days at room temperature in a desiccator, produces a free-standing ~50 µm composite. The concentration, c, of CNTs in the PVA film is estimated to be ~0.3 weight percent (wt%), derived by measuring the weight of the decanted CNT dispersion compared to that of the solution × 100%.

Figure 2(a) plots the absorption spectra of the PVA (grey line), the CNT-PVA composite (red line) and the pristine CNTs (black line). The absorption of the PVA is ~1 order of magnitude lower with respect to the CNT-PVA composite, in the 400 – 2000 nm range, thus negligible. The absorption band between 1.75 and 2.15 µm corresponds to eh11 excitonic transitions of tubes with diameters in the 1.5–1.8 nm range [43

43. R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E 44(6), 1078–1081 (2012). [CrossRef]

, 44

44. R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot,” Nano Lett. 3(9), 1235–1238 (2003). [CrossRef]

]. Power-dependent absorption is measured with an optical parametric oscillator (Coherent, Chameleon) delivering ~260 fs pulses with 80 MHz repetition rate at 1945 nm. The optical transmittance is determined by monitoring the input and output power on the CNT composite. The nonlinear transmittance increases from ~76% to ~85%, Fig. 2(b), giving a ~9% change in transmittance, comparable that typically reported for CNTs [32

32. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009). [CrossRef]

, 41

41. F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15(12), 564–589 (2012). [CrossRef]

, 42

42. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater. 20(21), 4040–4043 (2008). [CrossRef]

]. We also measured the Raman spectra of the composite and, for the three excitation wavelengths, we do not observe any change in the RBM distribution with respect to the pristine CNTs. Thus, the dispersion process and the CNT-PVA composite fabrication do not induce additional defects [52

52. J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 95(21), 217401 (2005). [CrossRef] [PubMed]

] with respect to the starting material.

The CNT-SA is then inserted between two SMF-28 fiber connectors and directly fusion spliced into the laser cavity. The oscillator operates at the fundamental repetition frequency of the cavity, 6.1 MHz, and produces 3.5 mW average output power, corresponding to 0.57 nJ single pulse energy. The autocorrelation of the output pulses and the corresponding optical spectrum are plotted in Fig. 3
Fig. 3 Seed laser performance. (a) Autocorrelation of the output pulses, with a deconvolved duration of 3.7 ps. (b) The corresponding optical spectrum (high resolution, inset).
. The autocorrelation is well fitted by a sech2 pulse-shape, with a 3.7 ps deconvolved FWHM duration, Fig. 3(a). The optical spectrum, shown in Fig. 3(b) and recorded using an automated grating spectrometer, is centered at 1.94 µm with a 3.2 nm FWHM. The seed spectrum is also recorded using a long wavelength range optical spectrum analyzer (Yokogawa). This allows us to observe solitonic spectral sidebands (Fig. 3(b) inset). The overall cavity group velocity dispersion (GVD) can be estimated from the spectral sideband separation [56

56. D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17(21), 1515–1517 (1992). [CrossRef] [PubMed]

]Δλ=±λ22πcτ1.7631+8z0zA, where τ[s] is the pulse duration, λ[m] is the peak wavelength,z0=π2τ2β2[s⋅m] is the soliton period with β2[s/m] the GVD coefficient and zA[m] the cavity length. Thus, β2=πτ22z0 = −69.2 ps2 km−1 is estimated.

3. Tm-doped MOPFA and supercontinuum generation

The configuration of the system for supercontinuum generation is shown in Fig. 4
Fig. 4 Schematic of the Tm-fiber system for pulse amplification, compression and supercontinuum generation. WDM: wavelength division multiplexer. Mirror M1 is tilted to separate the outgoing beam from the incoming beam. Mirror M2 reflects the compressed pulses output without introducing any additional losses. M1, M2, and M3 are highly reflective broadband mirrors.
. Prior to amplification, the output pulses from the seed oscillator are temporally stretched to greater than 80 ps through dispersive broadening in a 1.2 km single-mode silica fiber, with normal GVD~34 ps2 km−1 at 1.95 µm, in order to reduce the peak power.

The amplifier is constructed from 5.5 m single-mode Tm-doped fiber (Nufern SM-TSF-9/125), pumped through a fiber wavelength division multiplexer (WDM) by a 7 W continuous-wave (CW) Er laser. The lengths of active fiber and pump power are optimized to preserve pulse quality during amplification, so to maximize the signal gain. A second WDM at the output of the amplifier extracts residual pump light. Figure 5(a)
Fig. 5 MOPFA results. (a) Autocorrelation of the amplified pulses with 81 ps duration. (b) Corresponding optical spectrum.
shows the autocorrelation trace of the amplified output, under maximum pump power, corresponding to an average signal power of 150 mW. Again, a sech2 fit well represents the pulse-shape, with ~80 ps duration. The pulse spectrum [Fig. 5(b)] is centered at 1.95 µm and has a 6.2 nm FWHM. A pump power of 7 W is required because the seed line is not coincident with the peak of the spontaneous fluorescence spectrum of the active fiber used in the amplifier, limiting the available gain at 1.95 µm.

To achieve a kW level peak power, the pulses are recompressed by collimating the output through an aspheric lens and double passing a pair of 800 lines/mm gold coated gratings, optimized to operate in the 1.8 – 2.2 µm range. Through adjustment of the grating separation, 850 fs FWHM duration is achieved [Fig. 6(a)
Fig. 6 (a) Autocorrelation of the compressed pulse, with an 850 fs duration. (b) Corresponding optical spectrum.
]. No pedestal component is observed, indicating high quality amplification and compression. The low-level satellite pulses are assigned to residual nonlinear chirp accumulated in the long-length stretcher stage, to the amplification process, and to uncompensated third order dispersion. Figure 6(b) shows the largely unchanged spectrum after compression. 10 cm of SMF is used as an intermediate fiber, to facilitate improved coupling to the GeO2 fiber. Repeatable splice loss between the GeO2 and SMF fiber is as low as 0.4 dB (i.e. ~8.8%). The zero dispersion wavelength (ZDW) of the GeO2 fiber (i.e. the wavelength where the group delay dispersion of a fiber is zero [5

5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

]) shifts with the doping concentration, such that at a 75 mol. % this is expected to be in the 1.8 – 1.9 µm range [21

21. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 µm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32(13), 1848–1850 (2007). [CrossRef] [PubMed]

]. Thus, here we pump in the region of low anomalous GVD and expect continuum dynamics initiated by modulation instability (MI), given the pump format. This explanation of the dynamics [57

57. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett. 41, 294–297 (1985).

] is consistent with the fact that the spectral sideband signature of MI is observed at low pump powers, before significant continuum formation.

Spectral measurements after the GeO2 fiber are taken using an automated Spex 500 spectrometer in combination with a PbS IR detector and lock-in amplifier. Although the transmission of GeO2 is superior to silica beyond ~2.1 µm, the loss at wavelengths longer than 2.5 µm still increases significantly to hundreds of dB km−1 [20

20. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004). [CrossRef] [PubMed]

]. As such, it is important to pump short lengths, with high-peak power pulsed sources. Note that this limits the application of CW lasers as a suitable pump source in this case, thus high-average spectral power continuum sources in this wavelength range remain a challenge.

The average spectrum is recorded as a function of fiber length using a cutback technique [58

58. R. Hui and M. S. O'Sullivan, Fiber optic measurement techniques (Academic Press, 2009), xvii, 652 p.

] starting from a 5.6 m GeO2 fiber. A plot of the corresponding generated supercontinuum bandwidth (10 dB level) as a function of fiber length is shown in Fig. 7
Fig. 7 Supercontinuum bandwidth (10 dB) as a function of GeO2 fiber length.
. The continuum width monotonically decreases beyond ~3.5 m, which can be attributed to re-absorptive loss due to infrared absorption [20

20. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004). [CrossRef] [PubMed]

]. The broadest spanning supercontinuum achieved, where a balance of nonlinear gain and linear loss is reached, is shown in Fig. 8
Fig. 8 Output spectrum after 3.4 m of propagation in the GeO2 fiber.
. A spectrum extending from 1.9 to 3 µm is generated in an optimized fiber length of 3.4 m.

4. Conclusions

We demonstrated the generation of a Raman-soliton continuum, extending from 1.9 to 3 µm in an optimized 3.4 m length of 75 mol. % GeO2 fiber, and pumped at 1.95 µm by a Tm-based MOPFA delivering 12 kW peak power, sub-picosecond pulses. This robust and simple fiber system addresses an important region beyond the long wavelength extent of common pure-silica PCF-based supercontinuum light sources.

Acknowledgments

We thank Dr. V.F. Khopin and Prof. A.N. Guryanov (Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences) for the germanate-glass-core fiber fabrication. We acknowledge funding from a Royal Society Wolfson Research Merit Award, the ERC Grant NANOPOTS, EPSRC grants EP/K01711X/1, EP/K017144/1, the Newton Trust, the Newton International Fellowship, and Emmanuel College, Cambridge.

References and links

1.

J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics 3(2), 85–90 (2009). [CrossRef]

2.

A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett. 34(23), 3631–3633 (2009). [CrossRef] [PubMed]

3.

K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express 18(6), 5426–5432 (2010). [CrossRef] [PubMed]

4.

M. J. F. Digonnet, Rare earth doped fiber lasers and amplifiers (Marcel Dekker, New York, NY, USA, 1993).

5.

O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).

6.

A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express 14(12), 5715–5722 (2006). [CrossRef] [PubMed]

7.

P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng. 37(2-3), 101–114 (2002). [CrossRef]

8.

L. Rimai, E. W. Kaiser, E. Schwab, and E. C. Lim, “Application of time-resolved infrared spectral photography to chemical kinetics,” Appl. Opt. 31(3), 350–357 (1992). [CrossRef] [PubMed]

9.

G. Sepp and R. Protz, “Laser beam source for a directional infrared countermeasures (DIRCM) weapon system,” US 6587486 B1 (2003).

10.

C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express 15(3), 865–871 (2007). [CrossRef] [PubMed]

11.

C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry Jr, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett. 31(17), 2553–2555 (2006). [CrossRef] [PubMed]

12.

J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron. 15(1), 114–119 (2009). [CrossRef]

13.

O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. F. L. Terry Jr, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~1.9 to 4.5 µm in ZBLAN fiber with high average power generation beyond 3.8 µm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B 28(10), 2486–2498 (2011). [CrossRef]

14.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef] [PubMed]

15.

M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express 17(14), 12174–12182 (2009). [CrossRef] [PubMed]

16.

J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron. 13(3), 738–749 (2007). [CrossRef]

17.

D. Ravaine and G. Perera, “Corrosion Studies of Various Heavy-Metal Fluoride Glasses in Liquid Water: Application to Fluoride-Ion-Selective Electrode,” J. Am. Ceram. Soc. 69(12), 852–857 (1986). [CrossRef]

18.

P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B. 119, 355–362 (2006).

19.

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol. 23(11), 3500–3508 (2005). [CrossRef]

20.

V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett. 29(22), 2596–2598 (2004). [CrossRef] [PubMed]

21.

B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 µm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett. 32(13), 1848–1850 (2007). [CrossRef] [PubMed]

22.

F. L. Galeener, J. J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32(1), 34–36 (1978). [CrossRef]

23.

E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 µm,” Quantum Electron. 34(8), 695–697 (2004). [CrossRef]

24.

E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express 20(24), 27102–27107 (2012). [CrossRef] [PubMed]

25.

V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-caldding fiber,” Laser Phys. Lett. 9(3), 219–222 (2012). [CrossRef]

26.

C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B 29(4), 635–645 (2012). [CrossRef]

27.

W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express 21(8), 9573–9583 (2013). [CrossRef] [PubMed]

28.

C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett. 10(1), 015101 (2013). [CrossRef]

29.

Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E 44(6), 1082–1091 (2012). [CrossRef]

30.

D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett. 101(15), 153107 (2012). [CrossRef]

31.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater. 21(38–39), 3874–3899 (2009). [CrossRef]

32.

Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett. 95(25), 253102 (2009). [CrossRef]

33.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008). [CrossRef] [PubMed]

34.

M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012). [CrossRef] [PubMed]

35.

F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]

36.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano 4(2), 803–810 (2010). [CrossRef] [PubMed]

37.

Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res. 3(9), 653–660 (2010). [CrossRef]

38.

J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett. 90(5), 057404 (2003). [CrossRef] [PubMed]

39.

D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun 4, 1987 (2013). [CrossRef] [PubMed]

40.

A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B 88(3), 035430 (2013). [CrossRef]

41.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15(12), 564–589 (2012). [CrossRef]

42.

V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater. 20(21), 4040–4043 (2008). [CrossRef]

43.

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E 44(6), 1078–1081 (2012). [CrossRef]

44.

R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot,” Nano Lett. 3(9), 1235–1238 (2003). [CrossRef]

45.

H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met. 103(1-3), 2555–2558 (1999). [CrossRef]

46.

E. Flahaut, C. Laurent, and A. Peigney, “Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation,” Carbon 43(2), 375–383 (2005). [CrossRef]

47.

S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, “Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation,” Chem. Phys. Lett. 402(4-6), 422–427 (2005). [CrossRef]

48.

S. Osswald, E. Flahaut, and Y. Gogotsi, “In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes,” Chem. Mater. 18(6), 1525–1533 (2006). [CrossRef]

49.

A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science 275(5297), 187–191 (1997). [CrossRef] [PubMed]

50.

C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett. 93(14), 147406 (2004). [CrossRef] [PubMed]

51.

H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, “Chirality Distribution and Transition Energies of Carbon Nanotubes,” Phys. Rev. Lett. 93(17), 177401 (2004). [CrossRef] [PubMed]

52.

J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett. 95(21), 217401 (2005). [CrossRef] [PubMed]

53.

A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B 61(20), 14095–14107 (2000). [CrossRef]

54.

T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C 111(34), 12594–12602 (2007). [CrossRef]

55.

F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C 114(41), 17267–17285 (2010). [CrossRef]

56.

D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett. 17(21), 1515–1517 (1992). [CrossRef] [PubMed]

57.

E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett. 41, 294–297 (1985).

58.

R. Hui and M. S. O'Sullivan, Fiber optic measurement techniques (Academic Press, 2009), xvii, 652 p.

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(190.4370) Nonlinear optics : Nonlinear optics, fibers
(160.4236) Materials : Nanomaterials

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 30, 2013
Revised Manuscript: July 29, 2013
Manuscript Accepted: July 29, 2013
Published: September 24, 2013

Citation
M. Zhang, E. J. R. Kelleher, T. H. Runcorn, V. M. Mashinsky, O. I. Medvedkov, E. M. Dianov, D. Popa, S. Milana, T. Hasan, Z. Sun, F. Bonaccorso, Z. Jiang, E. Flahaut, B. H. Chapman, A. C. Ferrari, S. V. Popov, and J. R. Taylor, "Mid-infrared Raman-soliton continuum pumped by a nanotube-mode-locked sub-picosecond Tm-doped MOPFA," Opt. Express 21, 23261-23271 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23261


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. M. Dudley and J. R. Taylor, “Ten years of nonlinear optics in photonic crystal fibre,” Nat. Photonics3(2), 85–90 (2009). [CrossRef]
  2. A. Kudlinski, G. Bouwmans, O. Vanvincq, Y. Quiquempois, A. Le Rouge, L. Bigot, G. Mélin, and A. Mussot, “White-light cw-pumped supercontinuum generation in highly GeO2-doped-core photonic crystal fibers,” Opt. Lett.34(23), 3631–3633 (2009). [CrossRef] [PubMed]
  3. K. K. Chen, S. U. Alam, J. H. V. Price, J. R. Hayes, D. Lin, A. Malinowski, C. Codemard, D. Ghosh, M. Pal, S. K. Bhadra, and D. J. Richardson, “Picosecond fiber MOPA pumped supercontinuum source with 39 W output power,” Opt. Express18(6), 5426–5432 (2010). [CrossRef] [PubMed]
  4. M. J. F. Digonnet, Rare earth doped fiber lasers and amplifiers (Marcel Dekker, New York, NY, USA, 1993).
  5. O. Okhotnikov, Fiber Lasers (Wiley-VCH, Berlin, 2012).
  6. A. Kudlinski, A. K. George, J. C. Knight, J. C. Travers, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Zero-dispersion wavelength decreasing photonic crystal fibers for ultraviolet-extended supercontinuum generation,” Opt. Express14(12), 5715–5722 (2006). [CrossRef] [PubMed]
  7. P. Werle, F. Slemr, K. Maurer, R. Kormann, R. Mücke, and B. Jänker, “Near- and mid-infrared laser-optical sensors for gas analysis,” Opt. Lasers Eng.37(2-3), 101–114 (2002). [CrossRef]
  8. L. Rimai, E. W. Kaiser, E. Schwab, and E. C. Lim, “Application of time-resolved infrared spectral photography to chemical kinetics,” Appl. Opt.31(3), 350–357 (1992). [CrossRef] [PubMed]
  9. G. Sepp and R. Protz, “Laser beam source for a directional infrared countermeasures (DIRCM) weapon system,” US 6587486 B1 (2003).
  10. C. Xia, M. Kumar, M.-Y. Cheng, R. S. Hegde, M. N. Islam, A. Galvanauskas, H. G. Winful, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Power scalable mid-infrared supercontinuum generation in ZBLAN fluoride fibers with up to 1.3 watts time-averaged power,” Opt. Express15(3), 865–871 (2007). [CrossRef] [PubMed]
  11. C. Xia, M. Kumar, O. P. Kulkarni, M. N. Islam, F. L. Terry, M. J. Freeman, M. Poulain, and G. Mazé, “Mid-infrared supercontinuum generation to 4.5 µm in ZBLAN fluoride fibers by nanosecond diode pumping,” Opt. Lett.31(17), 2553–2555 (2006). [CrossRef] [PubMed]
  12. J. S. Sanghera, L. Brandon Shaw, and I. D. Aggarwal, “Chalcogenide Glass-Fiber-Based Mid-IR Sources and Applications,” IEEE J. Sel. Top. Quantum Electron.15(1), 114–119 (2009). [CrossRef]
  13. O. P. Kulkarni, V. V. Alexander, M. Kumar, M. J. Freeman, M. N. Islam, J. F. L. Terry, M. Neelakandan, and A. Chan, “Supercontinuum generation from ~1.9 to 4.5 µm in ZBLAN fiber with high average power generation beyond 3.8 µm using a thulium-doped fiber amplifier,” J. Opt. Soc. Am. B28(10), 2486–2498 (2011). [CrossRef]
  14. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008). [CrossRef] [PubMed]
  15. M. Liao, C. Chaudhari, G. Qin, X. Yan, T. Suzuki, and Y. Ohishi, “Tellurite microstructure fibers with small hexagonal core for supercontinuum generation,” Opt. Express17(14), 12174–12182 (2009). [CrossRef] [PubMed]
  16. J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, and D. J. Richardson, “Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers,” IEEE J. Sel. Top. Quantum Electron.13(3), 738–749 (2007). [CrossRef]
  17. D. Ravaine and G. Perera, “Corrosion Studies of Various Heavy-Metal Fluoride Glasses in Liquid Water: Application to Fluoride-Ion-Selective Electrode,” J. Am. Ceram. Soc.69(12), 852–857 (1986). [CrossRef]
  18. P. Lucas, M. A. Solis, D. L. Coq, C. Juncker, M. R. Riley, J. Collier, D. E. Boesewetter, C. Boussard-Plédel, and B. Bureau, “Infrared biosensors using hydrophobic chalcogenide fibers sensitized with live cells,” Sensor Actuat,” Sens. Actua. B.119, 355–362 (2006).
  19. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol.23(11), 3500–3508 (2005). [CrossRef]
  20. V. M. Mashinsky, V. B. Neustruev, V. V. Dvoyrin, S. A. Vasiliev, O. I. Medvedkov, I. A. Bufetov, A. V. Shubin, E. M. Dianov, A. N. Guryanov, V. F. Khopin, and M. Y. Salgansky, “Germania-glass-core silica-glass-cladding modified chemical-vapor deposition optical fibers: optical losses, photorefractivity, and Raman amplification,” Opt. Lett.29(22), 2596–2598 (2004). [CrossRef] [PubMed]
  21. B. A. Cumberland, S. V. Popov, J. R. Taylor, O. I. Medvedkov, S. A. Vasiliev, and E. M. Dianov, “2.1 µm continuous-wave Raman laser in GeO2 fiber,” Opt. Lett.32(13), 1848–1850 (2007). [CrossRef] [PubMed]
  22. F. L. Galeener, J. J. C. Mikkelsen, R. H. Geils, and W. J. Mosby, “The relative Raman cross sections of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett.32(1), 34–36 (1978). [CrossRef]
  23. E. M. Dianov, I. A. Bufetov, V. M. Mashinsky, V. B. Neustruev, O. I. Medvedkov, A. V. Shubin, M. A. Melkumov, A. N. Gur'yanov, V. F. Khopin, and M. V. Yashkov, “Raman fibre lasers emitting at a wavelength above 2 µm,” Quantum Electron.34(8), 695–697 (2004). [CrossRef]
  24. E. A. Anashkina, A. V. Andrianov, M. Y. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express20(24), 27102–27107 (2012). [CrossRef] [PubMed]
  25. V. A. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-caldding fiber,” Laser Phys. Lett.9(3), 219–222 (2012). [CrossRef]
  26. C. Agger, C. Petersen, S. Dupont, H. Steffensen, J. K. Lyngsø, C. L. Thomsen, J. Thøgersen, S. R. Keiding, and O. Bang, “Supercontinuum generation in ZBLAN fibers-detailed comparison between measurement and simulation,” J. Opt. Soc. Am. B29(4), 635–645 (2012). [CrossRef]
  27. W. Gao, M. El Amraoui, M. Liao, H. Kawashima, Z. Duan, D. Deng, T. Cheng, T. Suzuki, Y. Messaddeq, and Y. Ohishi, “Mid-infrared supercontinuum generation in a suspended-core As2S3 chalcogenide microstructured optical fiber,” Opt. Express21(8), 9573–9583 (2013). [CrossRef] [PubMed]
  28. C. E. S. Castellani, E. J. R. Kelleher, D. Popa, T. Hasan, Z. Sun, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “CW-pumped short pulsed 1.12 μm Raman laser using carbon nanotubes,” Laser Phys. Lett.10(1), 015101 (2013). [CrossRef]
  29. Z. Sun, T. Hasan, and A. C. Ferrari, “Ultrafast lasers mode-locked by nanotubes and graphene,” Physica E44(6), 1082–1091 (2012). [CrossRef]
  30. D. Popa, Z. Sun, T. Hasan, W. B. Cho, F. Wang, F. Torrisi, and A. C. Ferrari, “74-fs nanotube-mode-locked fiber laser,” Appl. Phys. Lett.101(15), 153107 (2012). [CrossRef]
  31. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-Polymer Composites for Ultrafast Photonics,” Adv. Mater.21(38–39), 3874–3899 (2009). [CrossRef]
  32. Z. Sun, A. G. Rozhin, F. Wang, T. Hasan, D. Popa, W. O'Neill, and A. C. Ferrari, “A compact, high power, ultrafast laser mode-locked by carbon nanotubes,” Appl. Phys. Lett.95(25), 253102 (2009). [CrossRef]
  33. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol.3(12), 738–742 (2008). [CrossRef] [PubMed]
  34. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express20(22), 25077–25084 (2012). [CrossRef] [PubMed]
  35. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  36. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene Mode-Locked Ultrafast Laser,” ACS Nano4(2), 803–810 (2010). [CrossRef] [PubMed]
  37. Z. Sun, D. Popa, T. Hasan, F. Torrisi, F. Wang, E. Kelleher, J. Travers, V. Nicolosi, and A. Ferrari, “A stable, wideband tunable, near transform-limited, graphene-mode-locked, ultrafast laser,” Nano Res.3(9), 653–660 (2010). [CrossRef]
  38. J. S. Lauret, C. Voisin, G. Cassabois, C. Delalande, P. Roussignol, O. Jost, and L. Capes, “Ultrafast Carrier Dynamics in Single-Wall Carbon Nanotubes,” Phys. Rev. Lett.90(5), 057404 (2003). [CrossRef] [PubMed]
  39. D. Brida, A. Tomadin, C. Manzoni, Y. J. Kim, A. Lombardo, S. Milana, R. R. Nair, K. S. Novoselov, A. C. Ferrari, G. Cerullo, and M. Polini, “Ultrafast collinear scattering and carrier multiplication in graphene,” Nat Commun4, 1987 (2013). [CrossRef] [PubMed]
  40. A. Tomadin, D. Brida, G. Cerullo, A. C. Ferrari, and M. Polini, “Nonequilibrium dynamics of photoexcited electrons in graphene: Collinear scattering, Auger processes, and the impact of screening,” Phys. Rev. B88(3), 035430 (2013). [CrossRef]
  41. F. Bonaccorso, A. Lombardo, T. Hasan, Z. P. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today15(12), 564–589 (2012). [CrossRef]
  42. V. Scardaci, Z. Sun, F. Wang, A. G. Rozhin, T. Hasan, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Carbon Nanotube Polycarbonate Composites for Ultrafast Lasers,” Adv. Mater.20(21), 4040–4043 (2008). [CrossRef]
  43. R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500fs wideband tunable fiber laser mode-locked by nanotubes,” Physica E44(6), 1078–1081 (2012). [CrossRef]
  44. R. B. Weisman and S. M. Bachilo, “Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: An empirical Kataura plot,” Nano Lett.3(9), 1235–1238 (2003). [CrossRef]
  45. H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, and Y. Achiba, “Optical properties of single-wall carbon nanotubes,” Synth. Met.103(1-3), 2555–2558 (1999). [CrossRef]
  46. E. Flahaut, C. Laurent, and A. Peigney, “Catalytic CVD synthesis of double and triple-walled carbon nanotubes by the control of the catalyst preparation,” Carbon43(2), 375–383 (2005). [CrossRef]
  47. S. Osswald, E. Flahaut, H. Ye, and Y. Gogotsi, “Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation,” Chem. Phys. Lett.402(4-6), 422–427 (2005). [CrossRef]
  48. S. Osswald, E. Flahaut, and Y. Gogotsi, “In Situ Raman Spectroscopy Study of Oxidation of Double- and Single-Wall Carbon Nanotubes,” Chem. Mater.18(6), 1525–1533 (2006). [CrossRef]
  49. A. M. Rao, E. Richter, S. Bandow, B. Chase, P. C. Eklund, K. A. Williams, S. Fang, K. R. Subbaswamy, M. Menon, A. Thess, R. E. Smalley, G. Dresselhaus, and M. S. Dresselhaus, “Diameter-selective Raman scattering from vibrational modes in carbon nanotubes,” Science275(5297), 187–191 (1997). [CrossRef] [PubMed]
  50. C. Fantini, A. Jorio, M. Souza, M. S. Strano, M. S. Dresselhaus, and M. A. Pimenta, “Optical Transition Energies for Carbon Nanotubes from Resonant Raman Spectroscopy: Environment and Temperature Effects,” Phys. Rev. Lett.93(14), 147406 (2004). [CrossRef] [PubMed]
  51. H. Telg, J. Maultzsch, S. Reich, F. Hennrich, and C. Thomsen, “Chirality Distribution and Transition Energies of Carbon Nanotubes,” Phys. Rev. Lett.93(17), 177401 (2004). [CrossRef] [PubMed]
  52. J. C. Meyer, M. Paillet, T. Michel, A. Moréac, A. Neumann, G. S. Duesberg, S. Roth, and J.-L. Sauvajol, “Raman Modes of Index-Identified Freestanding Single-Walled Carbon Nanotubes,” Phys. Rev. Lett.95(21), 217401 (2005). [CrossRef] [PubMed]
  53. A. C. Ferrari and J. Robertson, “Interpretation of Raman spectra of disordered and amorphous carbon,” Phys. Rev. B61(20), 14095–14107 (2000). [CrossRef]
  54. T. Hasan, V. Scardaci, P. Tan, A. G. Rozhin, W. I. Milne, and A. C. Ferrari, “Stabilization and “Debundling” of Single-Wall Carbon Nanotube Dispersions in N-Methyl-2-pyrrolidone (NMP) by Polyvinylpyrrolidone (PVP),” J. Phys. Chem. C111(34), 12594–12602 (2007). [CrossRef]
  55. F. Bonaccorso, T. Hasan, P. H. Tan, C. Sciascia, G. Privitera, G. Di Marco, P. G. Gucciardi, and A. C. Ferrari, “Density Gradient Ultracentrifugation of Nanotubes: Interplay of Bundling and Surfactants Encapsulation,” J. Phys. Chem. C114(41), 17267–17285 (2010). [CrossRef]
  56. D. U. Noske, N. Pandit, and J. R. Taylor, “Source of spectral and temporal instability in soliton fiber lasers,” Opt. Lett.17(21), 1515–1517 (1992). [CrossRef] [PubMed]
  57. E. M. Dianov, A. Y. Karasik, P. V. Mamyshev, A. M. Prokhorov, V. N. Serkin, M. F. Stelmakh, and A. A. Fomichev, “Stimulated-Raman Conversion of Multisoliton Pulses in Quartz Optical Fibers,” JETP Lett.41, 294–297 (1985).
  58. R. Hui and M. S. O'Sullivan, Fiber optic measurement techniques (Academic Press, 2009), xvii, 652 p.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited