OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23416–23424
« Show journal navigation

Tunable and stable UV-NIR photoluminescence from annealed SiOx with Si nanoparticles

Kung-Hsuan Lin, Sz-Chian Liou, Wei-Liang Chen, Chung-Lun Wu, Gong-Ru Lin, and Yu-Ming Chang  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23416-23424 (2013)
http://dx.doi.org/10.1364/OE.21.023416


View Full Text Article

Acrobat PDF (6554 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate stable and tunable light emission in ultraviolet to near infrared regime by using annealed SiOx sample. By adjusting the ratio of Si and O of SiOx, different wavelengths such as ultraviolet, visible and near infrared photoluminescence can be tuned. From the results of transmission electron microscope, various sizes (1~4 nm) of the embedded Si nanoparticles were formed. Nanoparticles with smaller sizes were indeed formed for UV-blue emitting samples and the origin of light emission may be misattributed to the quantum confinement effects. However, we found the efficient and stable light emission in UV-blue regime, with lifetime on the order of nanoseconds, is dominantly from the defects.

© 2013 Optical Society of America

1. Introduction

Light emission from silicon has attracted a lot of attentions in the scientific community because it has promising potential to be integrated with Si-based electronic device and to form Si-based optoelectronics. However, bulk silicon is indirect bandgap semiconductor, and the efficiency of light emission is weak. To solve this intrinsic problem, porous silicon has been demonstrated to emit visible light in the 1990s [1

1. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82(3), 909–965 (1997). [CrossRef]

7

7. T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter 47(20), 13876–13879 (1993). [CrossRef] [PubMed]

], but light emission was not stable due to the problems of aging, oxidation, and surface passivation in porous silicon [4

4. H. Mizuno, H. Koyama, and N. Koshida, “Oxide-free blue photoluminescence from photochemically etched porous silicon,” Appl. Phys. Lett. 69(25), 3779–3781 (1996). [CrossRef]

, 8

8. A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett. 65(11), 1436–1438 (1994). [CrossRef]

11

11. G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, “Comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder,” Appl. Phys. Lett. 69(12), 1689–1691 (1996). [CrossRef]

]. Later, silicon nanoparticles (Si NPs) embedded in SiO2 or sub-stoichiometric oxide have emerged as alternates to porous silicon owing to their stable light emission, good repeatability, and well-controlled particle size [12

12. A. Sa'ar, “Photoluminescence from silicon nanostructures: The mutual role of quantum confinement and surface chemistry,” J. Nanophotonics 3(1), 032501 (2009). [CrossRef]

]. Both red and near-infrared (NIR) light emissions have been demonstrated in Si/SiO2 superlattice [13

13. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80(4), 661–663 (2002). [CrossRef]

17

17. X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009). [CrossRef] [PubMed]

], Si NPs in SiOx [18

18. X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys. 9(9), 337 (2007). [CrossRef]

21

21. M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology 18(31), 315707 (2007). [CrossRef]

], and Si NPs in ZnO [22

22. K. Y. Kuo, S. W. Hsu, P. R. Huang, W. L. Chuang, C. C. Liu, and P. T. Lee, “Optical properties and sub-bandgap formation of nano-crystalline Si quantum dots embedded ZnO thin film,” Opt. Express 20(10), 10470–10475 (2012). [CrossRef] [PubMed]

]. Blue and green light emissions have also been achieved from Si NPs [19

19. B. H. Lai, C. H. Cheng, Y. H. Pai, and G. R. Lin, “Plasma power controlled deposition of SiOx with manipulated Si quantum dot size for photoluminescent wavelength tailoring,” Opt. Express 18(5), 4449–4456 (2010). [CrossRef] [PubMed]

, 23

23. C. H. Chang, Y. H. Pai, J. H. He, and G. R. Lin, “Wavelength-tunable blue photoluminescence of < 2 nm Si nanocrystal synthesized by ultra-low-flow-density PECVD,” Acta Mater. 58(4), 1270–1275 (2010). [CrossRef]

, 24

24. V. Svrcek, D. Mariotti, and M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water,” Opt. Express 17(2), 520–527 (2009). [CrossRef] [PubMed]

]. However, to our knowledge, there is no report to demonstrate such a broad tunability of photoluminescence (PL) from ultraviolet (UV) to NIR regime.

2. Experimental methods

The Si-rich SiOx film was grown on p-type (100)-oriented Si substrate by using the PECVD system. By controlling the N2O/SiH4 fluence ratio, different O/Si compositions were achieved. The samples were annealed in a quartz furnace with flowing N2 gas at 1100°C. Growth conditions and the physical properties of the samples are listed in Table 1

Table 1. The growth condition of the studied samples and their optical properties.

table-icon
View This Table
. O/Si composition ratios were characterized by XPS (X-ray photoelectron spectroscopy).

Cross-sectional transmission electron microscope (TEM) specimens were prepared with tripod polishing and ion milling using the Gatan PIPS system operated at 3 kV. The TEM experiments were carried out using a field-emission-gun TEM (FEI, Tecnai F20) operated at 200 kV equipped with Gatan image filter (GIF, Tridiem 865). The real-space spectral-imaging (SI) in energy-filtered TEM with a tunable energy-selection slit, was conducted on the same microscope [27

27. R. F. Egerton, Electron energy-loss spectroscopy in the electron microscope. (Plenum Press, 1996).

]. For time-integrated PL and time-resolved PL (TRPL) in the UV-blue region, the excitation light source was from the fourth harmonic generation (266 nm or 4.67 eV) of a 40 MHz, 1064 nm femtosecond fiber laser (Fianium, Ltd.). For blue-visible PL lifetime measurement on the time scale of 10 ns to 1 μs, a 0.5 MHz, 405 nm picosecond diode laser (PicoQuant GmbH) was used as the excitation light source. The TRPL were measured using time-correlated single photon technique. The PL excitation (PLE) spectroscopy was performed with a commercial spectrofluorometer (FluoLog, Horiba, Ltd.).

3. Results and discussion

Real-space TEM SI was first performed to confirm the presence of Si NPs embedded in SiOx with different O/Si composition ratios. Figure 1(a)
Fig. 1 (a) EFTEM-SI image of Sample C with the energy-selection slit tuned to the energy loss region of 16 ~18 eV. Circle 1 indicates a region containing Si NP and circle 2 indicates a region of the surrounding SiOx. Their corresponding EELS spectra are shown in (b). Histogram of Si NP size of (c) Sample A (d) Sample B and (e) Sample C. The particle number is obtained from a 20 nm x 100 nm TEM image.
shows a typical SI with the energy-selection slit positioned at the energy loss region of 16 ~18 eV, which monitors the plasmon peak of bulk Si at ~16.7 eV [28

28. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004). [CrossRef]

, 29

29. S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy 108(4), 346–357 (2008). [CrossRef] [PubMed]

]. Figure 1(b) shows the corresponding electron-energy loss spectra extracted respectively from position 1 (Si NPs) and position 2 (SiOx) marked in Fig. 1(a). The result reveals that the bright spots shown in Fig. 1(a) have the same spectral feature as Si bulk plasmon, indicating those areas contain Si NPs. In contrast, the gray areas correspond to amorphous SiOx. Furthermore, the TEM image shows a wide size distribution, 1.0~2.5 nm in diameter, of Si NPs in Sample A. With increasing annealing time (Sample B), the particle size distribution of Si NPs became narrower (~1.8 nm ± 0.2 nm in diameter). Compared with Samples A and B, the Si NP size distribution in Sample C is larger (2.2~3.0 nm in diameter) due to the aggregation of more excess Si. The histograms of Si NP size distributions are shown in Fig. 1(c)-1(e) for Samples A-C. Overall, the mean diameter of Si NPs decreases when the O/Si composition ratio increases [19

19. B. H. Lai, C. H. Cheng, Y. H. Pai, and G. R. Lin, “Plasma power controlled deposition of SiOx with manipulated Si quantum dot size for photoluminescent wavelength tailoring,” Opt. Express 18(5), 4449–4456 (2010). [CrossRef] [PubMed]

].

The high-resolution TEM (HRTEM) images of individual Si NPs in Samples A and C are presented in Figs. 3(a)
Fig. 3 HRTEM images of (a) Sample A and (b) Sample C. Their corresponding FFT patterns are shown in (c) and (d). The location of Si NPs is indicated by the dash circles in (a) and (b).
and 3(b), respectively. Figures 3(c) and 3(d) show their corresponding fast Fourier transform (FFT) patterns, which are equivalent to the experimental electron diffraction patterns of the selected local regions indicated by the dash circles in Figs. 3(a) and 3(b). For Sample C the lattice fringe can be resolved in Fig. 3(b), and the corresponding FFT pattern in Fig. 3(d) reveals the spot-like pattern, indicating the Si NPs are crystalline. In contrast, Sample A HRTEM investigation [Figs. 3(a) and 3(c)] reveal a featureless image and a diffuse ring pattern, indicating the Si NPs are amorphous. This evidence clearly exhibits the tendency of poor Si NP crystallinity when the O/Si composition ratio is intentionally tuned to higher value for embedding SiOx with smaller Si NPs.

4. Summary

Acknowledgments

The authors Y.-M. Chang and K.-H. Lin are grateful to acknowledge the financial support of National Science Council of Taiwan under Grant Nos.: NSC99-2112-M-002-008-MY3 and NSC100-2112-M-001-028-MY3, respectively.

References and links

1.

A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys. 82(3), 909–965 (1997). [CrossRef]

2.

L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett. 57(10), 1046–1048 (1990). [CrossRef]

3.

C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter 48(15), 11024–11036 (1993). [CrossRef] [PubMed]

4.

H. Mizuno, H. Koyama, and N. Koshida, “Oxide-free blue photoluminescence from photochemically etched porous silicon,” Appl. Phys. Lett. 69(25), 3779–3781 (1996). [CrossRef]

5.

J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B 45(24), 14171–14176 (1992). [CrossRef]

6.

Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: exciton confinement on a spherical shell,” Phys. Rev. B Condens. Matter 48(7), 4883–4886 (1993). [CrossRef] [PubMed]

7.

T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter 47(20), 13876–13879 (1993). [CrossRef] [PubMed]

8.

A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett. 65(11), 1436–1438 (1994). [CrossRef]

9.

M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett. 82(1), 197–200 (1999). [CrossRef]

10.

D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch, “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett. 64(2), 214–216 (1994). [CrossRef]

11.

G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, “Comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder,” Appl. Phys. Lett. 69(12), 1689–1691 (1996). [CrossRef]

12.

A. Sa'ar, “Photoluminescence from silicon nanostructures: The mutual role of quantum confinement and surface chemistry,” J. Nanophotonics 3(1), 032501 (2009). [CrossRef]

13.

M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett. 80(4), 661–663 (2002). [CrossRef]

14.

D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett. 76(3), 539–541 (1996). [CrossRef] [PubMed]

15.

B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys. 92(7), 3564–3568 (2002). [CrossRef]

16.

S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol. 3(3), 174–178 (2008). [CrossRef] [PubMed]

17.

X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology 20(48), 485703 (2009). [CrossRef] [PubMed]

18.

X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys. 9(9), 337 (2007). [CrossRef]

19.

B. H. Lai, C. H. Cheng, Y. H. Pai, and G. R. Lin, “Plasma power controlled deposition of SiOx with manipulated Si quantum dot size for photoluminescent wavelength tailoring,” Opt. Express 18(5), 4449–4456 (2010). [CrossRef] [PubMed]

20.

L. Khriachtchev, T. Nikitin, R. Velagapudi, J. Lahtinen, and S. Novikov, “Light-emission mechanism of thermally annealed silicon-rich silicon oxide revisited: What is the role of silicon nanocrystals?” Appl. Phys. Lett. 94(4), 043115 (2009). [CrossRef]

21.

M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology 18(31), 315707 (2007). [CrossRef]

22.

K. Y. Kuo, S. W. Hsu, P. R. Huang, W. L. Chuang, C. C. Liu, and P. T. Lee, “Optical properties and sub-bandgap formation of nano-crystalline Si quantum dots embedded ZnO thin film,” Opt. Express 20(10), 10470–10475 (2012). [CrossRef] [PubMed]

23.

C. H. Chang, Y. H. Pai, J. H. He, and G. R. Lin, “Wavelength-tunable blue photoluminescence of < 2 nm Si nanocrystal synthesized by ultra-low-flow-density PECVD,” Acta Mater. 58(4), 1270–1275 (2010). [CrossRef]

24.

V. Svrcek, D. Mariotti, and M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water,” Opt. Express 17(2), 520–527 (2009). [CrossRef] [PubMed]

25.

C. H. Cheng, Y. C. Lien, C. L. Wu, and G. R. Lin, “Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency,” Opt. Express 21(1), 391–403 (2013). [CrossRef] [PubMed]

26.

G. R. Lin, C. W. Lian, C. L. Wu, and Y. H. Lin, “Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate,” Opt. Express 18(9), 9213–9219 (2010). [CrossRef] [PubMed]

27.

R. F. Egerton, Electron energy-loss spectroscopy in the electron microscope. (Plenum Press, 1996).

28.

F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys. 95(7), 3723–3732 (2004). [CrossRef]

29.

S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy 108(4), 346–357 (2008). [CrossRef] [PubMed]

30.

S. Tong, X. N. Liu, T. Gao, and X. M. Bao, “Intense violet-blue photoluminescence in as-deposited amorphous Si:H:O films,” Appl. Phys. Lett. 71(5), 698–700 (1997). [CrossRef]

31.

X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett. 86(20), 201906 (2005). [CrossRef]

32.

P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, in Multiphoton Microscopy in the Biomedical Sciences V, edited by A. Periasamy and P. T. C. So 5700, 171 (2005).

33.

M. Schmidt, J. Heimann, R. Scholz, V. Y. Timoshenko, M. G. Lisachenko, and M. Zacharias, in Advanced Luminescent Materials and Quantum Confinement II, edited by M. Cahay, J. P. Leburton, D. J. Lockwood et al. (Electrochemical Society, Pennington, 2002), p.83.

34.

R. Guerra and S. Ossicini, “High luminescence in small Si/SiO2 nanocrystals: A theoretical study,” Phys. Rev. B 81(24), 245307 (2010). [CrossRef]

35.

K. Žídek, F. Trojánek, P. Malý, L. Ondič, I. Pelant, K. Dohnalová, L. Šiller, R. Little, and B. R. Horrocks, “Femtosecond luminescence spectroscopy of core states in silicon nanocrystals,” Opt. Express 18(24), 25241–25249 (2010). [CrossRef] [PubMed]

OCIS Codes
(160.6000) Materials : Semiconductor materials
(250.5230) Optoelectronics : Photoluminescence
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:
Optoelectronics

History
Original Manuscript: July 16, 2013
Revised Manuscript: September 17, 2013
Manuscript Accepted: September 17, 2013
Published: September 25, 2013

Citation
Kung-Hsuan Lin, Sz-Chian Liou, Wei-Liang Chen, Chung-Lun Wu, Gong-Ru Lin, and Yu-Ming Chang, "Tunable and stable UV-NIR photoluminescence from annealed SiOx with Si nanoparticles," Opt. Express 21, 23416-23424 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23416


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. G. Cullis, L. T. Canham, and P. D. J. Calcott, “The structural and luminescence properties of porous silicon,” J. Appl. Phys.82(3), 909–965 (1997). [CrossRef]
  2. L. T. Canham, “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers,” Appl. Phys. Lett.57(10), 1046–1048 (1990). [CrossRef]
  3. C. Delerue, G. Allan, and M. Lannoo, “Theoretical aspects of the luminescence of porous silicon,” Phys. Rev. B Condens. Matter48(15), 11024–11036 (1993). [CrossRef] [PubMed]
  4. H. Mizuno, H. Koyama, and N. Koshida, “Oxide-free blue photoluminescence from photochemically etched porous silicon,” Appl. Phys. Lett.69(25), 3779–3781 (1996). [CrossRef]
  5. J. C. Vial, A. Bsiesy, F. Gaspard, R. Herino, M. Ligeon, F. Muller, R. Romestain, and R. M. Macfarlane, “Mechanisms of visible-light emission from electrooxidized porous silicon,” Phys. Rev. B45(24), 14171–14176 (1992). [CrossRef]
  6. Y. Kanemitsu, T. Ogawa, K. Shiraishi, and K. Takeda, “Visible photoluminescence from oxidized Si nanometer-sized spheres: exciton confinement on a spherical shell,” Phys. Rev. B Condens. Matter48(7), 4883–4886 (1993). [CrossRef] [PubMed]
  7. T. Matsumoto, T. Futagi, H. Mimura, and Y. Kanemitsu, “Ultrafast decay dynamics of luminescence in porous silicon,” Phys. Rev. B Condens. Matter47(20), 13876–13879 (1993). [CrossRef] [PubMed]
  8. A. J. Kontkiewicz, A. M. Kontkiewicz, J. Siejka, S. Sen, G. Nowak, A. M. Hoff, P. Sakthivel, K. Ahmed, P. Mukherjee, S. Witanachchi, and J. Lagowski, “Evidence that blue luminescence of oxidized porous silicon originates from SiO2,” Appl. Phys. Lett.65(11), 1436–1438 (1994). [CrossRef]
  9. M. V. Wolkin, J. Jorne, P. M. Fauchet, G. Allan, and C. Delerue, “Electronic states and luminescence in porous silicon quantum dots: The role of oxygen,” Phys. Rev. Lett.82(1), 197–200 (1999). [CrossRef]
  10. D. I. Kovalev, I. D. Yaroshetzkii, T. Muschik, V. Petrovakoch, and F. Koch, “Fast and slow visible luminescence bands of oxidized porous Si,” Appl. Phys. Lett.64(2), 214–216 (1994). [CrossRef]
  11. G. G. Qin, J. Lin, J. Q. Duan, and G. Q. Yao, “Comparative study of ultraviolet emission with peak wavelengths around 350 nm from oxidized porous silicon and that from SiO2 powder,” Appl. Phys. Lett.69(12), 1689–1691 (1996). [CrossRef]
  12. A. Sa'ar, “Photoluminescence from silicon nanostructures: The mutual role of quantum confinement and surface chemistry,” J. Nanophotonics3(1), 032501 (2009). [CrossRef]
  13. M. Zacharias, J. Heitmann, R. Scholz, U. Kahler, M. Schmidt, and J. Blasing, “Size-controlled highly luminescent silicon nanocrystals: a SiO/SiO2 superlattice approach,” Appl. Phys. Lett.80(4), 661–663 (2002). [CrossRef]
  14. D. J. Lockwood, Z. H. Lu, and J. M. Baribeau, “Quantum confined luminescence in Si/SiO2 superlattices,” Phys. Rev. Lett.76(3), 539–541 (1996). [CrossRef] [PubMed]
  15. B. Averboukh, R. Huber, K. W. Cheah, Y. R. Shen, G. G. Qin, Z. C. Ma, and W. H. Zong, “Luminescence studies of a Si/SiO2 superlattice,” J. Appl. Phys.92(7), 3564–3568 (2002). [CrossRef]
  16. S. Godefroo, M. Hayne, M. Jivanescu, A. Stesmans, M. Zacharias, O. I. Lebedev, G. Van Tendeloo, and V. V. Moshchalkov, “Classification and control of the origin of photoluminescence from Si nanocrystals,” Nat. Nanotechnol.3(3), 174–178 (2008). [CrossRef] [PubMed]
  17. X. J. Hao, A. P. Podhorodecki, Y. S. Shen, G. Zatryb, J. Misiewicz, and M. A. Green, “Effects of Si-rich oxide layer stoichiometry on the structural and optical properties of Si QD/SiO2 multilayer films,” Nanotechnology20(48), 485703 (2009). [CrossRef] [PubMed]
  18. X. M. Wen, L. Van Dao, P. Hannaford, E. C. Cho, Y. H. Cho, and M. A. Green, “Excitation dependence of photoluminescence in silicon quantum dots,” New J. Phys.9(9), 337 (2007). [CrossRef]
  19. B. H. Lai, C. H. Cheng, Y. H. Pai, and G. R. Lin, “Plasma power controlled deposition of SiOx with manipulated Si quantum dot size for photoluminescent wavelength tailoring,” Opt. Express18(5), 4449–4456 (2010). [CrossRef] [PubMed]
  20. L. Khriachtchev, T. Nikitin, R. Velagapudi, J. Lahtinen, and S. Novikov, “Light-emission mechanism of thermally annealed silicon-rich silicon oxide revisited: What is the role of silicon nanocrystals?” Appl. Phys. Lett.94(4), 043115 (2009). [CrossRef]
  21. M. S. Carroll, L. Brewer, J. C. Verley, J. Banks, J. J. Sheng, W. Pan, and R. Dunn, “Silicon nanocrystal growth in the long diffusion length regime using high density plasma chemical vapour deposited silicon rich oxides,” Nanotechnology18(31), 315707 (2007). [CrossRef]
  22. K. Y. Kuo, S. W. Hsu, P. R. Huang, W. L. Chuang, C. C. Liu, and P. T. Lee, “Optical properties and sub-bandgap formation of nano-crystalline Si quantum dots embedded ZnO thin film,” Opt. Express20(10), 10470–10475 (2012). [CrossRef] [PubMed]
  23. C. H. Chang, Y. H. Pai, J. H. He, and G. R. Lin, “Wavelength-tunable blue photoluminescence of < 2 nm Si nanocrystal synthesized by ultra-low-flow-density PECVD,” Acta Mater.58(4), 1270–1275 (2010). [CrossRef]
  24. V. Svrcek, D. Mariotti, and M. Kondo, “Ambient-stable blue luminescent silicon nanocrystals prepared by nanosecond-pulsed laser ablation in water,” Opt. Express17(2), 520–527 (2009). [CrossRef] [PubMed]
  25. C. H. Cheng, Y. C. Lien, C. L. Wu, and G. R. Lin, “Mutlicolor electroluminescent Si quantum dots embedded in SiOx thin film MOSLED with 2.4% external quantum efficiency,” Opt. Express21(1), 391–403 (2013). [CrossRef] [PubMed]
  26. G. R. Lin, C. W. Lian, C. L. Wu, and Y. H. Lin, “Gain analysis of optically-pumped Si nanocrystal waveguide amplifiers on silicon substrate,” Opt. Express18(9), 9213–9219 (2010). [CrossRef] [PubMed]
  27. R. F. Egerton, Electron energy-loss spectroscopy in the electron microscope. (Plenum Press, 1996).
  28. F. Iacona, C. Bongiorno, C. Spinella, S. Boninelli, and F. Priolo, “Formation and evolution of luminescent Si nanoclusters produced by thermal annealing of SiOx films,” J. Appl. Phys.95(7), 3723–3732 (2004). [CrossRef]
  29. S. Schamm, C. Bonafos, H. Coffin, N. Cherkashin, M. Carrada, G. Ben Assayag, A. Claverie, M. Tencé, and C. Colliex, “Imaging Si nanoparticles embedded in SiO2 layers by (S)TEM-EELS,” Ultramicroscopy108(4), 346–357 (2008). [CrossRef] [PubMed]
  30. S. Tong, X. N. Liu, T. Gao, and X. M. Bao, “Intense violet-blue photoluminescence in as-deposited amorphous Si:H:O films,” Appl. Phys. Lett.71(5), 698–700 (1997). [CrossRef]
  31. X. Yang, X. L. Wu, S. H. Li, H. Li, T. Qiu, Y. M. Yang, P. K. Chu, and G. G. Siu, “Origin of the 370-nm luminescence in Si oxide nanostructures,” Appl. Phys. Lett.86(20), 201906 (2005). [CrossRef]
  32. P. R. Barber, S. M. Ameer-Beg, J. Gilbey, R. J. Edens, I. Ezike, and B. Vojnovic, in Multiphoton Microscopy in the Biomedical Sciences V, edited by A. Periasamy and P. T. C. So 5700, 171 (2005).
  33. M. Schmidt, J. Heimann, R. Scholz, V. Y. Timoshenko, M. G. Lisachenko, and M. Zacharias, in Advanced Luminescent Materials and Quantum Confinement II, edited by M. Cahay, J. P. Leburton, D. J. Lockwood et al. (Electrochemical Society, Pennington, 2002), p.83.
  34. R. Guerra and S. Ossicini, “High luminescence in small Si/SiO2 nanocrystals: A theoretical study,” Phys. Rev. B81(24), 245307 (2010). [CrossRef]
  35. K. Žídek, F. Trojánek, P. Malý, L. Ondič, I. Pelant, K. Dohnalová, L. Šiller, R. Little, and B. R. Horrocks, “Femtosecond luminescence spectroscopy of core states in silicon nanocrystals,” Opt. Express18(24), 25241–25249 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited