OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 20 — Oct. 7, 2013
  • pp: 23604–23610
« Show journal navigation

Handedness control in a 2-μm optical vortex parametric oscillator

Taximaiti Yusufu, Yu Tokizane, Katsuhiko Miyamoto, and Takashige Omatsu  »View Author Affiliations


Optics Express, Vol. 21, Issue 20, pp. 23604-23610 (2013)
http://dx.doi.org/10.1364/OE.21.023604


View Full Text Article

Acrobat PDF (2030 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abstract: We present the first handedness control of an optical vortex output from a vortex-pumped optical parametric oscillator. The handedness of the optical vortex was identical to that of the pump vortex beam. Over 2 mJ, 2-μm optical vortex with a topological charge of ± 1 was achieved. We found that the handedness of a fractional vortex with a half integer topological charge can also be selectively controlled.

© 2013 Optical Society of America

1. Introduction

Optical vortices, which exhibit unique features such as helical wavefronts characterized by the azimuthal phase exp(imφ) (m is an integer termed the topological charge) and annular intensity profiles due to on-axial phase singularity, have orbital angular momentum, , per photon [1

1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]

5

5. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon 3(2), 161–204 (2011). [CrossRef]

]. They have been widely investigated for various applications including optical manipulation [6

6. D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]

], optical trapping [7

7. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997). [CrossRef]

], super-resolution microscopy [8

8. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007). [CrossRef] [PubMed]

], ultra-fast closed-loop spectroscopy [9

9. Y. Ueno, Y. Toda, S. Adachi, R. Morita, and T. Tawara, “Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing,” Opt. Express 17(22), 20567–20574 (2009). [CrossRef] [PubMed]

, 10

10. K. Shigematsu, Y. Toda, K. Yamane, and R. Morita, “Orbital angular momentum spectral dynamics of GaN excitons excited by optical vortices,” Jpn. J. Appl. Phys. 52(2), 08JL08 (2013). [CrossRef]

], and material processing [11

11. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010). [CrossRef] [PubMed]

, 12

12. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010). [CrossRef] [PubMed]

]. We and our associates have found that the helical wavefront of an optical vortex can be transferred to a metal through a laser ablation process to form chiral nanostructures [13

13. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012), doi:. [CrossRef] [PubMed]

]. Furthermore, we also found that the chirality of the nano-structures was directly determined by the handedness (clockwise or counter-clockwise direction) of the helical wavefront of the optical vortices [14

14. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013). [CrossRef]

].

Such chiral nano-structures will enable us to determine the chirality and optical activity of molecules and chemical composites on the nanoscale. They may also allow us to fabricate plasmonic structures and planar metamaterials with chiral selectivity. For instance, a sub-micron scale chiral structure called a gammadion array [15

15. K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express 15(15), 9575–9583 (2007). [CrossRef] [PubMed]

, 16

16. K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16(10), 7189–7196 (2008). [CrossRef] [PubMed]

] exhibits optical activity in the terahertz region (chiral metamaterial).

A key issue in fabricating such optical devices based on chiral nanostructures formed by optical vortices is the frequency extension of optical vortices to meet the absorption bands of materials. A further concern is the selective control of the handedness of the optical vortex output.

The direct generation of optical vortex outputs from solid-state lasers in combination with annular beam pumping [24

24. J.-F. Bisson, Y. Senatsky, and K. Ueda, “Generation of Laguerre-Gaussian modes in Nd:YAG laser using diffractive optical pumping,” Laser Phys. Lett. 2(7), 327–333 (2005). [CrossRef]

26

26. Y. F. Chen and Y. P. Lan, “Dynamics of the Laguerre Gaussian TEM*0,l mode in a solid-state laser,” Phys. Rev. A 63(6), 063807 (2001). [CrossRef]

], spatial filtering based on thermal lensing [27

27. M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3- μm bounce laser,” Opt. Express 15(12), 7616–7622 (2007). [CrossRef] [PubMed]

, 28

28. S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009). [CrossRef]

], an intracavity spiral phase plate [29

29. R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1–6), 115–121 (1999). [CrossRef]

], and a defected cavity mirror [30

30. K. Kano, Y. Kozawa, and S. Sato, “Generation of a purely single transverse mode vortex beam from a He-Ne laser cavity with a spot-defect mirror,” Int. J. Opt. 2012, 359141 (2011).

] has also been investigated thoroughly. However, in most cases, the handedness of the vortex output in these lasers was determined randomly.

Selective control of the handedness of 2-μm vortex or fractional vortex lasers will enable the creation of chiral nanostructures of polymers. In particular, the fractional optical vortex output with the radial opening intensity distribution will provide us with a means to create split-ring resonator arrays for metamaterials.

In this paper, we demonstrate the first handedness control of a 2-μm optical vortex or fractional vortex output from a 1-μm optical vortex pumped optical parametric oscillator merely by inverting the handedness of the optical vortex pump beam.

2. Experimental setup

Figure 1
Fig. 1 Experimental setups for an optical parametric oscillator pumped by a 1-μm optical vortex beam and the wavefront measurement using a transmission grating with low spatial frequency.
shows a schematic diagram of a 1-μm optical vortex pumped KTP optical parametric oscillator [31

31. K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27(5), 1137–1140 (1991). [CrossRef]

]. A conventional Q-switched Nd:YAG laser (pulse duration: 20 ns, wavelength: 1.064 μm, PRF: 50 Hz, maximum pulse energy: 21 mJ, spatial form: Gaussian profile) was used as the pump source of the optical parametric oscillator, and its output was converted into an optical vortex with a topological charge, m, of 1, by using a spiral phase plate, azimuthally divided into 16 segments with an nπ/8 phase shift (where n is an integer between 0 and 15) [32

32. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004). [CrossRef] [PubMed]

]. To invert the sign (handedness) of the topological charge, m, of the pump beam, the spiral phase plate was reversed. The pump beam was focused to be a ϕ 670 μm spot on the KTP crystal by a lens with a focal length of 500 mm. The resonator comprised a concave input mirror (M1) with a curvature of 2000 mm and high transmissivity and high reflectivity for 1-μm and 2-μm wavelengths, respectively; and a concave output mirror (M2) with a curvature of 100 mm, a reflectivity of 80% for 2-μm and a high transmissivity for 1-μm. A KTP crystal with dimensions of 5 × 5 × 30 mm was cut at θ = 51.4 ° relative to the z-axis for type II (ordinary wave (o-wave) → ordinary wave (o-wave) + extraordinary wave (e-wave)) phase matching in degenerate down conversion (the wavelength of the signal (o-wave) and idler (e-wave) outputs was 2.128 μm).

3. Results & Discussions

When the pump beam was right-handed (Figs. 2(a)
Fig. 2 (a) Spatial form, and (b) self-interference fringes of the right-handed pump beam. (c) Spatial form, (d) self-interference fringes, and (e) simulated fringes of the signal output obtained with right-handed pumping. (f) Spatial form, and (g) self-interference fringes of the left-handed pump beam. (h) Spatial form, (i) self-interference fringes, and (j) simulated fringes of the signal output with left-handed pumping.
and 2(b)), the signal output exhibited an annular intensity profile and a pair of upward fork-like fringes, indicating that the signal output was a right-handed optical vortex with a charge, m, of + 1 (Figs. 2(c) and 2(d)). The simulated self-interference fringes of the right-handed optical vortex are presented in Fig. 2(e).

When the spiral phase plate for the pump beam was reversed (the pump beam was left-handed as shown in Figs. 2(f) and 2(g)), the resulting handedness of signal output was also inverted, evidenced by the inverted fork-like fringes as shown Fig. 2(i). The simulated self-interference fringes of the optical vortex with charge m, of −1, are shown in Fig. 2(j). The experimental results are in good agreement with the simulations.

We further investigated the handedness control of the optical vortex output from the optical parametric oscillator with the nearly plane-parallel cavity configuration. The concave output mirror was replaced by a flat output mirror. With this setup, topological charge sharing of the pump beam between the signal and idler outputs occurs, resulting in a fractional vortex signal output with a half-integer topological charge, m, of 0.5.

When the pump vortex beam was right-handed, the signal output had a half-integer topological charge of + 0.5, as evidenced by an upward radial opening intensity profile shown in Fig. 3(a)
Fig. 3 Spatial forms of the signal output in a nearly plane-parallel cavity configuration. (a) Spatial form and (b) interferometric fringes of the signal output with right-handed pumping. (c) Spatial form and (d) interferometric fringes of the signal output with left-handed pumping. (e)-(h) Simulated spatial forms and self-interference fringes of the signal output.
and a pair of upward fork-like fringes as shown in Fig. 3(b). The simulated spatial form and self-interference fringes of the fractional vortex having a topological charge, m, of + 0.5 (Figs. 3(e) and 3(f)) are consistent with those of the signal output.

When the pump vortex beam was left-handed, the signal output still exhibited an upward radial opening (Fig. 3(c)). However, a pair of fork-like fringes were flipped upside down (Fig. 3(d)), indicating that the signal output had a half integer topological charge, m, of −0.5. We also simulated the spatial form (Fig. 3(g)) and self-interference fringes (Fig. 3(h)) of a fractional vortex having a topological charge of −0.5. There was good agreement between the simulations and experiments.

These results indicate that the handedness of the signal output with an integer or non-integer topological charge is determined only by the handedness of the pump beam.

Figure 4
Fig. 4 Signal output energy as a function of pump energy.
shows the output energy as a function of the pump energy. The right-handed (left-handed) optical vortex output energy of 2.0 mJ (2.2 mJ) with a topological charge of + 1 (−1) was obtained at the maximum pump energy of 21 mJ, corresponding to an optical-optical efficiency of 10.5% in the stable cavity configuration. With the nearly plane-parallel cavity configuration, the maximum energy of the signal output (fractional vortex output) with a half-integer topological charge, m, of + 0.5 was measured to be 0.9 mJ, corresponding to an optical-optical efficiency of 4.3%. The left-handed signal output energies were almost identical to those of the right-handed signal outputs.

With this present system, the reflectivity of the output coupler was not optimized yet. Also, the beam propagation factor of the pump beam (the vortex output shows M2 of ~2) impacted the intracavity parametric gain. Further improvement of the optical-optical efficiency of the system up to 20-30% will be possible by optimizing the outcoupling of the cavity as well as the focusing optics for the pump beam [34

34. K. Miyamoto and H. Ito, “Wavelength-agile mid-infrared (5-10 microm) generation using a galvano-controlled KTiOPO4 optical parametric oscillator,” Opt. Lett. 32(3), 274–276 (2007). [CrossRef] [PubMed]

].

In the optical parametric oscillator, the nonlinear interaction between a signal (or an idler) and pump electric fields (not intensity profiles) encourages the oscillation of the signal (or idler) output. Thus, the gain can be determined from the spatial overlap efficiency η between the signal and pump fields (not intensity profiles), given by
η=|(Epm)Esnrdrdϕ|Epm|2rdrdϕ|Esn|2rdrdϕ|
(1)
Epm=(rωp)mexp(r2ωp2)eimϕ
(2)
where Epm and Esn are the electric fields of the pump beam and signal output, respectively, m and n are the indices for the handedness ( ± 1), and ωp is the beam waist of the pump beam. When the signal output is an optical vortex (a beam waist ωs) given by
Esn=(rωs)nexp(r2ωs2)einϕ
(3)
, a general relationship η given by,
η={4ωp2ωs2(ωp2+ωs2)2m=n0mn
(4)
is established. If the signal output is the fractional vortex formed by the Gaussian and vortex outputs given by
Esn=exp(r2ωs2)+(rωs)nexp(r2ωs2)einϕ
(5)
, the relationshipη becomes

η={4ωp2ωs23(ωp2+ωs2)2m=n0mn
(6)

These relationships indicate that the handedness of the signal output must be the same as that of the pump beam and the slope efficiency (10-11%) of the signal output in the nearly plane-parallel cavity configuration must be less than that (16-18%) in the stable cavity configuration. These results support the findings of our experiments.

4. Conclusion

We have demonstrated the handedness control of a 2-μm optical vortex output with an integer or non-integer topological charge from a 1-μm vortex pumped optical parametric oscillator, for the first time. The handedness of the 2-μm vortex output was fully determined by the handedness of the 1-μm pump vortex beam. The maximum 2-μm vortex output energy achieved was 2.2 mJ, corresponding to an optical-optical efficiency of 10.5%.

Selective control of the handedness of the 2-μm vortex output opens up a new generation of material processing, such as chiral polymeric nano-structures.

Acknowledgments

The authors acknowledge support from a Grant-in-Aid for Scientific Research (No. 24360022) from the Japan Society for the Promotion of Science.

References and links

1.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45(11), 8185–8189 (1992). [CrossRef] [PubMed]

2.

G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40(1), 73–87 (1993). [CrossRef]

3.

M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57(5), 35–40 (2004). [CrossRef]

4.

M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Progress in Optics 42, 219–276. E. Wolf, ed., (Elsevier, North-Holland, 2001).

5.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon 3(2), 161–204 (2011). [CrossRef]

6.

D. G. Grier, “A revolution in optical manipulation,” Nature 424(6950), 810–816 (2003). [CrossRef] [PubMed]

7.

T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett. 78(25), 4713–4716 (1997). [CrossRef]

8.

S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett. 98(21), 218103 (2007). [CrossRef] [PubMed]

9.

Y. Ueno, Y. Toda, S. Adachi, R. Morita, and T. Tawara, “Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing,” Opt. Express 17(22), 20567–20574 (2009). [CrossRef] [PubMed]

10.

K. Shigematsu, Y. Toda, K. Yamane, and R. Morita, “Orbital angular momentum spectral dynamics of GaN excitons excited by optical vortices,” Jpn. J. Appl. Phys. 52(2), 08JL08 (2013). [CrossRef]

11.

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010). [CrossRef] [PubMed]

12.

T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express 18(17), 17967–17973 (2010). [CrossRef] [PubMed]

13.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett. 12(7), 3645–3649 (2012), doi:. [CrossRef] [PubMed]

14.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013). [CrossRef]

15.

K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express 15(15), 9575–9583 (2007). [CrossRef] [PubMed]

16.

K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express 16(10), 7189–7196 (2008). [CrossRef] [PubMed]

17.

K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A 54(5), R3742–R3745 (1996). [CrossRef] [PubMed]

18.

J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A 56(5), 4193–4196 (1997). [CrossRef]

19.

A. J. Lee, T. Omatsu, and H. M. Pask, “Direct generation of a first-Stokes vortex laser beam from a self-Raman laser,” Opt. Express 21(10), 12401–12409 (2013). [CrossRef] [PubMed]

20.

D. P. Caetano, M. P. Almeida, P. H. Souto Ribeiro, J. Huguenin, B. Coutinho dos Santos, and A. Khoury, “Conservation of orbital angular momentum in stimulated down-conversion,” Phys. Rev. A 66(4), 041801 (2002). [CrossRef]

21.

M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A 70(1), 013812 (2004). [CrossRef]

22.

T. Yusufu, Y. Tokizane, M. Yamada, K. Miyamoto, and T. Omatsu, “Tunable 2-μm optical vortex parametric oscillator,” Opt. Express 20(21), 23666–23675 (2012). [CrossRef] [PubMed]

23.

K. Miyamoto, S. Miyagi, M. Yamada, K. Furuki, N. Aoki, M. Okida, and T. Omatsu, “Optical vortex pumped mid-infrared optical parametric oscillator,” Opt. Express 19(13), 12220–12226 (2011). [CrossRef] [PubMed]

24.

J.-F. Bisson, Y. Senatsky, and K. Ueda, “Generation of Laguerre-Gaussian modes in Nd:YAG laser using diffractive optical pumping,” Laser Phys. Lett. 2(7), 327–333 (2005). [CrossRef]

25.

J. W. Kim, J. I. Mackenzie, J. R. Hayes, and W. A. Clarkson, “High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output,” Opt. Express 19(15), 14526–14531 (2011). [CrossRef] [PubMed]

26.

Y. F. Chen and Y. P. Lan, “Dynamics of the Laguerre Gaussian TEM*0,l mode in a solid-state laser,” Phys. Rev. A 63(6), 063807 (2001). [CrossRef]

27.

M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3- μm bounce laser,” Opt. Express 15(12), 7616–7622 (2007). [CrossRef] [PubMed]

28.

S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B 97(2), 275–280 (2009). [CrossRef]

29.

R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun. 169(1–6), 115–121 (1999). [CrossRef]

30.

K. Kano, Y. Kozawa, and S. Sato, “Generation of a purely single transverse mode vortex beam from a He-Ne laser cavity with a spot-defect mirror,” Int. J. Opt. 2012, 359141 (2011).

31.

K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron. 27(5), 1137–1140 (1991). [CrossRef]

32.

S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt. 43(3), 688–694 (2004). [CrossRef] [PubMed]

33.

D. P. Ghai, P. Senthilkumaran, and R. S. Sirohi, “Shearograms of an optical phase singularity,” Opt. Commun. 281(6), 1315–1322 (2008). [CrossRef]

34.

K. Miyamoto and H. Ito, “Wavelength-agile mid-infrared (5-10 microm) generation using a galvano-controlled KTiOPO4 optical parametric oscillator,” Opt. Lett. 32(3), 274–276 (2007). [CrossRef] [PubMed]

OCIS Codes
(190.0190) Nonlinear optics : Nonlinear optics
(190.4970) Nonlinear optics : Parametric oscillators and amplifiers
(080.4865) Geometric optics : Optical vortices

ToC Category:
Nonlinear Optics

History
Original Manuscript: August 9, 2013
Revised Manuscript: September 5, 2013
Manuscript Accepted: September 5, 2013
Published: September 26, 2013

Citation
Taximaiti Yusufu, Yu Tokizane, Katsuhiko Miyamoto, and Takashige Omatsu, "Handedness control in a 2-μm optical vortex parametric oscillator," Opt. Express 21, 23604-23610 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-20-23604


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A45(11), 8185–8189 (1992). [CrossRef] [PubMed]
  2. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt.40(1), 73–87 (1993). [CrossRef]
  3. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today57(5), 35–40 (2004). [CrossRef]
  4. M. S. Soskin and M. V. Vasnetsov, “Singular optics,” Progress in Optics 42, 219–276. E. Wolf, ed., (Elsevier, North-Holland, 2001).
  5. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon3(2), 161–204 (2011). [CrossRef]
  6. D. G. Grier, “A revolution in optical manipulation,” Nature424(6950), 810–816 (2003). [CrossRef] [PubMed]
  7. T. Kuga, Y. Torii, N. Shiokawa, T. Hirano, Y. Shimizu, and H. Sasada, “Novel optical trap of atoms with a doughnut beam,” Phys. Rev. Lett.78(25), 4713–4716 (1997). [CrossRef]
  8. S. Bretschneider, C. Eggeling, and S. W. Hell, “Breaking the diffraction barrier in fluorescence microscopy by optical shelving,” Phys. Rev. Lett.98(21), 218103 (2007). [CrossRef] [PubMed]
  9. Y. Ueno, Y. Toda, S. Adachi, R. Morita, and T. Tawara, “Coherent transfer of orbital angular momentum to excitons by optical four-wave mixing,” Opt. Express17(22), 20567–20574 (2009). [CrossRef] [PubMed]
  10. K. Shigematsu, Y. Toda, K. Yamane, and R. Morita, “Orbital angular momentum spectral dynamics of GaN excitons excited by optical vortices,” Jpn. J. Appl. Phys.52(2), 08JL08 (2013). [CrossRef]
  11. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express18(3), 2144–2151 (2010). [CrossRef] [PubMed]
  12. T. Omatsu, K. Chujo, K. Miyamoto, M. Okida, K. Nakamura, N. Aoki, and R. Morita, “Metal microneedle fabrication using twisted light with spin,” Opt. Express18(17), 17967–17973 (2010). [CrossRef] [PubMed]
  13. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using Optical Vortex To Control the Chirality of Twisted Metal Nanostructures,” Nano Lett.12(7), 3645–3649 (2012), doi:. [CrossRef] [PubMed]
  14. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett.110(14), 143603 (2013). [CrossRef]
  15. K. Konishi, T. Sugimoto, B. Bai, Y. Svirko, and M. Kuwata-Gonokami, “Effect of surface plasmon resonance on the optical activity of chiral metal nanogratings,” Opt. Express15(15), 9575–9583 (2007). [CrossRef] [PubMed]
  16. K. Konishi, B. Bai, X. Meng, P. Karvinen, J. Turunen, Y. P. Svirko, and M. Kuwata-Gonokami, “Observation of extraordinary optical activity in planar chiral photonic crystals,” Opt. Express16(10), 7189–7196 (2008). [CrossRef] [PubMed]
  17. K. Dholakia, N. B. Simpson, M. J. Padgett, and L. Allen, “Second-harmonic generation and the orbital angular momentum of light,” Phys. Rev. A54(5), R3742–R3745 (1996). [CrossRef] [PubMed]
  18. J. Courtial, K. Dholakia, L. Allen, and M. J. Padgett, “Second-harmonic generation and the conservation of orbital angular momentum with high-order Laguerre-Gaussian modes,” Phys. Rev. A56(5), 4193–4196 (1997). [CrossRef]
  19. A. J. Lee, T. Omatsu, and H. M. Pask, “Direct generation of a first-Stokes vortex laser beam from a self-Raman laser,” Opt. Express21(10), 12401–12409 (2013). [CrossRef] [PubMed]
  20. D. P. Caetano, M. P. Almeida, P. H. Souto Ribeiro, J. Huguenin, B. Coutinho dos Santos, and A. Khoury, “Conservation of orbital angular momentum in stimulated down-conversion,” Phys. Rev. A66(4), 041801 (2002). [CrossRef]
  21. M. Martinelli, J. A. O. Huguenin, P. Nussenzveig, and A. Z. Khoury, “Orbital angular momentum exchange in an optical parametric oscillator,” Phys. Rev. A70(1), 013812 (2004). [CrossRef]
  22. T. Yusufu, Y. Tokizane, M. Yamada, K. Miyamoto, and T. Omatsu, “Tunable 2-μm optical vortex parametric oscillator,” Opt. Express20(21), 23666–23675 (2012). [CrossRef] [PubMed]
  23. K. Miyamoto, S. Miyagi, M. Yamada, K. Furuki, N. Aoki, M. Okida, and T. Omatsu, “Optical vortex pumped mid-infrared optical parametric oscillator,” Opt. Express19(13), 12220–12226 (2011). [CrossRef] [PubMed]
  24. J.-F. Bisson, Y. Senatsky, and K. Ueda, “Generation of Laguerre-Gaussian modes in Nd:YAG laser using diffractive optical pumping,” Laser Phys. Lett.2(7), 327–333 (2005). [CrossRef]
  25. J. W. Kim, J. I. Mackenzie, J. R. Hayes, and W. A. Clarkson, “High power Er:YAG laser with radially-polarized Laguerre-Gaussian (LG01) mode output,” Opt. Express19(15), 14526–14531 (2011). [CrossRef] [PubMed]
  26. Y. F. Chen and Y. P. Lan, “Dynamics of the Laguerre Gaussian TEM*0,l mode in a solid-state laser,” Phys. Rev. A63(6), 063807 (2001). [CrossRef]
  27. M. Okida, T. Omatsu, M. Itoh, and T. Yatagai, “Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO4 1.3- μm bounce laser,” Opt. Express15(12), 7616–7622 (2007). [CrossRef] [PubMed]
  28. S. P. Chard, P. C. Shardlow, and M. J. Damzen, “High-power non-astigmatic TEM00 and vortex mode generation in a compact bounce laser design,” Appl. Phys. B97(2), 275–280 (2009). [CrossRef]
  29. R. Oron, Y. Danziger, N. Davidson, A. A. Friesem, and E. Hasman, “Laser mode discrimination with intra-cavity spiral phase elements,” Opt. Commun.169(1–6), 115–121 (1999). [CrossRef]
  30. K. Kano, Y. Kozawa, and S. Sato, “Generation of a purely single transverse mode vortex beam from a He-Ne laser cavity with a spot-defect mirror,” Int. J. Opt.2012, 359141 (2011).
  31. K. Kato, “Parametric oscillation at 3.2 µm in KTP pumped at 1.064 µm,” IEEE J. Quantum Electron.27(5), 1137–1140 (1991). [CrossRef]
  32. S. S. R. Oemrawsingh, J. A. W. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. K. Verstegen, J. G. Kloosterboer, and G. W. ’t Hooft, “Production and characterization of spiral phase plates for optical wavelengths,” Appl. Opt.43(3), 688–694 (2004). [CrossRef] [PubMed]
  33. D. P. Ghai, P. Senthilkumaran, and R. S. Sirohi, “Shearograms of an optical phase singularity,” Opt. Commun.281(6), 1315–1322 (2008). [CrossRef]
  34. K. Miyamoto and H. Ito, “Wavelength-agile mid-infrared (5-10 microm) generation using a galvano-controlled KTiOPO4 optical parametric oscillator,” Opt. Lett.32(3), 274–276 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited