## Solution-processable complex plasmonic quasicrystals |

Optics Express, Vol. 21, Issue 23, pp. 28444-28449 (2013)

http://dx.doi.org/10.1364/OE.21.028444

Acrobat PDF (4581 KB)

### Abstract

Large-area plasmonic photonic structures containing a proportion of quasicrystals can be fabricated by a solution-processable method. A photoresist film is exposed to a multi-beam interference pattern to form a quasicrystal template. A gold nanoparticle colloid is then spin-coated onto the template. An inverse pattern can be obtained after annealing to afford greater control over the sample morphologies and spectroscopic characteristics. Coupling between the waveguide modes and particle plasmons strengthens with increasing annealing temperature. After mode degeneration is removed, a multi-mode coupling process is observed. These results are helpful in understanding the mechanisms and design strategies of complex plasmonic nanostructures.

© 2013 Optical Society of America

## 1. Introduction

1. L. Dal Negro and N.-N. Feng, “Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles,” Opt. Express **15**(22), 14396–14403 (2007). [CrossRef] [PubMed]

2. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express **16**(8), 5544–5555 (2008). [CrossRef] [PubMed]

4. Z. Deng, Z. Li, J. Dong, and H. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics **6**(3), 507–514 (2011). [CrossRef]

5. F. Przybilla, C. Genet, and T. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. **89**(12), 121115 (2006). [CrossRef]

6. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. **8**(8), 2469–2472 (2008). [CrossRef] [PubMed]

7. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. **9**(11), 3922–3929 (2009). [CrossRef] [PubMed]

8. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics **4**(3), 165–169 (2010). [CrossRef]

9. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express **17**(5), 3741–3753 (2009). [CrossRef] [PubMed]

2. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express **16**(8), 5544–5555 (2008). [CrossRef] [PubMed]

10. F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. **90**(9), 091119 (2007). [CrossRef]

11. Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography,” Appl. Phys. Lett. **88**(25), 251104 (2006). [CrossRef]

12. X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology **24**(25), 255303 (2013). [CrossRef] [PubMed]

13. X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. **6**(4), 651–655 (2006). [CrossRef] [PubMed]

14. X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. **90**(13), 133114 (2007). [CrossRef]

15. X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology **20**(42), 425303 (2009). [CrossRef] [PubMed]

16. H. Liu, X. Zhang, and Z. Gao, “Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles,” Photon. Nanostruct. Fundam. Appl. **8**(3), 131–139 (2010). [CrossRef]

11. Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography,” Appl. Phys. Lett. **88**(25), 251104 (2006). [CrossRef]

17. S.-C. Cheng, X. Zhu, and S. Yang, “Complex 2D photonic crystals with analogue local symmetry as 12-fold quasicrystals,” Opt. Express **17**(19), 16710–16715 (2009). [CrossRef] [PubMed]

## 2. Fabrication of complex quasicrystal templates

18. Y. Yang, Q. Li, and G. P. Wang, “Fabrication of periodic complex photonic crystals constructed with a portion of photonic quasicrystals by interference lithography,” Appl. Phys. Lett. **93**(6), 061112 (2008). [CrossRef]

*s*polarized (

*p*polarized) when its electric field is perpendicular (parallel) to the incidence plane. The small differences between the two spectra are because of the slightly different effective refractive index values of the nanostructure for the

*s*and

*p*polarizations. There are four main peaks (which are identified by symbols) in the extinction spectra, which are four waveguide modes corresponding to the ring of diffraction peaks in the Fourier transform of the structure in Fig. 1(a) [19

19. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature **404**(6779), 740–743 (2000). [CrossRef] [PubMed]

## 3. Fabrication of complex plasmonic quasicrystals using annealing

20. X. Zhang, H. Liu, and Z. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics **6**(2), 273–279 (2011). [CrossRef]

7. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. **9**(11), 3922–3929 (2009). [CrossRef] [PubMed]

*s*and

*p*polarizations, and which can be identified via the narrowband reduction in the extinction spectra (indicated by the red arrows in Fig. 4). This means that two enhanced transmission peaks can be observed around 750 nm. Note that the two waveguide modes around 550 nm become much weaker when compared with the results shown in Fig. 2. Thus, a higher annealing temperature has a greater influence on the smaller period nanostructures.

21. C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. **2**, 681 (2012). [CrossRef] [PubMed]

*s*polarization, more than six waveguide resonance modes appear. The evolution of the extinction spectra is illustrated in Fig. 6, where the angle α changes from 0° to 60° while maintaining angle θ at 25°. In other words, the sample is rotated and the rotation axis is perpendicular to the sample surface, which guarantees that the relationship between the electric field vector of the incident light and the incidence plane is fixed. The pattern on the sample will repeat every 60° with respect to the k-vector of the incident light as shown in the inset of Fig. 6. Theoretically, the two extinction spectra, which are identified by symbols and in Fig. 6, should be identical. From Fig. 6, the differences between the spectra imply that the sample is no longer strictly symmetric due to the missing of some nanoparticles during the high temperature annealing process.

## 4. Conclusions

## Acknowledgments

## References and links

1. | L. Dal Negro and N.-N. Feng, “Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles,” Opt. Express |

2. | R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express |

3. | J.-W. Dong, K. H. Fung, C. Chan, and H.-Z. Wang, “Localization characteristics of two-dimensional quasicrystals consisting of metal nanoparticles,” Phys. Rev. B |

4. | Z. Deng, Z. Li, J. Dong, and H. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics |

5. | F. Przybilla, C. Genet, and T. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. |

6. | F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. |

7. | A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. |

8. | L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics |

9. | A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express |

10. | F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. |

11. | Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography,” Appl. Phys. Lett. |

12. | X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology |

13. | X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. |

14. | X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. |

15. | X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology |

16. | H. Liu, X. Zhang, and Z. Gao, “Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles,” Photon. Nanostruct. Fundam. Appl. |

17. | S.-C. Cheng, X. Zhu, and S. Yang, “Complex 2D photonic crystals with analogue local symmetry as 12-fold quasicrystals,” Opt. Express |

18. | Y. Yang, Q. Li, and G. P. Wang, “Fabrication of periodic complex photonic crystals constructed with a portion of photonic quasicrystals by interference lithography,” Appl. Phys. Lett. |

19. | M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature |

20. | X. Zhang, H. Liu, and Z. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics |

21. | C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. |

22. | C. Janot, |

**OCIS Codes**

(160.4670) Materials : Optical materials

(250.5403) Optoelectronics : Plasmonics

**ToC Category:**

Plasmonics

**History**

Original Manuscript: August 28, 2013

Revised Manuscript: November 4, 2013

Manuscript Accepted: November 5, 2013

Published: November 12, 2013

**Citation**

Tianrui Zhai, Yuanhai Lin, Hongmei Liu, and Xinping Zhang, "Solution-processable complex plasmonic quasicrystals," Opt. Express **21**, 28444-28449 (2013)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-28444

Sort: Year | Journal | Reset

### References

- L. Dal Negro and N.-N. Feng, “Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles,” Opt. Express15(22), 14396–14403 (2007). [CrossRef] [PubMed]
- R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express16(8), 5544–5555 (2008). [CrossRef] [PubMed]
- J.-W. Dong, K. H. Fung, C. Chan, and H.-Z. Wang, “Localization characteristics of two-dimensional quasicrystals consisting of metal nanoparticles,” Phys. Rev. B80(15), 155118 (2009). [CrossRef]
- Z. Deng, Z. Li, J. Dong, and H. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics6(3), 507–514 (2011). [CrossRef]
- F. Przybilla, C. Genet, and T. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett.89(12), 121115 (2006). [CrossRef]
- F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett.8(8), 2469–2472 (2008). [CrossRef] [PubMed]
- A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett.9(11), 3922–3929 (2009). [CrossRef] [PubMed]
- L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics4(3), 165–169 (2010). [CrossRef]
- A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express17(5), 3741–3753 (2009). [CrossRef] [PubMed]
- F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett.90(9), 091119 (2007). [CrossRef]
- Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography,” Appl. Phys. Lett.88(25), 251104 (2006). [CrossRef]
- X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology24(25), 255303 (2013). [CrossRef] [PubMed]
- X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett.6(4), 651–655 (2006). [CrossRef] [PubMed]
- X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett.90(13), 133114 (2007). [CrossRef]
- X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology20(42), 425303 (2009). [CrossRef] [PubMed]
- H. Liu, X. Zhang, and Z. Gao, “Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles,” Photon. Nanostruct. Fundam. Appl.8(3), 131–139 (2010). [CrossRef]
- S.-C. Cheng, X. Zhu, and S. Yang, “Complex 2D photonic crystals with analogue local symmetry as 12-fold quasicrystals,” Opt. Express17(19), 16710–16715 (2009). [CrossRef] [PubMed]
- Y. Yang, Q. Li, and G. P. Wang, “Fabrication of periodic complex photonic crystals constructed with a portion of photonic quasicrystals by interference lithography,” Appl. Phys. Lett.93(6), 061112 (2008). [CrossRef]
- M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature404(6779), 740–743 (2000). [CrossRef] [PubMed]
- X. Zhang, H. Liu, and Z. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics6(2), 273–279 (2011). [CrossRef]
- C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep.2, 681 (2012). [CrossRef] [PubMed]
- C. Janot, Quasicrystals: A Primer (Clarendon Press, 1994).

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.