OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 23 — Nov. 18, 2013
  • pp: 29000–29005
« Show journal navigation

23 and 39 GHz low phase noise monosection InAs/InP (113)B quantum dots mode-locked lasers

K. Klaime, C. Calò, R. Piron, C. Paranthoen, D. Thiam, T. Batte, O. Dehaese, J. Le Pouliquen, S. Loualiche, A. Le Corre, K. Merghem, A. Martinez, and A. Ramdane  »View Author Affiliations


Optics Express, Vol. 21, Issue 23, pp. 29000-29005 (2013)
http://dx.doi.org/10.1364/OE.21.029000


View Full Text Article

Acrobat PDF (1201 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we report for the first time a passive mode-locking of single section Fabry-Perot (FP) lasers based on InAs quantum dots(QDs) grown on (113)B InP substrate. Devices under study are a 1 and 2 mm long laser diodes emitting around 1.58 µm. Self-starting pulses with repetition rates around 23 and 39 GHz and pulse widths down to 1.5 ps are observed after propagation through a suitable length of single-mode fiber for intracavity dispersion compensation. A RF spectral width as low as 20 kHz has been obtained leading to a low timing jitter RMS.

© 2013 Optical Society of America

1. Introduction

2. Fabrication and static characterizations

3. Mode-locking results and discussions

Mode-locking performances of the devices described above are evaluated in this section. The lasers are operated in CW regime and at room temperature of 20°C controlled by a Peltier cooler. The laser signal is collected by an antireflection coated lensed fiber followed by an optical isolator to prevent feedback from reflections into the laser cavity. Then, the collected signal is analysed using an optical spectrum analyser, an RF electrical spectrum analyser associated with a 50 GHz bandwidth InGaAs photodiode detection and an autocorrelator are also used for RF and pulses measurements. Measurements were performed at 192 and 361 mA respectively for the 1 and 2 mm devices. These operating points were selected by choosing the optimal RF spectra in term of power and width. Figure 3
Fig. 3 RF peak width Δf versus the injection current density J of the 1 mm (a) and 2 mm (b) cavity length devices, (inset): RF spectrum for a gain current of 192 and 361 mA respectively.
shows the variation of the RF peak width (Δf) versus the injection current density (J) for the 1 mm (a) and 2 mm (b) cavity length devices. Insets of the figure show the RF spectra for both devices.

The RF peak width decreases with increasing the injection current. The repetition rates are about 39 and 23 GHz and the optimal RF peak width at −3 dB is around 20 and 83 kHz respectively for the two devices which is comparable with the RF peak width of a single section QDashes MLLs [7

7. R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012). [CrossRef] [PubMed]

]. From the RF peak width, we can extract the integrated RMS timing jitterσ. In fact, in passively MLL the RF frequency noise is induced principally by the relatively broadband spontaneous emission and is consequently essentially white. This leads to a lorentzian-shaped of the power spectral density [13

13. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993). [CrossRef]

,14

14. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B 14(1), 167–174 (1997). [CrossRef]

]. In consequence, the RF width Δf determines completely the RMS of the integrated timing jitter using the following expression [15

15. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986). [CrossRef]

,16

16. F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 20(16), 1405–1407 (2008). [CrossRef]

]:
σ= TΔf2π3/21fd1fu,
(1)
Where T is the period of the pulse train, fu and fd are the upper and lower frequencies of integration. The result shows an RMS of the integrated timing jitter in the range [1 MHz-100 MHz] of 323 fs and in [16 MHz-320 MHz] of 79 fs for the 1 mm cavity length device. These low values of timing jitter RMS assure a good and stable mode-locking regime with low noise in comparison with double-section QDashes MLLs (800 fs in the range [1MHz-100 MHz) [8

8. M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys. 111(2), 023102 (2012). [CrossRef]

] and monosection QDashes MLLs (166 fs in the range [16 MHz-320 MHz]) [17

17. R. Rosales, K. Merghem, A. Martinez, F. Lelarge, A. Accard, and A. Ramdane, “Timing jitter from the optical spectrum in semiconductor passively mode locked lasers,” Opt. Express 20(8), 9151–9160 (2012). [CrossRef] [PubMed]

].

4. Conclusion

Mode-locking without the presence of saturable absorber is demonstrated for the first time for single-section QD lasers based on (113)B InP substrates. Lasers with repetition frequencies of 39 and 23 GHz exhibit self-starting pulses with pulse widths down to 1.5 ps after intracavity dispersion compensation by light propagation through suitable lengths of SMF. A low integrated timing jitter RMS has been demonstrated leading to a good mode-locking regime with low noise.

Acknowledgment

This work was supported by the French National Research Agency through the project TELDOT.

References and links

1.

T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett. 40(4), 265–267 (2004). [CrossRef]

2.

E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics 1(7), 395–401 (2007). [CrossRef]

3.

F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys. 95, 73–136 (2004). [CrossRef]

4.

E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett. 87(8), 081107 (2005). [CrossRef]

5.

R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Epitaxial growth of 1.55 µm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications,” J. Cryst. Growth 251(1-4), 248–252 (2003). [CrossRef]

6.

P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys. 44(34), L1069–L1071 (2005). [CrossRef]

7.

R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express 20(8), 8649–8657 (2012). [CrossRef] [PubMed]

8.

M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys. 111(2), 023102 (2012). [CrossRef]

9.

P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett. 87(24), 243107 (2005). [CrossRef]

10.

Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun. 284(9), 2323–2326 (2011). [CrossRef]

11.

K. Klaime, R. Piron, C. Paranthoen, T. Batte, F. Grillot, O. Dehaese, S. Loualiche, A. Le Corre, R. Rosales, K. Merghem, A. Martinez, and A. Ramdane, “ 20 GHz to 83 GHz single section InAs/InP quantum dot mode-locked lasers grown on (001) misoriented substrate,” IPRM-2012 proceeding, 181–184 (2012).

12.

C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett. 78(12), 1751 (2001). [CrossRef]

13.

H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron. 29(3), 983–996 (1993). [CrossRef]

14.

D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B 14(1), 167–174 (1997). [CrossRef]

15.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39(4), 201–217 (1986). [CrossRef]

16.

F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett. 20(16), 1405–1407 (2008). [CrossRef]

17.

R. Rosales, K. Merghem, A. Martinez, F. Lelarge, A. Accard, and A. Ramdane, “Timing jitter from the optical spectrum in semiconductor passively mode locked lasers,” Opt. Express 20(8), 9151–9160 (2012). [CrossRef] [PubMed]

OCIS Codes
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: August 20, 2013
Revised Manuscript: September 26, 2013
Manuscript Accepted: September 30, 2013
Published: November 15, 2013

Citation
K. Klaime, C. Calò, R. Piron, C. Paranthoen, D. Thiam, T. Batte, O. Dehaese, J. Le Pouliquen, S. Loualiche, A. Le Corre, K. Merghem, A. Martinez, and A. Ramdane, "23 and 39 GHz low phase noise monosection InAs/InP (113)B quantum dots mode-locked lasers," Opt. Express 21, 29000-29005 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-23-29000


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Ohno, K. Sato, R. Iga, Y. Kondo, I. Ito, T. Furuta, K. Yoshino, and H. Ito, “Recovery of 160 GHz optical clock from 160 Gbit/s data stream using mode locked laser diode,” Electron. Lett.40(4), 265–267 (2004). [CrossRef]
  2. E. U. Rafailov, M. A. Cataluna, and W. Sibbett, “Mode-locked quantum-dot lasers,” Nat. Photonics1(7), 395–401 (2007). [CrossRef]
  3. F. X. Kartner, U. Morgner, T. Schibli, R. Ell, H. A. Haus, J. G. Fujimoto, and E. P. Ippen, “Few-cycle pulses directly from a laser,” Top. Appl. Phys.95, 73–136 (2004). [CrossRef]
  4. E. U. Rafailov, M. A. Cataluna, W. Sibbett, N. D. Il’inskaya, Yu. M. Zadiranov, A. E. Zhukov, V. M. Ustinov, D. A. Livshits, A. R. Kovsh, and N. N. Ledentsov, “High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser,” Appl. Phys. Lett.87(8), 081107 (2005). [CrossRef]
  5. R. Schwertberger, D. Gold, J. P. Reithmaier, and A. Forchel, “Epitaxial growth of 1.55 µm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wavelength laser applications,” J. Cryst. Growth251(1-4), 248–252 (2003). [CrossRef]
  6. P. Caroff, N. Bertru, A. Le Corre, O. Dehaese, T. Rohel, I. Alghoraibi, H. Folliot, and S. Loualiche, “Achievement of high density InAs quantum dots on InP (311)B substrate emitting at 1.55 µm,” Jpn. J. Appl. Phys.44(34), L1069–L1071 (2005). [CrossRef]
  7. R. Rosales, S. G. Murdoch, R. T. Watts, K. Merghem, A. Martinez, F. Lelarge, A. Accard, L. P. Barry, and A. Ramdane, “High performance mode locking characteristics of single section quantum dash lasers,” Opt. Express20(8), 8649–8657 (2012). [CrossRef] [PubMed]
  8. M. Dontabactouny, R. Piron, K. Klaime, N. Chevalier, K. Tavernier, S. Loualiche, A. Le Corre, D. Larsson, C. Rosenberg, E. Semenova, and K. Yvind, “41 GHz and 10.6 GHz low threshold and low noise InAs/InP quantum dash two-section mode-locked lasers in L band,” J. Appl. Phys.111(2), 023102 (2012). [CrossRef]
  9. P. Caroff, C. Paranthoen, C. Platz, O. Dehaese, H. Folliot, N. Bertru, C. Labbé, R. Piron, E. Homeyer, A. Le Corre, and S. Loualiche, “High-gain and low-threshold InAs quantum-dot lasers on InP,” Appl. Phys. Lett.87(24), 243107 (2005). [CrossRef]
  10. Z. G. Lu, J. R. Liu, P. J. Poole, Z. J. Jiao, P. J. Barrios, D. Poitras, J. Caballero, and X. P. Zhang, “Ultra-high repetition rate InAs/InP quantum dot mode-locked lasers,” Opt. Commun.284(9), 2323–2326 (2011). [CrossRef]
  11. K. Klaime, R. Piron, C. Paranthoen, T. Batte, F. Grillot, O. Dehaese, S. Loualiche, A. Le Corre, R. Rosales, K. Merghem, A. Martinez, and A. Ramdane, “ 20 GHz to 83 GHz single section InAs/InP quantum dot mode-locked lasers grown on (001) misoriented substrate,” IPRM-2012 proceeding, 181–184 (2012).
  12. C. Paranthoen, N. Bertru, O. Dehaese, A. Le Corre, S. Loualiche, B. Lambert, and G. Patriarche, “Height dispersion control of InAs/InP quantum dots emitting at 1.55 μm,” Appl. Phys. Lett.78(12), 1751 (2001). [CrossRef]
  13. H. A. Haus and A. Mecozzi, “Noise of mode-locked lasers,” IEEE J. Quantum Electron.29(3), 983–996 (1993). [CrossRef]
  14. D. Eliyahu, R. A. Salvatore, and A. Yariv, “Effect of noise on the power spectrum of passively mode-locked lasers,” J. Opt. Soc. Am. B14(1), 167–174 (1997). [CrossRef]
  15. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B39(4), 201–217 (1986). [CrossRef]
  16. F. Kefelian, S. O'Donoghue, M. T. Todaro, J. G. McInerney, and G. Huyet, “RF Linewidth in monolithic passively mode-locked semiconductor laser,” IEEE Photon. Technol. Lett.20(16), 1405–1407 (2008). [CrossRef]
  17. R. Rosales, K. Merghem, A. Martinez, F. Lelarge, A. Accard, and A. Ramdane, “Timing jitter from the optical spectrum in semiconductor passively mode locked lasers,” Opt. Express20(8), 9151–9160 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited