OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 26 — Dec. 30, 2013
  • pp: 32623–32629
« Show journal navigation

Photonic crystal cavities in cubic (3C) polytype silicon carbide films

Marina Radulaski, Thomas M. Babinec, Sonia Buckley, Armand Rundquist, J Provine, Kassem Alassaad, Gabriel Ferro, and Jelena Vučković  »View Author Affiliations


Optics Express, Vol. 21, Issue 26, pp. 32623-32629 (2013)
http://dx.doi.org/10.1364/OE.21.032623


View Full Text Article

Acrobat PDF (1631 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design, fabrication, and characterization of high quality factor (Q ~103) and small mode volume (V ~0.75 (λ/n)3) planar photonic crystal cavities from cubic (3C) thin films (thickness ~200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1.25 – 1.6 μm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.

© 2013 Optical Society of America

1. Introduction to cubic (3C) silicon carbide photonics

Wide band-gap semiconductors have recently emerged as an important material platform for nanophotonics and quantum information science, with applications including room temperature single photon sources and quantum nodes [1

1. I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011). [CrossRef]

3

3. S. Castelletto, B. C. Johnson, N. Stavrias, T. Umeda, and T. Ohshima, “Efficiently engineered room temperature single photons in silicon carbide,” arXiv:1210:5047.

]. Among these wide band-gap materials, diamond has been studied most extensively in recent years because of the combination of its wide optical transparency window [4

4. A. M. Zaitsev, Optical Properties of Diamond (Springer, 2001).

, 5

5. R. Mildren and J. Rabeau, Optical Engineering of Diamond (Wiley, 2013).

], well-known and optically-addressable spin qubits [6

6. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276(5321), 2012–2014 (1997). [CrossRef]

, 7

7. S.-Y. Lee, M. Widmann, T. Rendler, M. W. Doherty, T. M. Babinec, S. Yang, M. Eyer, P. Siyushev, B. J. M. Hausmann, M. Loncar, Z. Bodrog, A. Gali, N. B. Manson, H. Fedder, and J. Wrachtrup, “Readout and control of a single nuclear spin with a metastable electron spin ancilla,” Nat. Nanotechnol. 8(7), 487–492 (2013). [CrossRef] [PubMed]

], and advanced materials processing techniques such as isotopic engineering [8

8. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009). [CrossRef] [PubMed]

, 9

9. M. Steger, K. Saeedi, M. L. W. Thewalt, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, “Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”,” Science 336(6086), 1280–1283 (2012). [CrossRef] [PubMed]

]. While great advances in generating nanophotonic structures in single crystal diamond have been made [10

10. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011). [CrossRef]

15

15. M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012). [CrossRef] [PubMed]

], certain material properties present some long-term challenge to integration and to application in classical and quantum photonic systems.

Silicon carbide (SiC), on the other hand, has recently been recognized as a material system with an advantageous combination of electronic, mechanical, and optical properties for these applications [16

16. G. L. Harris, Properties of Silicon Carbide (INSPEC, 1995).

]. For example, SiC is non-centrosymmetric and differs from diamond and many other centrosymmetric materials with a large transparency window in the visible (SiO2, SiNx, etc.). Neglecting surface effects, only third order susceptibility (χ(3)) effects can be observed in these materials and this precludes the utilization of processes such as second harmonic generation, three wave mixing and the linear electro-optic (Pockels) effect. Conversely, semiconductors such as GaP [17

17. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17(25), 22609–22615 (2009). [CrossRef] [PubMed]

19

19. K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93(6), 063103 (2008). [CrossRef]

], GaN [20

20. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011). [CrossRef] [PubMed]

], and AlN [21

21. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012). [CrossRef]

], and crystalline materials such as LiNbO4 [22

22. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tuennermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013). [CrossRef]

] have high second order susceptibilities. While microcavities in these materials have been used to perform low input power frequency conversion between near infrared and visible wavelengths with minimal absorption, many of these materials are not suitable for implementation of quantum nodes due to a lack of suitable quantum emitters, as well as inability to perform isotopic engineering for ultralong quantum memory times.

However, special considerations must be made in the development of silicon carbide photonics. This results from the fact that silicon carbide exhibits great material diversity and may exist in different crystal structures with different stacking sequences (polytypes). Optical devices based on these different SiC polytypes possess different materials processing and growth techniques, material properties, and spectrum of future applications. Crystal polytype is therefore a degree of freedom to be considered and taken advantage of in silicon carbide photonics. Specifically, we present in this paper the design, fabrication, and characterization of photonic crystal cavities in cubic (3C) SiC material. This 3C-SiC platform offers several practical advantages and fundamental opportunities.

Moreover, the 3C-SiC employed in this work has very different optical properties relative to 6H-SiC used in the prior demonstration of SiC photonic crystals [23

23. S. Yamada, B.-S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011). [CrossRef]

, 24

24. B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19(12), 11084–11089 (2011). [CrossRef] [PubMed]

]. Due to crystal symmetry (e.g. cubic 3C vs. hexagonal 6H) nonlinear optical properties differ between the polytypes both in magnitude and in symmetry [28

28. S. N. Rashkeev, W. R. L. Lambrecht, and B. Segall, “Second-harmonic generation in SiC polytypes,” Phys. Rev. B 57(16), 9705–9715 (1998). [CrossRef]

]. The symmetry of the nonlinear susceptibility tensors impacts applications in cavity-enhanced nonlinear optics. As an example, the 3C polytype grown in the [111] direction may allow for coupling between two TE modes, similar to GaAs which has the same cubic symmetry, in three wave mixing processes [29

29. S. Buckley, M. Radulaski, K. Biermann, and J. Vuckovic, “Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs,” Appl. Phys. Lett. 103(21), 211117 (2013). [CrossRef]

]. The different SiC polytypes are also known to contain distinct optically active crystalline defects (analogous to the NV center in diamond) for use in quantum information processing [30

30. A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat Commun 4, 1819 (2013). [CrossRef] [PubMed]

].

The paper is organized as follows: in section 2 we demonstrate that our materials and fabrication method is versatile and easily applied to diverse photonic crystal devices such as photonic crystal waveguides and cavities for integration with embedded quantum emitters [34

34. A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011). [CrossRef]

], 1D nanobeam structures for opto-mechanics [35

35. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]

], and crossbeam cavities for nonlinear optics [18

18. K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19(22), 22198–22207 (2011). [CrossRef] [PubMed]

]. In section 3 we provide a demonstration of high quality factor (Q ~103) resonances in 2D photonic crystal cavities at telecommunications wavelengths from 1,250 – 1,600 nm.

2. Fabrication of diverse photonic crystal cavities in 3C-SiC films

Figure 1 shows the fabrication process flow we developed to realize a diverse set of 3C-SiC photonic crystal cavities.
Fig. 1 The process flow to generate suspended photonic crystal structures in 3C-SiC films.
The starting material consists of a 3C-SiC layer grown epitaxially on a 35 mm diameter Si substrate using a standard two-step chemical vapor deposition (CVD) process. The film thickness d ~210 nm and refractive index (n ~2.55 at 1,300 – 1,500 nm) were confirmed using a Woollam spectroscopic ellipsometer before proceeding to subsequent masking and etching steps. A SiO2 hard mask was then deposited using a low-pressure CVD furnace followed by SiO2 thinning in a 2% HF solution to the target thickness of ~200 nm.

Next, a second mask layer [Fig. 1(a)] of ~400 nm of electron beam lithography resist (ZEP 520a) was spun. Photonic crystal cavities were then patterned at the base-dose range 250 – 400 μC/cm2 using a 100 keV electron beam lithography tool (JEOL JBX 6300) and then developed using standard recipes [Figs. 1(b-c)]. The initial pattern transfer from resist into SiO2 [Fig. 1(d)] was performed using CF4, CHF3, and Ar chemistry in a plasma etching system (Advanced Materials, p5000). Etch tests on bare (un-patterned) chips indicated that the selectivity of this etch was approximately 1:1 (SiO2 to ZEP). Residual electron beam resist was then completely removed in Microposit remover 1165 [Fig. 1(e)], and a second pattern transfer from SiO2 into SiC using HBr and Cl2 chemistry [Fig. 1(f)] was performed in the same system. Etch tests on bare chips indicated that the selectivity was approximately 2:1 (SiC to SiO2). Next, undercutting of the SiC device layer was achieved by isotropic etching of the underlying Si [Fig. 1(g)] with a XeF2 vapor phase etcher (Xactix e-1). Finally, the remaining SiO2 hard mask layer was removed in 2% HF solution [Fig. 1(h)].

This fabrication procedure is suitable for various photonic crystal structures. Several different geometries are presented in Fig. 2.
Fig. 2 Photonic crystal cavities fabricated from 3C-SiC films on a silicon substrate using the process flow in Fig. 1. (a) Photonic crystal waveguides. (b) Planar L3 photonic crystal cavity. (c) 1D nanobeam photonic crystal cavity. (d) Crossbeam photonic crystal cavity.
For example, Fig. 2(a) shows a realization of a 2D photonic crystal waveguide and Fig. 2(b) a planar photonic crystal cavity, which may be integrated with color centers in the future, similarly to the development of quantum photonic networks based on InAs quantum dots in GaAs [34

34. A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011). [CrossRef]

]. Figure 2(c) shows an example of a tapered 1D nanobeam cavity for applications in opto-mechanics [35

35. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]

]. Finally, Fig. 2(d) shows an example of a crossbeam cavity which may, in principle, support orthogonal modes with high spatial overlap for frequency conversion in nonlinear optics [18

18. K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19(22), 22198–22207 (2011). [CrossRef] [PubMed]

].

3. Planar SiC photonic crystal cavities at telecommunications wavelengths

In order to demonstrate properties of 3C-SiC platform for photonics applications, we proceed to design, fabricate and characterize low mode-volume, high quality factor, resonances at telecommunications wavelengths. In particular, the devices examined in this paper are planar photonic crystal cavities implementing a shifted linear three-hole defect (L3). These cavities [Fig. 3] have their three central holes removed and holes adjacent the cavity center displaced outwards by 15% of the lattice constant.
Fig. 3 SEM of fabricated 3C-SiC shifted L3 cavity from (a) orthogonal incidence, and (b) 40-degree tilt. (c) FDTD simulation of the dominant (Ey) electric field component of the fundamental mode, with the outlines of the holes indicated.
The structures are also characterized by a device layer thickness d ~210 nm, silicon carbide refractive index n ~2.55, and hole radius r = 0.3a. Finally, for our initial purposes of prototyping devices in the 3C-SiC films, we choose a simple and robust fabrication design where all photonic crystal holes are the same size. Finite-difference time-domain (FDTD) simulations indicate that these structures possess theoretical mode volume values V ~0.75 (λ/n)3 and cavity quality factors Q ~2,000.

The fabricated 3C-SiC photonic crystal cavities were characterized using a cross-polarization measurement technique with apparatus presented in Fig. 4(a).
Fig. 4 (a) Cross-polarized reflectivity setup scheme, (b) characterized fundamental mode resonance at telecommunications wavelength, blue dots represent data points, red line shows fit to a Fano-resonance with quality factor of Q ~800, (c) resonance intensity dependence on polarization angle of incoming light, blue dots represent data points, red line shows fit to sin(4θ), where θ is half-wave plate rotation angle.
In this experiment, a halogen lamp (Ocean Optics) provided broadband excitation of the L3 cavity resonances in the wavelength region 1,250 – 1,600 nm and a high numerical aperture (NA = 0.5) objective lens was used to optically address the cavity with high efficiency. Incoming light was first polarized vertically [y-direction in Fig. 3(c)] and reflected off the polarizing beam splitter (PBS) towards the sample of L3 cavities oriented horizontally and with cavity resonance polarized vertically. A half wave plate (HWP), with optical axis oriented at θ with respect to the vertical, was positioned between the PBS and objective. Resonance spectra were monitored via transmission through the PBS on a liquid nitrogen-cooled InGaAs spectrometer (Princeton Instruments).

Rotating the HWP modifies the cavity coupled light, as well as transmission through the PBS, in order to verify the polarization properties of the L3 photonic crystal cavity. For example, even though the cavity coupling is maximal for a half wave plate oriented at θ = 0°, signal transmitted through the PBS is still zero. At θ = 45°, both cavity coupling as well as signal transmitted through the PBS is zero. A high signal/noise ratio of cavity coupled light to uncoupled background is achieved when the HWP at θ = 22.5° rotates the polarization of the incoming beam at 45° from the vertical. Figure 4(b) shows one such spectrum of the fundamental mode of a representative 3C-SiC cavity at 1,530 nm with quality factor of 800, obtained from a fit to Fano-resonance [36

36. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009). [CrossRef]

]. The peak intensity of the cavity resonance has sin(4θ) dependence and the polarization-dependent signal presented in Fig. 4(c) shows good agreement with this theory.

The observed resonances are blue-shifted relative to the theoretically predicted value by ~90 nm, while the Q factor is decreased by a factor of ~1.75.To explain these differences, we analyze the influences of material and fabrication imperfections, by simulating the resonant wavelengths and quality factors of photonic crystal cavities with parameters in the same range as those fabricated on the chip. We analyzed up to 30% hole radius increase, which could be caused in fabrication by over-etching, and the same percentage of slab thickness decrease, as the damaged interfacial layer leads to uncertainty in device layer thickness. The results are shown in Fig. 5 in green triangles and yellow squares, respectively.
Fig. 5 Theoretical analysis of the wavelemgths and the quality factors of SiC L3 photonic crystal cavities as a function of the hole radius (r) shown in green triangles and slab thickness (t) shown in yellow squares. The optimal parameters (t = 210 nm, r = 0.30 a) are represented by the red dot and the corresponding experimental result is indicated by the black star.
Both of these effects reduce quality factors and blue-shift the resonances, which is consistent with our experimental observations. Additional deviations may be caused by factors such as imperfect sidewall profile [37

37. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661 (2003). [CrossRef]

].

For most applications, it is necessary to be able to controllably target resonance wavelengths of high-Q cavities both over a large range and to specific wavelengths of interest (e.g. lines of optical emitters). In order to generate cavities that are tunable across the telecommunications band, we therefore varied the lattice constant a of the L3 cavities in the range 500 – 700 nm. We again monitored the resonant wavelength and quality factor of the fundamental modes of these structures via the cross-polarized reflectivity technique. The results of this experiment, which are presented in Fig. 6, show that resonances of L3 cavities of Q ~103 may be achieved across wavelengths 1,250 – 1,600 nm.
Fig. 6 (a) Fundamental mode resonance scaling with lattice constant a, shown with Fano-resonance fit with quality factors in range 630 to 920; all cavities are shifted L3 cavities made in 210 nm thick slab of 3C-SiC. (b) Experimentally measured linear dependence of resonant wavelength on lattice constant. Red circles are measured data points and black line is a linear fit to the data.

4. Conclusion

We have demonstrated a robust fabrication routine that has allowed us to realize a diverse set of devices such as 2D planar photonic crystal cavities, 1D nanobeam photonic crystal cavities, and crossbeam photonic crystal cavities from cubic (3C) silicon carbide films. We have also shown that the procedure may be used to realize high quality factor (Q ~103) resonances at telecommunications wavelengths. In the future, we may overcome the low refractive index of 3C silicon carbide and offer ultrahigh-Q cavity design (Q ~106) based on the nanobeam geometry [38

38. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]

40

40. Y. Gong and J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96(3), 031107 (2010). [CrossRef]

]. The demonstrated scalable fabrication process will enable wider use of 3C-SiC nanophotonic classical and quantum information processing.

Acknowledgments

References and links

1.

I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys. 74(7), 076501 (2011). [CrossRef]

2.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466(7307), 730–734 (2010). [CrossRef] [PubMed]

3.

S. Castelletto, B. C. Johnson, N. Stavrias, T. Umeda, and T. Ohshima, “Efficiently engineered room temperature single photons in silicon carbide,” arXiv:1210:5047.

4.

A. M. Zaitsev, Optical Properties of Diamond (Springer, 2001).

5.

R. Mildren and J. Rabeau, Optical Engineering of Diamond (Wiley, 2013).

6.

A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science 276(5321), 2012–2014 (1997). [CrossRef]

7.

S.-Y. Lee, M. Widmann, T. Rendler, M. W. Doherty, T. M. Babinec, S. Yang, M. Eyer, P. Siyushev, B. J. M. Hausmann, M. Loncar, Z. Bodrog, A. Gali, N. B. Manson, H. Fedder, and J. Wrachtrup, “Readout and control of a single nuclear spin with a metastable electron spin ancilla,” Nat. Nanotechnol. 8(7), 487–492 (2013). [CrossRef] [PubMed]

8.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater. 8(5), 383–387 (2009). [CrossRef] [PubMed]

9.

M. Steger, K. Saeedi, M. L. W. Thewalt, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, “Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”,” Science 336(6086), 1280–1283 (2012). [CrossRef] [PubMed]

10.

A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity,” Nat. Photonics 5(5), 301–305 (2011). [CrossRef]

11.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109(3), 033604 (2012). [CrossRef] [PubMed]

12.

J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanged single-photon emission from a diamond-silver aperture,” Nat. Photonics 5(12), 738–743 (2011). [CrossRef]

13.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol. 5(3), 195–199 (2010). [CrossRef] [PubMed]

14.

B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett. 12(3), 1578–1582 (2012). [CrossRef] [PubMed]

15.

M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett. 12(12), 6084–6089 (2012). [CrossRef] [PubMed]

16.

G. L. Harris, Properties of Silicon Carbide (INSPEC, 1995).

17.

K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express 17(25), 22609–22615 (2009). [CrossRef] [PubMed]

18.

K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express 19(22), 22198–22207 (2011). [CrossRef] [PubMed]

19.

K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett. 93(6), 063103 (2008). [CrossRef]

20.

C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express 19(11), 10462–10470 (2011). [CrossRef] [PubMed]

21.

W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett. 100(22), 223501 (2012). [CrossRef]

22.

S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tuennermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett. 103(5), 051117 (2013). [CrossRef]

23.

S. Yamada, B.-S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett. 99(20), 201102 (2011). [CrossRef]

24.

B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express 19(12), 11084–11089 (2011). [CrossRef] [PubMed]

25.

J.-H. Lee, I. Bargatin, J. Park, K. M. Milaninia, L. S. Theogarajan, R. Sinclair, and R. T. Howe, “Smart-cut layer transfer of single-crystal SiC using spin-on-glass,” J. Vac. Sci. Technol. B 30(4), 042001 (2012). [CrossRef]

26.

G. Ferro, T. Chassagne, A. Leycuras, F. Cauwet, and Y. Monteil, “Strain tailoring in 3C-SiC heteroepitaxial layers grown on Si(100),” Chem. Vapor Depos. 12(8-9), 483–488 (2006). [CrossRef]

27.

N. V. Trivino, U. Dharanipathy, J.-F. Carlin, Z. Diao, R. Houdre, and N. Grandjean, “Integrated photonics on silicon with wide bandgap GaN semiconductor,” Appl. Phys. Lett. 102(8), 081120 (2013). [CrossRef]

28.

S. N. Rashkeev, W. R. L. Lambrecht, and B. Segall, “Second-harmonic generation in SiC polytypes,” Phys. Rev. B 57(16), 9705–9715 (1998). [CrossRef]

29.

S. Buckley, M. Radulaski, K. Biermann, and J. Vuckovic, “Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs,” Appl. Phys. Lett. 103(21), 211117 (2013). [CrossRef]

30.

A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat Commun 4, 1819 (2013). [CrossRef] [PubMed]

31.

J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express 21(14), 16882–16887 (2013). [CrossRef] [PubMed]

32.

X. Lu, J. Y. Lee, P. X. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett. 38(8), 1304–1306 (2013). [CrossRef] [PubMed]

33.

J. O'Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics 3(12), 687–695 (2009). [CrossRef]

34.

A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys. 13(5), 055025 (2011). [CrossRef]

35.

M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature 459(7246), 550–555 (2009). [CrossRef] [PubMed]

36.

M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett. 94(7), 071101 (2009). [CrossRef]

37.

Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett. 82(11), 1661 (2003). [CrossRef]

38.

P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett. 94(12), 121106 (2009). [CrossRef]

39.

M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett. 36(3), 421–423 (2011). [CrossRef] [PubMed]

40.

Y. Gong and J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett. 96(3), 031107 (2010). [CrossRef]

OCIS Codes
(160.5293) Materials : Photonic bandgap materials
(160.5298) Materials : Photonic crystals

ToC Category:
Photonic Crystals

History
Original Manuscript: November 29, 2013
Manuscript Accepted: December 9, 2013
Published: December 23, 2013

Citation
Marina Radulaski, Thomas M. Babinec, Sonia Buckley, Armand Rundquist, J Provine, Kassem Alassaad, Gabriel Ferro, and Jelena Vučković, "Photonic crystal cavities in cubic (3C) polytype silicon carbide films," Opt. Express 21, 32623-32629 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-26-32623


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, and S. Prawer, “Diamond-based single-photon emitters,” Rep. Prog. Phys.74(7), 076501 (2011). [CrossRef]
  2. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature466(7307), 730–734 (2010). [CrossRef] [PubMed]
  3. S. Castelletto, B. C. Johnson, N. Stavrias, T. Umeda, and T. Ohshima, “Efficiently engineered room temperature single photons in silicon carbide,” arXiv:1210:5047.
  4. A. M. Zaitsev, Optical Properties of Diamond (Springer, 2001).
  5. R. Mildren and J. Rabeau, Optical Engineering of Diamond (Wiley, 2013).
  6. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, and C. Borczyskowski, “Scanning confocal optical microscopy and magnetic resonance on single defect centers,” Science276(5321), 2012–2014 (1997). [CrossRef]
  7. S.-Y. Lee, M. Widmann, T. Rendler, M. W. Doherty, T. M. Babinec, S. Yang, M. Eyer, P. Siyushev, B. J. M. Hausmann, M. Loncar, Z. Bodrog, A. Gali, N. B. Manson, H. Fedder, and J. Wrachtrup, “Readout and control of a single nuclear spin with a metastable electron spin ancilla,” Nat. Nanotechnol.8(7), 487–492 (2013). [CrossRef] [PubMed]
  8. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nat. Mater.8(5), 383–387 (2009). [CrossRef] [PubMed]
  9. M. Steger, K. Saeedi, M. L. W. Thewalt, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, and H.-J. Pohl, “Quantum information storage for over 180 s using donor spins in a 28Si “semiconductor vacuum”,” Science336(6086), 1280–1283 (2012). [CrossRef] [PubMed]
  10. A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, and R. G. Beausoleil, “Resonant enhancement of the zero-phonon emission from a color center in a diamond cavity,” Nat. Photonics5(5), 301–305 (2011). [CrossRef]
  11. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett.109(3), 033604 (2012). [CrossRef] [PubMed]
  12. J. T. Choy, B. J. M. Hausmann, T. M. Babinec, I. Bulu, M. Khan, P. Maletinsky, A. Yacoby, and M. Loncar, “Enhanged single-photon emission from a diamond-silver aperture,” Nat. Photonics5(12), 738–743 (2011). [CrossRef]
  13. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010). [CrossRef] [PubMed]
  14. B. J. M. Hausmann, B. Shields, Q. Quan, P. Maletinsky, M. McCutcheon, J. T. Choy, T. M. Babinec, A. Kubanek, A. Yacoby, M. D. Lukin, and M. Loncar, “Integrated diamond networks for quantum nanophotonics,” Nano Lett.12(3), 1578–1582 (2012). [CrossRef] [PubMed]
  15. M. J. Burek, N. P. de Leon, B. J. Shields, B. J. M. Hausmann, Y. Chu, Q. Quan, A. S. Zibrov, H. Park, M. D. Lukin, and M. Lončar, “Free-standing mechanical and photonic nanostructures in single-crystal diamond,” Nano Lett.12(12), 6084–6089 (2012). [CrossRef] [PubMed]
  16. G. L. Harris, Properties of Silicon Carbide (INSPEC, 1995).
  17. K. Rivoire, Z. Lin, F. Hatami, W. T. Masselink, and J. Vucković, “Second harmonic generation in gallium phosphide photonic crystal nanocavities with ultralow continuous wave pump power,” Opt. Express17(25), 22609–22615 (2009). [CrossRef] [PubMed]
  18. K. Rivoire, S. Buckley, and J. Vučković, “Multiply resonant photonic crystal nanocavities for nonlinear frequency conversion,” Opt. Express19(22), 22198–22207 (2011). [CrossRef] [PubMed]
  19. K. Rivoire, A. Faraon, and J. Vuckovic, “Gallium phosphide photonic crystal nanocavities in the visible,” Appl. Phys. Lett.93(6), 063103 (2008). [CrossRef]
  20. C. Xiong, W. Pernice, K. K. Ryu, C. Schuck, K. Y. Fong, T. Palacios, and H. X. Tang, “Integrated GaN photonic circuits on silicon (100) for second harmonic generation,” Opt. Express19(11), 10462–10470 (2011). [CrossRef] [PubMed]
  21. W. H. P. Pernice, C. Xiong, C. Schuck, and H. X. Tang, “Second harmonic generation in phase matched aluminum nitride waveguides and micro-ring resonators,” Appl. Phys. Lett.100(22), 223501 (2012). [CrossRef]
  22. S. Diziain, R. Geiss, M. Zilk, F. Schrempel, E.-B. Kley, A. Tuennermann, and T. Pertsch, “Second harmonic generation in free-standing lithium niobate photonic crystal L3 cavity,” Appl. Phys. Lett.103(5), 051117 (2013). [CrossRef]
  23. S. Yamada, B.-S. Song, T. Asano, and S. Noda, “Silicon carbide-based photonic crystal nanocavities for ultra-broadband operation from infrared to visible wavelengths,” Appl. Phys. Lett.99(20), 201102 (2011). [CrossRef]
  24. B.-S. Song, S. Yamada, T. Asano, and S. Noda, “Demonstration of two-dimensional photonic crystals based on silicon carbide,” Opt. Express19(12), 11084–11089 (2011). [CrossRef] [PubMed]
  25. J.-H. Lee, I. Bargatin, J. Park, K. M. Milaninia, L. S. Theogarajan, R. Sinclair, and R. T. Howe, “Smart-cut layer transfer of single-crystal SiC using spin-on-glass,” J. Vac. Sci. Technol. B30(4), 042001 (2012). [CrossRef]
  26. G. Ferro, T. Chassagne, A. Leycuras, F. Cauwet, and Y. Monteil, “Strain tailoring in 3C-SiC heteroepitaxial layers grown on Si(100),” Chem. Vapor Depos.12(8-9), 483–488 (2006). [CrossRef]
  27. N. V. Trivino, U. Dharanipathy, J.-F. Carlin, Z. Diao, R. Houdre, and N. Grandjean, “Integrated photonics on silicon with wide bandgap GaN semiconductor,” Appl. Phys. Lett.102(8), 081120 (2013). [CrossRef]
  28. S. N. Rashkeev, W. R. L. Lambrecht, and B. Segall, “Second-harmonic generation in SiC polytypes,” Phys. Rev. B57(16), 9705–9715 (1998). [CrossRef]
  29. S. Buckley, M. Radulaski, K. Biermann, and J. Vuckovic, “Second harmonic generation in photonic crystal cavities in (111)-oriented GaAs,” Appl. Phys. Lett.103(21), 211117 (2013). [CrossRef]
  30. A. L. Falk, B. B. Buckley, G. Calusine, W. F. Koehl, V. V. Dobrovitski, A. Politi, C. A. Zorman, P. X.-L. Feng, and D. D. Awschalom, “Polytype control of spin qubits in silicon carbide,” Nat Commun4, 1819 (2013). [CrossRef] [PubMed]
  31. J. Cardenas, M. Zhang, C. T. Phare, S. Y. Shah, C. B. Poitras, B. Guha, and M. Lipson, “High Q SiC microresonators,” Opt. Express21(14), 16882–16887 (2013). [CrossRef] [PubMed]
  32. X. Lu, J. Y. Lee, P. X. Feng, and Q. Lin, “Silicon carbide microdisk resonator,” Opt. Lett.38(8), 1304–1306 (2013). [CrossRef] [PubMed]
  33. J. O'Brien, A. Furusawa, and J. Vuckovic, “Photonic quantum technologies,” Nat. Photonics3(12), 687–695 (2009). [CrossRef]
  34. A. Faraon, A. Majumdar, D. Englund, E. Kim, M. Bajcsy, and J. Vuckovic, “Integrated quantum optical networks based on quantum dots and photonic crystals,” New J. Phys.13(5), 055025 (2011). [CrossRef]
  35. M. Eichenfield, R. Camacho, J. Chan, K. J. Vahala, and O. Painter, “A picogram- and nanometre-scale photonic-crystal optomechanical cavity,” Nature459(7246), 550–555 (2009). [CrossRef] [PubMed]
  36. M. Galli, S. L. Portalupi, M. Belotti, L. C. Andreani, L. O'Faolain, and T. F. Krauss, “Light scattering and Fano resonances in high-Q photonic crystal nanocavities,” Appl. Phys. Lett.94(7), 071101 (2009). [CrossRef]
  37. Y. Tanaka, T. Asano, Y. Akahane, B.-S. Song, and S. Noda, “Theoretical investigation of a two-dimensional photonic crystal slab with truncated cone air holes,” Appl. Phys. Lett.82(11), 1661 (2003). [CrossRef]
  38. P. B. Deotare, M. W. McCutcheon, I. W. Frank, M. Khan, and M. Loncar, “High quality factor photonic crystal nanobeam cavities,” Appl. Phys. Lett.94(12), 121106 (2009). [CrossRef]
  39. M. Khan, T. Babinec, M. W. McCutcheon, P. Deotare, and M. Loncar, “Fabrication and characterization of high-quality-factor silicon nitride nanobeam cavities,” Opt. Lett.36(3), 421–423 (2011). [CrossRef] [PubMed]
  40. Y. Gong and J. Vuckovic, “Photonic crystal cavities in silicon dioxide,” Appl. Phys. Lett.96(3), 031107 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited