## Countermeasure against tailored bright illumination attack for DPS-QKD |

Optics Express, Vol. 21, Issue 3, pp. 2667-2673 (2013)

http://dx.doi.org/10.1364/OE.21.002667

Acrobat PDF (989 KB)

### Abstract

We propose a countermeasure against the so-called tailored bright illumination attack for differential-phase-shift QKD (DPS-QKD). By monitoring a rate of coincidence detection at a pair of superconducting nanowire single-photon detectors (SSPDs) which is connected at each of the output ports of Bob’s Mach-Zehnder interferometer, Alice and Bob can detect and defeat this kind of attack. We also experimentally confirmed the feasibility of this countermeasure using our 1 GHz-clocked DPS-QKD system. In the emulation of the attack, we achieved much lower power of the bright illumination light compared with the original demonstration by using a pulse stream instead of broad pulses.

© 2013 OSA

## 1. Introduction

1. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. **74**(1), 145–195 (2002). [CrossRef]

3. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. **67**(6), 661–663 (1991). [CrossRef] [PubMed]

4. Towards a wider acceptance of QKD. http://www.uqcc.org/images/towards.pdf

8. L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. **13**(11), 113042 (2011). [CrossRef]

9. L. Lydersen, J. Skaar, and V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt. **58**(8), 680–685 (2011). [CrossRef]

## 2. Differential-phase-shift QKD (DPS-QKD)

## 3. Tailored bright illumination attack and its countermeasure

8. L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. **13**(11), 113042 (2011). [CrossRef]

9. L. Lydersen, J. Skaar, and V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt. **58**(8), 680–685 (2011). [CrossRef]

8. L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. **13**(11), 113042 (2011). [CrossRef]

9. L. Lydersen, J. Skaar, and V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt. **58**(8), 680–685 (2011). [CrossRef]

*CCR*) is estimated bywhere μ is the average number of photon per pulse,

*T*is the transmittance, η is the quantum efficiency of the single photon detector, and

*d*is the dark count probability. Note that

*CCR*is linear of μ,

*T*and η because we concern the coincidence rate conditioned on a click of one of the two detectors. In the normal operation, the coincidence detection is pretty rare. However, in the tailored bright illumination attack Eve necessarily inputs the bright pulse at the time slot at which she wants to make the detector click and change it into the blinding state again. It follows that the probability of the simultaneous detection at the pair of two detectors should significantly increase compared to the normal condition. When Eve attacks all the bits,

*CCR*should be close to 1, and then Bob can detect this attack. By discarding all the bits, Bob can defeat this kind of attack. When Eve only attacks a part of the bits, Bob should be able to notice the change of the coincidence rate. By comparing the estimated conditional coincidence rate,

*CCR*, and the obtained conditional coincidence rate,

_{est}*CCR*, Bob can estimate how much bits are attacked by Eve. In the privacy amplification process, Alice and Bob assume all information of the attacked bits is leaked to Eve. Based on the general individual attack against DPS-QKD [16

_{exp}16. E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A **73**(1), 012344 (2006). [CrossRef]

*K*,according towhere

_{sec}*K*is the sifted key length, μ is the average number of photon per pulse,

_{sift}*T*is the transmittance, η is the quantum efficiency of the single photon detector,

*e*is the quantum bit error rate, and

*f(e)*characterizes the performance of the error correction algorithm.

18. M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, and M. Sasaki, “Photon level crosstalk between parallel fibers installed in urban area,” Opt. Express **18**(21), 22199–22207 (2010). [CrossRef] [PubMed]

## 4. Experimental setup

^{4}photons/pulse) [19]. This power is 1000 times lower than the original demonstration, thanks to the reduction of wasting light by using a pulse stream for blinding light and high quantum efficiency (~10%) of our SSPDs [20

20. S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, “Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system,” Opt. Express **17**(26), 23557–23564 (2009). [CrossRef] [PubMed]

21. T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express **17**(11), 9053–9061 (2009). [CrossRef] [PubMed]

_{3}intensity modulator. Each pulse is randomly phase-modulated by {0,π} with a LiNbO

_{3}phase modulator driven by the random bit signal from the FPGA board [21

21. T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express **17**(11), 9053–9061 (2009). [CrossRef] [PubMed]

20. S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, “Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system,” Opt. Express **17**(26), 23557–23564 (2009). [CrossRef] [PubMed]

_{3}intensity modulator. Each pulse is appropriately phase-modulated by {0,π} with a LiNbO

_{3}phase modulator driven by the pulse pattern generator (PPG). To synchronize PPG with Alice’s setup, 10MHz clock is provided from Alice’s setup. For the blinding lights (pulses), the phase modulation pattern of {0,0,π,π} is repeatedly applied to the trains of pulses such that half of the pulses go to the one of the two output ports of Mach-Zehnder interferometer. By applying the above phase modulation pattern, we need not to treat π/2 phase-modulations. Note that we use the pulse stream instead of originally proposed large duration pulse due to the following reasons. One is to decrease the power of the blinding pulse. The other is to sharply apply the phase modulation to control the target detectors. After the 9.99 μs blinding pulse stream, 10 pulses (10ns) with no phase modulation were input into Mach-Zehnder interferometer. During this 10ns period, all pulses go to the output port of the port1 (Det1 and Det2) of Mach-Zehnder interferometer, and the SSPDs connected to port1 stay blind. The SSPDs connected to port2 (Det3 and Det4) become clickable. Thus, Eve can deterministically fire Det3 and Det4 at the beginning of the next blinding pulse stream.

^{−4}and 5.4 × 10

^{−5}respectively.

^{−5}, which is almost reasonable compared to the experimental results. Thus, we have confirmed that the tailored bright illumination attack is possible, and our countermeasure works well to detect this kind of attack by monitoring the coincidence rate.

## 6. Conclusion

## References and links

1. | N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. |

2. | C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in |

3. | A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. |

4. | Towards a wider acceptance of QKD. http://www.uqcc.org/images/towards.pdf |

5. | L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics |

6. | Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics |

7. | L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A |

8. | L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys. |

9. | L. Lydersen, J. Skaar, and V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt. |

10. | K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A |

11. | T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett. |

12. | H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys. |

13. | H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum keydistribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics |

14. | S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. |

15. | M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express |

16. | E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A |

17. | K. Tamaki, M. Koashi, and G. Kato, “Unconditional security of coherent-state-based differential phase shift quantum key distribution protocol with block-wise phase randomization,” arXiv:1208.1995 (2012). |

18. | M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, and M. Sasaki, “Photon level crosstalk between parallel fibers installed in urban area,” Opt. Express |

19. | M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, and M. Sasaki, are preparing a manuscript to be called “Characteristic of superconductor single photon detector in QKD system under bright illumination blinding attack.” |

20. | S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, “Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system,” Opt. Express |

21. | T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express |

**OCIS Codes**

(270.5570) Quantum optics : Quantum detectors

(270.5568) Quantum optics : Quantum cryptography

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: November 30, 2012

Revised Manuscript: January 4, 2013

Manuscript Accepted: January 18, 2013

Published: January 28, 2013

**Citation**

Toshimori Honjo, Mikio Fujiwara, Kaoru Shimizu, Kiyoshi Tamaki, Shigehito Miki, Taro Yamashita, Hirotaka Terai, Zhen Wang, and Masahide Sasaki, "Countermeasure against tailored bright illumination attack for DPS-QKD," Opt. Express **21**, 2667-2673 (2013)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-2667

Sort: Year | Journal | Reset

### References

- N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002). [CrossRef]
- C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” in International Conference on Computers Systems and Signal Processing, (IEEE, 1984), pp. 175–179.
- A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991). [CrossRef] [PubMed]
- Towards a wider acceptance of QKD. http://www.uqcc.org/images/towards.pdf
- L. Lydersen, C. Wiechers, C. Wittmann, D. Elser, J. Skaar, and V. Makarov, “Hacking commercial quantum cryptography systems by tailored bright illumination,” Nat. Photonics4(10), 686–689 (2010). [CrossRef]
- Z. L. Yuan, J. F. Dynes, and A. J. Shields, “Avoiding the blinding attack in QKD,” Nat. Photonics4(12), 800–801 (2010). [CrossRef]
- L. Lydersen, V. Makarov, and J. Skaar, “Secure gated detection scheme for quantum cryptography,” Phys. Rev. A83(3), 032306 (2011). [CrossRef]
- L. Lydersen, M. K. Akhlaghi, A. H. Majedi, J. Skaar, and V. Makarov, “Controlling a superconducting nanowire single-photon detector using tailored bright illumination,” New J. Phys.13(11), 113042 (2011). [CrossRef]
- L. Lydersen, J. Skaar, and V. Makarov, “Tailored bright illumination attack on distributed-phase-reference protocols,” J. Mod. Opt.58(8), 680–685 (2011). [CrossRef]
- K. Inoue, E. Waks, and Y. Yamamoto, “Differential-phase-shift quantum key distribution using coherent light,” Phys. Rev. A68(2), 022317 (2003). [CrossRef]
- T. Honjo, K. Inoue, and H. Takahashi, “Differential-phase-shift quantum key distribution experiment with a planar light-wave circuit Mach-Zehnder interferometer,” Opt. Lett.29(23), 2797–2799 (2004). [CrossRef] [PubMed]
- H. Takesue, E. Diamanti, T. Honjo, C. Langrock, M. M. Fejer, K. Inoue, and Y. Yamamoto, “Differential phase shift quantum key distribution experiment over 105 km fibre,” New J. Phys.7, 232 (2005). [CrossRef]
- H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum keydistribution over 40 dB channel loss using superconducting single-photon detectors,” Nat. Photonics1(6), 343–348 (2007). [CrossRef]
- S. Wang, W. Chen, J. F. Guo, Z. Q. Yin, H. W. Li, Z. Zhou, G. C. Guo, and Z. F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett.37(6), 1008–1010 (2012). [CrossRef] [PubMed]
- M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J. B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express19(11), 10387–10409 (2011). [CrossRef] [PubMed]
- E. Waks, H. Takesue, and Y. Yamamoto, “Security of differential-phase-shift quantum key distribution against individual attacks,” Phys. Rev. A73(1), 012344 (2006). [CrossRef]
- K. Tamaki, M. Koashi, and G. Kato, “Unconditional security of coherent-state-based differential phase shift quantum key distribution protocol with block-wise phase randomization,” arXiv:1208.1995 (2012).
- M. Fujiwara, S. Miki, T. Yamashita, Z. Wang, and M. Sasaki, “Photon level crosstalk between parallel fibers installed in urban area,” Opt. Express18(21), 22199–22207 (2010). [CrossRef] [PubMed]
- M. Fujiwara, T. Honjo, K. Shimizu, K. Tamaki, and M. Sasaki, are preparing a manuscript to be called “Characteristic of superconductor single photon detector in QKD system under bright illumination blinding attack.”
- S. Miki, M. Takeda, M. Fujiwara, M. Sasaki, and Z. Wang, “Compactly packaged superconducting nanowire single-photon detector with an optical cavity for multichannel system,” Opt. Express17(26), 23557–23564 (2009). [CrossRef] [PubMed]
- T. Honjo, A. Uchida, K. Amano, K. Hirano, H. Someya, H. Okumura, K. Yoshimura, P. Davis, and Y. Tokura, “Differential-phase-shift quantum key distribution experiment using fast physical random bit generator with chaotic semiconductor lasers,” Opt. Express17(11), 9053–9061 (2009). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.