OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 3 — Feb. 11, 2013
  • pp: 3021–3030
« Show journal navigation

Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure

Zhengqi Liu, Peng Zhan, Jing Chen, Chaojun Tang, Zhendong Yan, Zhuo Chen, and Zhenlin Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 3, pp. 3021-3030 (2013)
http://dx.doi.org/10.1364/OE.21.003021


View Full Text Article

Acrobat PDF (1932 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

High performance light absorber with a broad bandwidth is particularly desirable for near-infrared photodetection and optical interconnects. Here we demonstrate a dual broadband perfect absorber in the near-infrared regime, which is based on a hybrid plasmonic-photonic microstructure. Such a microstructure is fabricated by self-assembling a monolayer colloidal crystal on an optically opaque metal film followed by depositing a thin metallic half-shell on the top of the colloidal particles. Both experimental and numerical simulation results show that the simply designed absorbers have dual broadband with absorption exceeding 90% in the near-infrared region with the absorption bands being scalable by tuning the size of the colloidal particles. Moreover, the absorption efficiency shows an extremely slight dispersion for the incident angles up to 50 degrees, benefit from the high symmetry as well as the highly modulated plasmonic microstructures that lead to a weak polarization dependence of these two absorption bands. The relative ease of growing high-quality colloidal crystals and the low cost of fabricating such plasmonic-photonic microstructures with high reproducibility could promise applicability of the light absorber in the field of photodetectors, thermal emitters and photovoltaics.

© 2013 OSA

1. Introduction

2. Sample preparation and optical characterization

The microstructures under study are formed by first self-assembling a 2D CC of polystyrene (PS) colloids on the surface of a quartz substrate pre-coated with an optically opaque gold film with a fixed thickness (h) of 100 nm, followed by further depositing a thin gold layer with different thickness (t) on top of the 2D CC as shown in Fig. 1(a)
Fig. 1 (a) Schematic and (b) a large-area optical image (scale bar 1 mm) taken under white-light irradiation and (c) a top view SEM image of a fabricated hybrid plasmonic-photonic microstructure. Cross-sectional schematic illustration (d) and SEM image (e) of a sample showing gold on the PS microspheres with 1.1 μm in diameter, and the gold back reflector under the colloids.
. A large area of 2D CC can be easily fabricated using a well-developed self-assembly method [31

31. P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006). [CrossRef]

]. As examples, two sizes of the PS colloids of 1.0 ± 0.015 μm and 1.1 ± 0.017 μm in diameter are used in the present study. Figure 1(b) shows an optical image of the prepared hybrid plasmonic-photonic microstructure based on a highly ordered 2D CC composed of PS microsphere with 1.1 μm in diameter, which exhibits a uniform color across the whole area of the sample; and a magnified SEM (FEI Philips XL-30) top-view image of a typical area of the microstructure is shown in Fig. 1(c). To characterize this hybrid plasmonic-photonic microstructure clearly, a cross-sectional schematic illustration [Fig. 1(d)] and the corresponding SEM image [Fig. 1(e)] of the sample show the top gold half-shells covered on the PS microspheres with a hexagonal lattice and a thick gold back layer supported on a quartz substrate. Transmission and reflection spectra were obtained using a commercial Fourier-transform infrared (FTIR) spectrometer (Nicolet 5700). The optical spot size of the incident beam impinging on the sample was about 0.8 mm. Polarization-dependent measurements were performed with an adjustable polarizer supplied with FTIR spectrometer. For calibration of angular dependence of reflection, we first measured the reflection spectra under different incident angles from a 100 nm-thick gold mirror as the corresponding baselines, and all the measured reflection from microstructures was then calibrated using these baselines.

3. Results and discussion

Due to the restriction of our equipment setup, transmission (T) and reflection (R) measurements were first performed under an incident angle of 8° with transverse magnetic (TM) polarization [see in Fig. 1(d)]. The absorption (A) was obtained with a definition of A = 1 - T - R. For this hybrid plasmonic-photonic microstructures, a 100 nm-thick gold back plate is exploited to prevent light transmission in the near-infrared regime of interest, which reduces the absorption to A = 1 - R. In Fig. 2(a)
Fig. 2 Measured (a) and calculated (b) absorption spectra of the hybrid plasmonic-photonic microstructures fabricated using CCs consisting of PS microspheres with diameters of D = 1.0 µm and 1.1 µm under an incident angle of 8°. (c) Absorption spectra of the hybrid plasmonic-photonic microstructure (diameter of PS microspheres D = 1.1 µm) under an incident angle of 20° as functions of the polarization angle. For all microstructures, the nominal thickness of the Au layer on the top of PS colloids is t = 9 nm.
, two broad absorption bands are observed which are centered at 1.15 μm and 1.85 μm with maximum absorption values of 97% and 99% for the microstructures consisting of PS colloids with a diameter of 1.1 μm, covered by gold half-shells with nominal thickness of t = 9 nm. The bandwidths with absorption exceeding 90% for the absorption band at shorter and longer wavelength are 150 nm and 300 nm, respectively. It is noted that for a hexagonal lattice with a period of 1.1 μm, the calculated cutoff wavelength for the onset of 1st order diffraction [21

21. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Ominidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008). [CrossRef]

] is located at λcut = 0.95 μm which is below the short wavelength explored here. Meanwhile, the almost same spectral profile of absorption response is observed in the similar hybrid plasmonic-photonic microstructure when diameter of the PS colloids was reduced to 1.0 μm [see Fig. 2(a), blue line], and the center wavelengths of the absorption bands are expected to show a blue-shift which is estimated to be in proportion to the size of the PS colloids.

To gain insight on the mechanism of the enhanced absorption, the electric field intensity distributions (|E|2) associated with the observed near-unity absorption bands in our hybrid plasmonic-photonic microstructure are plotted. Figure 3
Fig. 3 Calculated |E|2 map of the two resonant absorption modes at λ1 = 1.97 μm (a,c,d) and λ2 = 1.34 μm (e,g,h) for the hybrid plasmonic-photonic microstructures fabricated using CCs of PS microspheres with 1.1 µm in diameter. Color map is in linear scale and the same scale is used for all maps. (a) A cross-sectional view at λ1 = 1.97 μm, and its two top views with z = 825 nm (c) and z = 100nm (d). (e) The cross-sectional view at λ2 = 1.34 μm, and its two top views with z = 825 nm (g) and z = 100nm (h). The white dashed lines mark the xy planes at these two different z values. (b) and (f) Electric field vectors mapped on the xoz plane across the center of one microsphere for λ1 and λ2, respectively. Arrows represent field directions and colors show strength with red larger and black smaller. The blue dashed circles outline the regions of the gold coated microsphere microstructures. Black signs “+” and “−” stand for positive and negative charges, respectively.
shows the cross-sectional and top views of the electric field intensity distribution evaluated for the sample containing 2D CCs of PS microspheres with diameter 1.1 µm. Note that the normalized electric field intensity distributions are mapped using the same scale for the convenience of comparison. The electric field intensity distributions are calculated for the wavelengths λ1 = 1.97 μm and λ2 = 1.34 μm, which are located at the center of each absorption band. Figure 3(a) shows the electric field intensity profile on a cross-sectional plane cut through the center of a PS microsphere (in the xoz plane) for the longer wavelength band centered at λ1 = 1.97 μm. Also, the electric field intensity distributions in the sectional plane (xoy plane) at z = 825 nm and the interface between back gold plate and 2D PS CC at z = 100 nm are plotted in Figs. 3(c) and 3(d), respectively. It is found that the electric field intensity is strongly confined on the outer surface of gold half-shells. Such kind of field patterns could be more clearly seen from its vector field plot. As shown in Fig. 3(b), the charge distributions are schematically marked as “±” signs according to the direction of the electric fields closed to the outer surface of the gold coating layer, in which strong electric field is clearly observed. This field pattern is the typical characteristic of a localized plasmon mode supported by a metallic half-shell, which usually has a broad band feature [26

26. A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small 4(12), 2292–2299 (2008). [CrossRef] [PubMed]

28

28. Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011). [CrossRef] [PubMed]

]. This broadband plasmon resonance is identified as a superradiant mode originating from the sphere-like plasmon resonances of the individual metal shells [27

27. C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009). [CrossRef]

, 28

28. Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011). [CrossRef] [PubMed]

], which contributes to a broad bandwidth of the absorption of our microstructure, and this intrinsic broad plasmon resonant band is quite different from the inherent narrowband as the result of the impedance match due to the magnetic and electric resonant coupling in the metamaterial light absorber [1

1. C. M. Watts, X. L. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. (Deerfield Beach Fla.) 24(23), OP98–OP120, OP181 (2012). [CrossRef] [PubMed]

].

For the absorption band of shorter wavelength centered at λ2 = 1.34 μm, besides the strong electric field intensity distribution on the outer surface of the gold half-shells, most of the electric field intensity is found to be trapped in the PS microsphere and the interstice between the PS colloid and the bottom gold layer. As is shown by the electric field intensity profile along the xoz plane in Fig. 3(e), two lobes of strong-field region are observed, which is the typical feature of guided mode (GM) supported in the PS colloid [22

22. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1272–1276 (2011). [CrossRef] [PubMed]

, 29

29. X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010). [CrossRef]

, 30

30. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011). [CrossRef] [PubMed]

]. The GMs of the PS colloids could couple with each other due to the near field interaction, which finally leads to slab dielectric GM-like modes confined in the 2D CC [22

22. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1272–1276 (2011). [CrossRef] [PubMed]

, 29

29. X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010). [CrossRef]

, 30

30. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011). [CrossRef] [PubMed]

]. Meanwhile, strong electric field intensity bounded at the region between the gold layer and the PS colloids is also obvious, which stems from the excitation of the surface plasmon (SP)-like mode supported by the structure [29

29. X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010). [CrossRef]

, 30

30. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011). [CrossRef] [PubMed]

]. Similarly, the field maps in the xoy plane at the position of z = 825 nm and 100 nm, are plotted in Figs. 3(g) and 3(h), respectively. The electric field vector pattern is also plotted in Fig. 3(f), in which obvious strong electric field distributions are observed in the PS colloids and the interfaces between the PS colloids and the up gold coating layer and the bottom gold substrate. Generally, the origin of enhanced absorption has a strong correspondence with the quality of field confinement. In this case, due to excitation of the coupled GM-like and plasmon modes and their hybrids as well, near-unity absorbance would take place in the infrared regime centered at λ2 = 1.34 μm.

We conducted additional experiments to investigate the incident angle dependence of the absorption for our hybrid plasmonic-photonic absorber. Figure 4
Fig. 4 Absorption spectra of hybrid plasmonic-photonic microstructure with t = 9 nm under TM polarization (a) and TE polarization (b) as a function of incident angle and wavelength.
shows the measured absorption maps as a function of both wavelength and angle of incidence under TM and TE polarizations. The incident angle [marked in Fig. 1(d)] changes from θ = 10° to 50° with an interval of 2°. It is obvious that these two broad absorption bands could still be achieved even at large incident angles, and the spectral shape and the absorption amplitude are almost preserved in the wavelength region of our interest. Taking the longer wavelength band with absorption exceeding 80% into account, a large bandwidth of 500 nm shows only a narrowing of 20 nm as θ increases up to 50°. We attribute the above characteristic of absorption band to the localized nature of the plasmon mode supported by gold half-shell on each PS colloid and the high symmetry trait of the hybrid plasmonic-photonic microstructure. It's noticed that, with θ increasing, both absorption bands show a slight angular dispersion, which might be led by the GM-like modes and the Bragg-like plasmon resonance arising from microstructure periodicity which is defined by the 2D PS CC pattern [29

29. X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010). [CrossRef]

, 30

30. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011). [CrossRef] [PubMed]

]. Overall, the microstructure could keep the performance of very high and broadband absorption in the infrared regime under wide incident angle range.

4. Conclusion

In summary, we experimentally and numerically demonstrate a dual broadband perfect absorber in the near-infrared regime by utilizing a novel hybrid plasmonic-photonic microstructure, which is prepared by self-assembling a monolayer CC on a flat optically opaque metal film followed by depositing a thin metallic half-shell on the top of the colloidal microspheres. This fabrication technique is very simple, cost-effective, straightforward and highly reproducible. Both experimental and numerical simulation results show that the absorber has two broad absorption bands with absorption exceeding 90% in the near-infrared region. Both of bands show a slight dispersion for the incident angles and extremely weak polarization dependence. It is noted that our study shows that the dual broad absorption bands are supposed to be tuned in a wide frequency region by scaling the colloid's dimensions, even to the visible regime. With its excellent performance, this new system will provide alternative approach to design and study the broadband perfect absorption and its potential applications in photovoltaic and optoelectronic devices.

Acknowledgments

This work is supported by the State Key Program for Basic Research of China (No. 2012CB921501, 2013CB632703), the National Natural Science Foundation of China (Nos. 11274160, 11021403, 11174137, and 11104136). Partial support from Priority Academic Program Development (PAPD) is also acknowledged.

References and links

1.

C. M. Watts, X. L. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. (Deerfield Beach Fla.) 24(23), OP98–OP120, OP181 (2012). [CrossRef] [PubMed]

2.

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]

3.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science 332(6030), 702–704 (2011). [CrossRef] [PubMed]

4.

N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett. 10(7), 2342–2348 (2010). [CrossRef] [PubMed]

5.

N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett. 100(20), 207402 (2008). [CrossRef] [PubMed]

6.

K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun. 2, 517 (2011). [CrossRef] [PubMed]

7.

K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express 19(15), 14260–14267 (2011). [CrossRef] [PubMed]

8.

C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express 20(9), 10376–10381 (2012). [CrossRef] [PubMed]

9.

S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and ominidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett. 99(25), 253104 (2011). [CrossRef]

10.

L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett. 37(2), 154–156 (2012). [CrossRef] [PubMed]

11.

J. Hendrickson, J. P. Guo, B. Y. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett. 37(3), 371–373 (2012). [CrossRef] [PubMed]

12.

J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express 20(14), 14871–14878 (2012). [CrossRef] [PubMed]

13.

P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012). [CrossRef] [PubMed]

14.

J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett. 36(17), 3476–3478 (2011). [CrossRef] [PubMed]

15.

Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010). [CrossRef]

16.

Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett. 12(3), 1443–1447 (2012). [CrossRef] [PubMed]

17.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108(4), 047401 (2012). [CrossRef] [PubMed]

18.

X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett. 107(4), 045901 (2011). [CrossRef] [PubMed]

19.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano 6(3), 2550–2557 (2012). [CrossRef] [PubMed]

20.

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett. 37(11), 2133–2135 (2012). [CrossRef] [PubMed]

21.

T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Ominidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008). [CrossRef]

22.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.) 23(10), 1272–1276 (2011). [CrossRef] [PubMed]

23.

B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater. 21(21), 4182–4192 (2011). [CrossRef]

24.

M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express 19(21), 20642–20649 (2011). [CrossRef] [PubMed]

25.

Y. Yao, J. Yao, V. K. Narasimhan, Z. C. Ruan, C. Xie, S. H. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun. 3, 664 (2012). [CrossRef] [PubMed]

26.

A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small 4(12), 2292–2299 (2008). [CrossRef] [PubMed]

27.

C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B 80(16), 165401 (2009). [CrossRef]

28.

Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express 19(24), 23889–23900 (2011). [CrossRef] [PubMed]

29.

X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater. 20(12), 1910–1916 (2010). [CrossRef]

30.

S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.) 23(22-23), 2515–2533 (2011). [CrossRef] [PubMed]

31.

P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.) 18(12), 1612–1616 (2006). [CrossRef]

32.

J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and wetting properties of metallic half-shells with submicron diameters,” Nano Lett. 2(8), 891–894 (2002). [CrossRef]

33.

Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express 18(4), 3546–3555 (2010). [CrossRef] [PubMed]

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(300.1030) Spectroscopy : Absorption
(350.4238) Other areas of optics : Nanophotonics and photonic crystals

ToC Category:
Optics at Surfaces

History
Original Manuscript: December 3, 2012
Revised Manuscript: January 20, 2013
Manuscript Accepted: January 28, 2013
Published: January 31, 2013

Citation
Zhengqi Liu, Peng Zhan, Jing Chen, Chaojun Tang, Zhendong Yan, Zhuo Chen, and Zhenlin Wang, "Dual broadband near-infrared perfect absorber based on a hybrid plasmonic-photonic microstructure," Opt. Express 21, 3021-3030 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-3-3021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. M. Watts, X. L. Liu, and W. J. Padilla, “Metamaterial electromagnetic wave absorbers,” Adv. Mater. (Deerfield Beach Fla.)24(23), OP98–OP120, OP181 (2012). [CrossRef] [PubMed]
  2. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  3. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011). [CrossRef] [PubMed]
  4. N. Liu, M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, “Infrared perfect absorber and its application as plasmonic sensor,” Nano Lett.10(7), 2342–2348 (2010). [CrossRef] [PubMed]
  5. N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, “Perfect metamaterial absorber,” Phys. Rev. Lett.100(20), 207402 (2008). [CrossRef] [PubMed]
  6. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat. Commun.2, 517 (2011). [CrossRef] [PubMed]
  7. K. B. Alici, A. B. Turhan, C. M. Soukoulis, and E. Ozbay, “Optically thin composite resonant absorber at the near-infrared band: a polarization independent and spectrally broadband configuration,” Opt. Express19(15), 14260–14267 (2011). [CrossRef] [PubMed]
  8. C. W. Cheng, M. N. Abbas, C. W. Chiu, K. T. Lai, M. H. Shih, and Y. C. Chang, “Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays,” Opt. Express20(9), 10376–10381 (2012). [CrossRef] [PubMed]
  9. S. Q. Chen, H. Cheng, H. F. Yang, J. J. Li, X. Y. Duan, C. Z. Gu, and J. G. Tian, “Polarization insensitive and ominidirectional broadband near perfect planar metamaterial absorber in the near infrared regime,” Appl. Phys. Lett.99(25), 253104 (2011). [CrossRef]
  10. L. Huang, D. R. Chowdhury, S. Ramani, M. T. Reiten, S. N. Luo, A. J. Taylor, and H. T. Chen, “Experimental demonstration of terahertz metamaterial absorbers with a broad and flat high absorption band,” Opt. Lett.37(2), 154–156 (2012). [CrossRef] [PubMed]
  11. J. Hendrickson, J. P. Guo, B. Y. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett.37(3), 371–373 (2012). [CrossRef] [PubMed]
  12. J. Wang, C. Fan, P. Ding, J. He, Y. Cheng, W. Hu, G. Cai, E. Liang, and Q. Xue, “Tunable broad-band perfect absorber by exciting of multiple plasmon resonances at optical frequency,” Opt. Express20(14), 14871–14878 (2012). [CrossRef] [PubMed]
  13. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, and J. L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett.37(6), 1038–1040 (2012). [CrossRef] [PubMed]
  14. J. Grant, Y. Ma, S. Saha, A. Khalid, and D. R. S. Cumming, “Polarization insensitive, broadband terahertz metamaterial absorber,” Opt. Lett.36(17), 3476–3478 (2011). [CrossRef] [PubMed]
  15. Y. Q. Ye, Y. Jin, and S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B27(3), 498–504 (2010). [CrossRef]
  16. Y. Cui, K. H. Fung, J. Xu, H. Ma, Y. Jin, S. He, and N. X. Fang, “Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab,” Nano Lett.12(3), 1443–1447 (2012). [CrossRef] [PubMed]
  17. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett.108(4), 047401 (2012). [CrossRef] [PubMed]
  18. X. L. Liu, T. Tyler, T. Starr, A. F. Starr, N. M. Jokerst, and W. J. Padilla, “Taming the blackbody with infrared metamaterials as selective thermal emitters,” Phys. Rev. Lett.107(4), 045901 (2011). [CrossRef] [PubMed]
  19. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012). [CrossRef] [PubMed]
  20. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012). [CrossRef] [PubMed]
  21. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, and J. J. Baumberg, “Ominidirectional absorption in nanostructured metal surfaces,” Nat. Photonics2(5), 299–301 (2008). [CrossRef]
  22. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater. (Deerfield Beach Fla.)23(10), 1272–1276 (2011). [CrossRef] [PubMed]
  23. B. Ding, M. Bardosova, M. E. Pemble, A. V. Korovin, U. Peschel, and S. G. Romanov, “Broadband omnidirectional diversion of light in hybrid plasmonic-photonic heterocrystals,” Adv. Funct. Mater.21(21), 4182–4192 (2011). [CrossRef]
  24. M. Wang, C. Hu, M. Pu, C. Huang, Z. Zhao, Q. Feng, and X. Luo, “Truncated spherical voids for nearly omnidirectional optical absorption,” Opt. Express19(21), 20642–20649 (2011). [CrossRef] [PubMed]
  25. Y. Yao, J. Yao, V. K. Narasimhan, Z. C. Ruan, C. Xie, S. H. Fan, and Y. Cui, “Broadband light management using low-Q whispering gallery modes in spherical nanoshells,” Nat. Commun.3, 664 (2012). [CrossRef] [PubMed]
  26. A. I. Maaroof, M. B. Cortie, N. Harris, and L. Wieczorek, “Mie and Bragg plasmons in subwavelength silver semi-shells,” Small4(12), 2292–2299 (2008). [CrossRef] [PubMed]
  27. C. J. Tang, Z. L. Wang, W. Y. Zhang, N. B. Ming, G. Sun, and P. Sheng, “Localized and delocalized surface-plasmon-mediated light tunneling through monolayer hexagonal-close-packed metallic nanoshells,” Phys. Rev. B80(16), 165401 (2009). [CrossRef]
  28. Q. Wang, C. J. Tang, J. Chen, P. Zhan, and Z. L. Wang, “Effect of symmetry breaking on localized and delocalized surface plasmons in monolayer hexagonal-close-packed metallic truncated nanoshells,” Opt. Express19(24), 23889–23900 (2011). [CrossRef] [PubMed]
  29. X. D. Yu, L. Shi, D. Z. Han, J. Zi, and P. V. Braun, “High quality factor metallodielectric hybrid plasmonic-photonic crystals,” Adv. Funct. Mater.20(12), 1910–1916 (2010). [CrossRef]
  30. S. G. Romanov, A. V. Korovin, A. Regensburger, and U. Peschel, “Hybrid colloidal plasmonic-photonic crystals,” Adv. Mater. (Deerfield Beach Fla.)23(22-23), 2515–2533 (2011). [CrossRef] [PubMed]
  31. P. Zhan, Z. L. Wang, H. Dong, J. Sun, H. T. Wang, S. N. Zhu, N. B. Ming, and J. Zi, “The anomalous infrared transmission of gold films on two-dimensional colloidal crystals,” Adv. Mater. (Deerfield Beach Fla.)18(12), 1612–1616 (2006). [CrossRef]
  32. J. C. Love, B. D. Gates, D. B. Wolfe, K. E. Paul, and G. M. Whitesides, “Fabrication and wetting properties of metallic half-shells with submicron diameters,” Nano Lett.2(8), 891–894 (2002). [CrossRef]
  33. Y. Y. Li, J. Pan, P. Zhan, S. N. Zhu, N. B. Ming, Z. L. Wang, W. D. Han, X. Y. Jiang, and J. Zi, “Surface plasmon coupling enhanced dielectric environment sensitivity in a quasi-three-dimensional metallic nanohole array,” Opt. Express18(4), 3546–3555 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited