OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4036–4043
« Show journal navigation

1xN plasmonic power splitters based on metal-insulator-metal waveguides

Chyong-Hua Chen and Kao-Sung Liao  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4036-4043 (2013)
http://dx.doi.org/10.1364/OE.21.004036


View Full Text Article

Acrobat PDF (922 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Novel plasmonic power splitters constructed from a rectangular ring resonator with direct-connected input and output waveguides are presented and numerically investigated. An analytical model and systematic approach for obtaining the appropriate design parameters are developed by designing an equivalent lumped circuit model for the transmission lines and applying it to plasmonic waveguides. This approach can dramatically reduce simulation times required for determining the desired locations of the output waveguides. Three examples are shown, the 1 × 3, 1 × 4, and 1 × 5 equal-power splitters, with the design method being easily extended to any number of output ports.

© 2013 OSA

1. Introduction

Plasmonic waveguides have potential use in enabling energy-efficient and ultrahigh-density photonic integrated circuits (PICs) and for integrating optical components into microelectronic integrated circuits (ICs) at the nanoscale level owing to the strong field confinement of the surface plasmon polaritons (SPPs) propagating along the interface between a metal and a dielectric [1

1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]

, 2

2. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006). [CrossRef]

]. Among various plasmonic waveguides, the metal–insulator–metal (MIM) structure allows optical modes to be highly confined within the sub-wavelength insulator layer and to propagate in a sharp bend with low additional loss [3

3. T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005). [CrossRef] [PubMed]

, 4

4. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]

]. Additionally, they are able to be easily manufactured using existing nanofabrication techniques [5

5. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010). [CrossRef] [PubMed]

, 6

6. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009). [CrossRef]

].

Many compact all-optical devices based on MIM plasmonic waveguides have been proposed and investigated, including filters [7

7. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008). [CrossRef] [PubMed]

, 8

8. J. Tao, X. G. Huang, X. S. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009). [CrossRef] [PubMed]

], Bragg reflectors [9

9. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008). [CrossRef] [PubMed]

, 10

10. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14(23), 11318–11323 (2006). [CrossRef] [PubMed]

], and power splitters [4

4. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]

, 11

11. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express 16(19), 14369–14379 (2008). [CrossRef] [PubMed]

14

14. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express 19(15), 13831–13838 (2011). [CrossRef] [PubMed]

]. Equal-power splitters are essential components to multi-way PIC systems, which distribute the input power equally to several output ports. Several schemes have been proposed, including branching-type power splitters which connect multiple two-branch structures in tandem [4

4. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]

, 11

11. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express 16(19), 14369–14379 (2008). [CrossRef] [PubMed]

, 12

12. N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits,” Opt. Commun. 284(13), 3449–3455 (2011). [CrossRef]

], multimode interference (MMI) power splitters [13

13. Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007). [CrossRef]

] and slot-cavity based power splitters [14

14. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express 19(15), 13831–13838 (2011). [CrossRef] [PubMed]

]. The size of a cascaded coupler expands as the number of output ports increase, giving rise to a large insertion loss [12

12. N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits,” Opt. Commun. 284(13), 3449–3455 (2011). [CrossRef]

]. The relatively low transmission efficiency is observed in a MMI power splitter because of the reflections between the single mode and multimode waveguides [13

13. Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007). [CrossRef]

]. Furthermore, although a plasmonic splitter based on a slot cavity has a compact size, a rather large transmission loss is obtained due to indirect-connected input and output waveguides [14

14. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express 19(15), 13831–13838 (2011). [CrossRef] [PubMed]

].

In this paper, we present a new equal-power splitter consisting of a rectangular ring resonator with direct-connected input and output waveguides. We analytically establish the equivalent lumped network of the transmission lines for this structure by using microwave engineering approaches and systematically determine the locations of the output waveguides by sequentially obtaining 1:1 voltage ratios between the adjacent output waveguides. To validate the predictions from our model, plasmonic power splitters with various number of output ports are numerically demonstrated by using a two-dimensional (2D) finite difference time domain (FDTD) method.

2. Design of plasmonic power splitters

Figure 1
Fig. 1 Schematic diagram of the proposed power splitter
schematically shows the configuration of the proposed N-way power splitter where an input and N output waveguides are directly connected to a rectangular ring resonator with length L and width W. The input signal at port 1 splits among output ports 2, 3, …, and N + 1. The output ports are located symmetrically on either side of the resonator with respect to the input port 1 to obtain identical output powers. The widths of the ring, the input waveguide and the output waveguide are all equal to w. A two-layer antireflection (AR) resonator structure is inserted between the input waveguide and the ring structure to diminish the reflection at port 1 [15

15. J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B 98(4), 797–802 (2010). [CrossRef]

]. The widths of these two layers are Wr and w, respectively. The corresponding lengths are Lr1 and Lr2, respectively.

Here, a transverse electromagnetic (TEM) transmission line (TL) model is employed to describe the mode propagation of the MIM waveguide [16

16. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15(11), 6762–6767 (2007). [CrossRef] [PubMed]

, 17

17. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008). [CrossRef]

]. The total equivalent circuit of this structure is illustrated in Fig. 2
Fig. 2 Equivalent electrical circuit of the proposed structure
. The ring resonator is viewed as a closed-loop transmission line. Each waveguide segment of a ring resonator with length Lm is represented by an equivalent T-lumped circuit model with lumped parameters of Za,m and Zb,m, for m = 1, 2, …, and N + 1 [18

18. K. Chang and L. H. Hsieh, Microwave Ring Circuits and Related Structures (Wiley, 2004).

]. These parameters are expressed as follows:
Za,m=jZotan(βrLm/2)
(1)
Zb,m=jZocsc(βrLm)
(2)
where βr is the propagation constant of the line, and Zo is the characteristic impedance of the transmission line, calculated byZo=βrwωεin with insulator permittivity εin and frequency of incidence ω [16

16. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15(11), 6762–6767 (2007). [CrossRef] [PubMed]

, 17

17. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008). [CrossRef]

].

It is known that the transmitted power at the m-th port can be obtained by calculating the scattering parameter Sm,1 which is proportional to the propagation voltage Vm on the transmission line of the m-th port as all the output ports are terminated in matched loads Zo. Thus, to obtain equal power at all the output ports, the amplitude of the voltage ratio at any two output ports should be 1.

Due to the structural symmetry, i.e., L1 = LN + 1, L2 = LN…, V2 = VN + 1, V3 = VN…. Then, the analysis of the lumped circuit can be simplified, as shown in Fig. 3(a)
Fig. 3 Simplified circuit model of the proposed splitter for (a) odd N and (b) even N
and 3(b) which are the simplified circuit models looking from the port 1 with odd N and even N, respectively, without including the AR structure. Let M = N/2 for even N and M = (N + 1)/2 for odd N. We define VR(m) as the ratio of the voltage Vm + 1 to Vm which is
VR(m)=Vm+1Vm=Zeq,m+1Za,m+Zeq,m+1Zb,m||(Za,m+Zeq,m+1)Za,m+Zb,m||(Za,m+Zeq,m+1),m=2,3M
(3)
where Zeq,m + 1 is the equivalent impedance as seen from the (m + 1)-th port, calculated byZeq,m+1=Zo||[Za,m+1+Zb,m+1||(Za,m+1+Zeq,m+2)]. Two vertical lines “||” represent the total impedance of two impedances in parallel. Zeq,M+1=2Zo for odd N, and Zeq,M+1=Zo||(Za,M+1+2Zb,M+1) for even N.

The reflected power at port 1 can be realized by the scattering parameter S11 expressed as
S11=ZinZoZin+Zo
(4)
where Zin is the equivalent input impedance of this whole structure, which is [Za,1+Zb,1||(Za,1+Zeq,2)]/2.

Since all the line lengths except L1 are known, L1 becomes the only variable of S11. To diminish the reflected power at port 1, we can select the line length of L1 to have the minimal amplitude of S11. However, sometimes the minimal amplitude of S11 is unacceptable, and then the AR structure is applied to effectively mitigate the reflected power without changing all the values of VRs. In the following section, we numerically explore several designs to illustrate the above-mentioned design concepts.

3. Numerical results

To confirm our design analysis, here we use the example of the Ag-air-Ag waveguide with the dielectric constant of silver described by the five-term Drude-Lorentz model [19

19. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef] [PubMed]

]:
ε(ω)=εωp2ω2+iγωn=15Δεnωn2ω2ωn2+iγnω
(5)
where ε = 1.0 is the relative permittivity in the infinity frequency, ωp = 1.258 × 1016 rad/sec is the bulk plasma frequency, and γ = 7.295 × 1013 rad/sec is a damping constant. ωn, γn and Δεn are the oscillator resonant frequencies, the damping factors and weighting factors associated with the Lorentzian peaks, respectively. All the parameters of this Drude - Lorentz model can be found in Ref [19

19. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef] [PubMed]

].

The commercial software 2D FDTD simulator (Fullwave, RSOFT Design Inc.) is utilized to calculate the field propagation behavior and the performance of the proposed structure with w of 50 nm. The incidence is the fundamental TM mode of this MIM waveguide at the wavelength λ0 of 1550 nm. A 50 nm perfectly matched layer (PML) boundary with reflectivity of 10−8 is applied. The grid sizes in the transverse direction, x, and transmission direction, z, are Δx = Δz = 5 nm. As the grid sizes are smaller than 5 nm, the transmission varies within ± 2%.

3.1 Odd N

First, take an example of N = 3. In this case, voltage ratio VR(2) is a function of the line length L2. Figure 4(a)
Fig. 4 (a) Variation of voltage ratio VR(2) on L2, (b) variation of S11 on L1, (c) layout of the designed 1 × 3 power splitter and the corresponding field evolution and (d) transmission and reflection spectra obtained by the FDTD method (solid lines) and by the TL model (dashed lines). The dotted magenta curve is a straight line of VR(2) = 1. The blue, red and black curves represent the calculated powers at ports 1, 2 and 3, respectively.
shows the amplitude of VR(2) for varying line length L2. As we can see, the amplitude of VR(2) oscillates with a period of 550 nm, corresponding to an optical length of a half λ0. Furthermore, the amplitude of oscillation gradually decreases because of the complex propagation constant. The amplitude of VR(2) equals 1 when L2 equals 0, 515 nm, 588 nm, etc. Let L2 be 515nm, then the amplitude variation of S11 on L1 is illustrated in Fig. 4(b). A periodic oscillation between 0 and 1 with increasing L1 is observed and the local minima are obtained at L1 = 260 + 550 × l nm, with l = 0, 1, 2…. As shown in Fig. 4(b), the minimum value is approximately 0.14, which is unsatisfactory for a power splitter. Let L and W be 295 and 1030 nm, respectively, corresponding to L1 of 810 nm and L2 of 515 nm. Then, the reflection at λ0 is mitigated as Wr, Lr1 and Lr2 are 100, 30 and 155 nm, respectively.

Figure 4(c) shows the design and the field evolution of this 1 × 3 power splitter. The transmitted powers obtained by the FDTD method are −5.41, −5.39 and −5.41 dB with respect to ports 2, 3, and 4. Notice that the powers at ports 2 and 4 are identical owing to structural symmetry. Additionally, the output powers at the ports 2 and 3 are approximately identical. This small deviation is due to the slight inaccuracy of the TL model at λ0. The reflected power is effectively reduced to −48.15 dB. The insertion loss of this device is −0.63 dB, mainly resulting from the transmission loss propagating through the ring and AR resonator structures. Figure 4(d) depicts the wavelength dependence of the powers at the ports 1, 2 and 3, calculated both by the TL model and by the FDTD method. As shown, the two simulated results are in close agreement. Moreover, the simulated output powers at the ports 2 and 3 are very close to each other over the broad wavelength range of 1400 to 1700 nm. On the other hand, the reflection is very wavelength selective with a steep V-shaped spectral curve. The bandwidth for reflection less than −20 dB is obtained over a wavelength range of 1460 to 1630 nm.

Figure 5(c) shows the layout and its FDTD field evolution of the design with L of 1030 nm and W of 305 nm, corresponding to L1 of 820 nm, L2 of 0 nm and L3 of 515 nm. The transmitted powers obtained by the FDTD method are −7.78, −7.62, −7.70, −7.62 and −7.78 dB with respect to output ports 2, 3, 4, 5 and 6. The reflected power is effectively reduced to −69.07 dB. The insertion loss of this device is −0.70 dB. Figure 5(d) depicts the power at the ports 1, 2, 3, and 4 as a function of wavelength. The performance has similar tendencies as those obtained in the aforementioned 1 × 3 power splitter except that the transmission is smaller, roughly less by −2.3 dB. The bandwidth for reflection less than −20 dB is obtained over a wavelength range of 1520 to 1580 nm.

4.2 Even N

Here, we study the design example of a 1 × 4 power splitter. As before, we first arbitrarily choose the line length of L3 to acquire the value of Zeq,3. Figure 6(a)
Fig. 6 (a) Variation of voltage ratio VR(2) on L2, (b) variation of S11 on L1, (c) layout of the designed 1 × 4 power splitter and the corresponding field evolution and (d) transmission and reflection spectra obtained by the FDTD method (solid lines) and by the TL model (dashed lines). The blue, red and black curves represent the calculated powers at ports 1, 2 and 3, respectively.
illustrates the amplitude of VR(2) as the line length L2 is varied at L3 = 250 nm. The amplitude of VR(2) oscillates with period of 550 nm and becomes 1 as L2 is 0, 200 nm, 557 nm, …. Let L2 be 200 nm, and then the amplitude variation of S11 on L1 is displayed in Fig. 6(b). It shows the local minima at L1 = 239 + 550 × l nm, l = 0, 1, 2…. Let L and W be 464 and 650 nm, respectively, corresponding to L1 of 789 nm, L2 of 200 nm and L3 of 250 nm. The reflection is minimized as Wr, Lr1 and Lr2 are 185, 0 and 30 nm, respectively. Figure 6(c) shows the layout and the field evolution of this 1 × 4 power splitter. The transmitted powers are −6.76, −6.51, −6.51, and −6.76 dB with respect to the output ports 2, 3, 4, and 5. The reflected power is reduced to −38.89 dB. The insertion loss of this device is −0.61 dB. Figure 6(d) depicts the power at the ports 1, 2, and 3 as a function of wavelength. The calculated transmission spectra obtained by the FDTD method is shifted to shorter wavelengths by roughly 35 nm compared with those obtained by the TL model. The bandwidth for reflection less than −20 dB is obtained over a wavelength range of 1520 to 1580 nm.

4. Conclusion

A new type of plasmonic power splitter is proposed and analyzed. This device consists of a rectangular ring resonator with direct-connected input and output waveguides. The theoretical structure is investigated using an equivalent circuit model and analytical expressions to obtain equal output powers at all the output ports. The appropriate line lengths are attained by finding the solution that results in all VR amplitudes equal to 1. Three illustrative examples with different numbers of output ports are simulated by using the FDTD method to confirm our analytical model. Simulation results substantiate that this approach can effectively acquire the targeted design parameters without lengthy computation time. In addition, this structure can be easily extended to designs with a greater number of output ports. The insertion loss of this structure is primarily attributed to propagation losses in the ring resonator and the AR structure, and the bandwidth is predominantly limited by the wavelength response of the AR structure. Enhanced predictions can be achieved by including equivalent circuits for photonic T-junctions, crossings and 90° bends.

References and links

1.

E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science 311(5758), 189–193 (2006). [CrossRef] [PubMed]

2.

R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today 9(7–8), 20–27 (2006). [CrossRef]

3.

T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express 13(24), 9652–9659 (2005). [CrossRef] [PubMed]

4.

G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett. 87(13), 131102 (2005). [CrossRef]

5.

R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater. 9(1), 21–25 (2010). [CrossRef] [PubMed]

6.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics 3(5), 283–286 (2009). [CrossRef]

7.

X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008). [CrossRef] [PubMed]

8.

J. Tao, X. G. Huang, X. S. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express 17(16), 13989–13994 (2009). [CrossRef] [PubMed]

9.

J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express 16(7), 4888–4894 (2008). [CrossRef] [PubMed]

10.

A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express 14(23), 11318–11323 (2006). [CrossRef] [PubMed]

11.

S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express 16(19), 14369–14379 (2008). [CrossRef] [PubMed]

12.

N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits,” Opt. Commun. 284(13), 3449–3455 (2011). [CrossRef]

13.

Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun. 278(1), 199–203 (2007). [CrossRef]

14.

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express 19(15), 13831–13838 (2011). [CrossRef] [PubMed]

15.

J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B 98(4), 797–802 (2010). [CrossRef]

16.

P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express 15(11), 6762–6767 (2007). [CrossRef] [PubMed]

17.

S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron. 14(6), 1462–1472 (2008). [CrossRef]

18.

K. Chang and L. H. Hsieh, Microwave Ring Circuits and Related Structures (Wiley, 2004).

19.

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37(22), 5271–5283 (1998). [CrossRef] [PubMed]

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(240.6680) Optics at surfaces : Surface plasmons
(310.2790) Thin films : Guided waves
(350.4010) Other areas of optics : Microwaves

ToC Category:
Integrated Optics

History
Original Manuscript: November 16, 2012
Revised Manuscript: January 31, 2013
Manuscript Accepted: February 4, 2013
Published: February 11, 2013

Citation
Chyong-Hua Chen and Kao-Sung Liao, "1xN plasmonic power splitters based on metal-insulator-metal waveguides," Opt. Express 21, 4036-4043 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4036


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ozbay, “Plasmonics: merging photonics and electronics at nanoscale dimensions,” Science311(5758), 189–193 (2006). [CrossRef] [PubMed]
  2. R. Zia, J. A. Schuller, A. Chandran, and M. L. Brongersma, “Plasmonics: the next chip-scale technology,” Mater. Today9(7–8), 20–27 (2006). [CrossRef]
  3. T. W. Lee and S. Gray, “Subwavelength light bending by metal slit structures,” Opt. Express13(24), 9652–9659 (2005). [CrossRef] [PubMed]
  4. G. Veronis and S. Fan, “Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides,” Appl. Phys. Lett.87(13), 131102 (2005). [CrossRef]
  5. R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, “A silicon-based electrical source of surface plasmon polaritons,” Nat. Mater.9(1), 21–25 (2010). [CrossRef] [PubMed]
  6. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009). [CrossRef]
  7. X. S. Lin and X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett.33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  8. J. Tao, X. G. Huang, X. S. Lin, Q. Zhang, and X. Jin, “A narrow-band subwavelength plasmonic waveguide filter with asymmetrical multiple-teeth-shaped structure,” Opt. Express17(16), 13989–13994 (2009). [CrossRef] [PubMed]
  9. J. Q. Liu, L. L. Wang, M. D. He, W. Q. Huang, D. Wang, B. S. Zou, and S. Wen, “A wide bandgap plasmonic Bragg reflector,” Opt. Express16(7), 4888–4894 (2008). [CrossRef] [PubMed]
  10. A. Hosseini and Y. Massoud, “A low-loss metal-insulator-metal plasmonic Bragg reflector,” Opt. Express14(23), 11318–11323 (2006). [CrossRef] [PubMed]
  11. S. Passinger, A. Seidel, C. Ohrt, C. Reinhardt, A. Stepanov, R. Kiyan, and B. Chichkov, “Novel efficient design of Y-splitter for surface plasmon polariton applications,” Opt. Express16(19), 14369–14379 (2008). [CrossRef] [PubMed]
  12. N. Nozhat and N. Granpayeh, “Analysis of the plasmonic power splitter and MUX/DEMUX suitable for photonic integrated circuits,” Opt. Commun.284(13), 3449–3455 (2011). [CrossRef]
  13. Z. Han and S. He, “Multimode interference effect in plasmonic subwavelength waveguides and an ultra-compact power splitter,” Opt. Commun.278(1), 199–203 (2007). [CrossRef]
  14. Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Opt. Express19(15), 13831–13838 (2011). [CrossRef] [PubMed]
  15. J. Liu, H. Zhao, Y. Zhang, and S. Liu, “Resonant cavity based antireflection structures for surface plasmon waveguides,” Appl. Phys. B98(4), 797–802 (2010). [CrossRef]
  16. P. Ginzburg and M. Orenstein, “Plasmonic transmission lines: from micro to nano scale with λ/4 impedance matching,” Opt. Express15(11), 6762–6767 (2007). [CrossRef] [PubMed]
  17. S. E. Kocabas, G. Veronis, D. A. B. Miller, and S. Fan, “Transmission line and equivalent circuit models for plasmonic waveguide components,” IEEE J. Sel. Top. Quantum Electron.14(6), 1462–1472 (2008). [CrossRef]
  18. K. Chang and L. H. Hsieh, Microwave Ring Circuits and Related Structures (Wiley, 2004).
  19. A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt.37(22), 5271–5283 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited