OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4703–4708
« Show journal navigation

Octave-spanning spectrum of femtosecond Yb:fiber ring laser at 528 MHz repetition rate in microstructured tellurite fiber

Guizhong Wang, Tongxiao Jiang, Chen Li, Hongyu Yang, Aimin Wang, and Zhigang Zhang  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4703-4708 (2013)
http://dx.doi.org/10.1364/OE.21.004703


View Full Text Article

Acrobat PDF (1202 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The octave-spanning spectrum was generated in a tellurite glass based microstructured fiber pumped by a 528 MHz repetition rate Yb:fiber ring laser without amplification. The laser achieved 40% output optical-to-optical efficiency with the output power of 410 mW. By adjusting the grating pair in the cavity, this oscillator can work at different cavity dispersion regimes with the shortest dechirped pulse width of 46 fs. The output pulses were then launched into a high-nonlinearity tellurite fiber, which has the zero-dispersion wavelength at ~1 μm. The high nonlinearity coefficient (1348 km−1W−1) and the matched zero-dispersion wavelength with pump laser enable the octave-spanning supercontinuum generated from 750 nm to 1700 nm with the coupled pulse energy above 10 pJ.

© 2013 OSA

1. Introduction

Ultrafast fiber lasers and their supercontinuum generation have attracted much attention in many applications, such as the optical coherence tomography, spectroscopy, and frequency metrology [1

1. S. T. Cundiff, “Metrology: new generation of combs,” Nature 450(7173), 1175–1176 (2007). [CrossRef] [PubMed]

3

3. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010). [CrossRef]

]. Particularly, for an optical frequency comb, spectrum over one octave of bandwidth is necessary for the f–to–2f interferometer technique [4

4. T. Wilken, T. W. Hänsch, Th. Udem, T. Steinmetz, R. Holzwarth, A. Manescau, G. Lo Curto, L. Pasquini, and C. Lovis, “High precision Calibration of Spectrographs in Astronomy,” Conference on Laser and Electro-Optics (CLEO), paper CMHH3 (2010).

, 5

5. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009). [CrossRef] [PubMed]

].

Higher repetition rate can directly lead to lower delivered pulse energy, which makes the succeeded spectrum broadening difficult. To date, external amplification has been applied to obtain enough pulse energy for the octave spanning spectrum in a nonlinear fiber with the laser repetition rate above 386 MHz [12

12. A. Wang, H. Yang, C. Li, and Z. Zhang, “Octave-spanning spectrum generation with a 503MHz repetition rate femtosecond Yb:fiber ring laser,” Conference on Laser and Electro-Optics (CLEO), paper CTu3G.2 (2012).

, 16

16. C. Farrell, K. A. Serrels, T. R. Lundquist, P. Vedagarbha, and D. T. Reid, “Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser,” Opt. Lett. 37(10), 1778–1780 (2012). [CrossRef] [PubMed]

]. However, the amplification process may introduce amplified spontaneous emission (ASE) noise, and make the system more complex and instable. To avoid all of these, high-nonlinearity fibers have been employed such as the soft glass fibers, tellurite glass fibers and chalcogenide fibers [17

17. H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, and P. S. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express 17(3), 1919–1924 (2009). [CrossRef] [PubMed]

21

21. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett. 41(15), 835–837 (2005). [CrossRef]

] to adopt lower pulse energies. Supercontinuum generation with further lower pulse energy is demanding as the pulse repetition rate is increased.

In this letter, we report a 528 MHz repetition rate ring cavity femtosecond fiber laser and its spectrum broadening in a tellurite microstructured fiber to generate octave-spanning supercontinuum. The spectra obtained are from 750 nm to 1700 nm with the pulse energy above 10 pJ. To our knowledge, this is the lowest pulse energy to obtain the octave-spanning spectrum at the repetition rate above 500 MHz.

2. Set up of the 528 MHz Yb:fiber ring laser

The schematic of Yb:fiber laser is shown in Fig. 1
Fig. 1 Schematic of 528 MHz Yb fiber ring laser (PBS: polarization beam splitter, FR: faraday rotator, λ/2: half-wave plate, λ /4: quarter-wave plate, YDF: Yb doped fiber).
. The fiber section comprises 12 cm length of Yb doped fiber with the absorption of 1600 dB/m at 976 nm. Both of the WDM collimator and fiber collimator had a length of 4.5 cm, giving a total fiber length 21 cm, the free-space section was ~22 cm long containing a bulk Faraday rotator, wavelength plates, two polarization beam splitters (PBS) and a pair of 1000 lines/mm fused silica transmission gratings providing anomalous dispersion. The output pulses are rejected from the PBS and dechirped with a pair of gratings outside the cavity.

The cavity dispersion was carefully designed. The calculated group delay dispersion (GDD) of the total dispersion of for a 12 cm long Yb:fiber is + 2760 fs2. The 9 cm long single mode fiber is + 2160 fs2. The dispersion of the 1000 lines/mm grating pair is calculated to be −6300 fs2/mm for double pass and is slightly adjustable.

Two 650 mW 976 nm laser diodes were combined into a single mode fiber as the pump laser which delivers a maximum effective pump power of 1.07 W. The pump power is coupled into the Yb doped fiber with a WDM collimator, as described in [11

11. P. Li, G. Wang, C. Li, A. Wang, Z. Zhang, F. Meng, S. Cao, and Z. Fang, “Characterization of the carrier envelope offset frequency from a 490 MHz Yb-fiber-ring laser,” Opt. Express 20(14), 16017–16022 (2012). [CrossRef] [PubMed]

]. The laser threshold is 850 mW. At the maximum pump power, the output power of the mode-locked laser was 410 mW which exhibits an optical-to-optical efficiency of ~40%. The output power after the grating pair compressor is 307 mW. The laser was self-starting and last for a week without covering with a box. This super stability is possibly due to the very short fiber length and the compact of the laser structure.

The output pulse spectra and the corresponding autocorrelation traces after the grating pair compressor are presented in Fig. 2
Fig. 2 (a) (b) (c): spectra with the separation of grating pair at 1.4 mm (a), 1.1 mm (b) and 0.8 mm (c); (d) (e) (f): the corresponding measured autocorrelation traces of the compressed pulses. The dechirped pulse width was calculated to be 96 fs (d), 62 fs (e) and 46 fs (f) with Gauss profile assumed.
. The measured pulse spectra widths were 19 nm, 33 nm and 50 nm for the intracavity grating separation of 1.4 mm,1.1 mm and 0.8 mm respectively. The corresponding minimum pulse durations were from 96 fs, 62 fs and 46 fs for the Gaussian profile assumed. The broadband spectrum and the sub-50-fs pulse agree well with our prediction that a shorter intracavity fiber will result in short pulse output. Sub-50fs pulses are favorable for the subsequent spectrum expansion in the high nonlinear fiber.

The measured repetition rate is 527.7 MHz with signal to noise ratio of 60dB (Fig. 3(a)
Fig. 3 (a): Radio frequency spectrum from 0 GHz to 1.1 GHz at the resolution bandwidth of 1MHz. Inset: Radio frequency spectrum at the resolution bandwidth of 10 kHz. (b): phase noise spectrum. PSD: power spectral density.
). The phase noise spectrum was measured till 1 MHz and is shown in Fig. 3(b). The root mean square of timing jitter was calculated to be 1.7 fs by the integration of the phase noise spectrum from 1 kHz through 1 MHz. The relative intensity noise was measured to be < 130 dBc/Hz@1MHz.

3. Description of the tellurite glass based microstructured fiber

The electron microscope image of the cross section of the tellurite fiber used in this experiment is shown in Fig. 4
Fig. 4 Dispersion curve of the tellurite fiber with the zero dispersion wavelength around 1 μm. Inset: scanning electron micrograph of the core region in the tellurite fiber.
. The fiber structure is similar as the fiber in [21

21. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett. 41(15), 835–837 (2005). [CrossRef]

]: three very fine filaments 5 μm long and ~100 nm wide supports a 1.2 μm diameter core. The nonlinear coefficient of this fiber is estimated to be 1348 km−1W−1(with n2 = 2.5 × 10−19m2W−1).

The zero-dispersion-wavelength (ZDW) of the bulk tellurite glass is beyond 2 μm, and the suspending-core structure can shift the ZDW to shorter wavelength. The modeled dispersion of this fiber is shown in Fig. 4. It is seen that its ZDW was about 1 μm, a little below the supercontinuum pump wavelength at 1.03 μm. Thus, the pump pulses propagate in the region of anomalous dispersion, suitable for supercontinuum generation. The experimental data about the dispersion at 780 nm and 920 nm were −500 ps/nm/km and −70 ps/nm/km, in accordance with the modeled results.

4. Octave-spanning spectrum generation

A 13 cm long tellurite fiber was used for supercontinuum generation. The dechirped pulses were directly coupled into the tellurite fiber with a 1.5 mm focal length aspheric lens. The launched pulse energy was increased from 1.3 pJ to 17.5 pJ. The resulting spectra, shown in Fig. 5
Fig. 5 Spectrum evolution for the coupled pulse energy from 1.3 pJ to 17.5 pJ in the tellurite fiber.
, are plotted on a logarithmic scale for different launched pulse energies. An octave-spanning spectrum from 750 nm to 1700 nm was found at the pulse energy below 20 pJ.

It can be seen that the spectral broadening appeared at the pulse energy as low as 1.3 pJ. After the pulse energy was increased to 3.7 pJ, the Raman peak shifted to 1150 nm in the long-wavelength regime, and a peak appeared at 850 nm in the normal dispersion regime of the fiber. Further broadening to 800nm on the short-wavelength side of the pump and the Raman peak around 1650 nm were observed, when the launched energy reached 9.8 pJ. As the pulse energy is further increased from 9.8 to 17.5 pJ, more Raman soliton peaks filled in gaps between 1250 nm to 1600 nm, together with the spectral intensity increased. There are two peaks located at 770 nm and 1540 nm in the spectrum. To the best of our knowledge, this is the lowest pulse energy reported for the generation of the octave-spanning spectrum directly from Yb-based fiber laser oscillator.

Such a low-pulse-energy broadened spectrum not only offer the possibility for the direct generation of frequency comb from a Yb:fiber laser, but is of particular interest in the development of astro-combs, which requires high repetition rate up to tens of GHz.

The octave-spanning spectra with longer tellurite fiber lengths were also tested. It is easy to obtain octave-spanning spectrum across two peaks at 700-800 nm and 1400-1600 nm, respectively. These peaks offer the source for the f -to-2f interference signal for Yb fiber laser combs.

Mid-infrared signals beyond 1700 nm were also recorded by an infrared spectroscopy (ocean optics NIR quest) in this experiment. With 17.5 pJ launched pulse energy, Raman peaks at 2100 nm and 2300 nm were observed, with an intensity of 27 dB lower than the maximum signal at 1030 nm. Because the tellurite glass has a high transmission through the mid-infrared to 5 μm [22

22. T. Delmonte, M. A. Watson, E. J. O’Driscoll, X. Feng, T. M. Monro, V. Finazzi, P. Petropoulos, J. H. V. Price, J. C. Baggett, W. Loh, D. J. Richardson, and D. P. Hand, “Generation of mid-IR continuum using tellurite microstructured fiber,” Conference on Electro-Optics (CLEO), paper CTuA4 (2006).

], this technique is potentially used for mid-infrared spectroscopy and mid-infrared frequency comb. Further study in this wavelength region will be reported in the near future.

5. Conclusions

We have developed a compact 528 MHz repetition-rate and 46 fs Yb:fiber ring laser, and obtained octave-spanning spectrum pumped by this laser in a microstructured tellurite fiber at the coupled pulse energy of tens of pJ. The transmission grating pair and compact cavity make the laser more efficient and deliver shorter pulses. Owing to the high output power and short pulses, the spectrum expands a wavelength range from 750 nm to 1700 nm in a 13 cm tellurite fiber. This is the first time to show the octave spanning spectrum at >500 MHz repetition rate and at the lowest pulse energy. Such a broad spectrum can be used to develop a simple and compact frequency comb with the f-to-2f interference technique. Furthermore, the experiment also shows the capability of the fiber to expand the spectrum to mid-infrared with low pulse energies.

Acknowledgments

The authors thank Tanya Monro and Yinlan Ruan of the University of Adelaide for providing tellurite fibers. This work was supported in part by the National Natural Science Foundation of China (60927010, 10974006, 110274046, 61177047, and 60907040), and the Templeton Foundation.

References and links

1.

S. T. Cundiff, “Metrology: new generation of combs,” Nature 450(7173), 1175–1176 (2007). [CrossRef] [PubMed]

2.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007). [CrossRef] [PubMed]

3.

T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc. 405(1), L16–L20 (2010). [CrossRef]

4.

T. Wilken, T. W. Hänsch, Th. Udem, T. Steinmetz, R. Holzwarth, A. Manescau, G. Lo Curto, L. Pasquini, and C. Lovis, “High precision Calibration of Spectrographs in Astronomy,” Conference on Laser and Electro-Optics (CLEO), paper CMHH3 (2010).

5.

A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science 326(5953), 681 (2009). [CrossRef] [PubMed]

6.

M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett. 16(7), 502–504 (1991). [CrossRef] [PubMed]

7.

D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett. 35(17), 2858–2860 (2010). [CrossRef] [PubMed]

8.

T. Wilken, P. Vilar-Welter, T. W. Hänsch, and Th. Udem, “High repetition rate, tunable femtosecond Yb-fiber laser,” Conference on Laser and Electro-Optics (CLEO), paper CFK2 (2010).

9.

A. Wang, H. Yang, and Z. Zhang, “503MHz repetition rate femtosecond Yb: fiber ring laser with an integrated WDM collimator,” Opt. Express 19(25), 25412–25417 (2011). [CrossRef] [PubMed]

10.

H. Yang, A. Wang, and Z. Zhang, “Efficient femtosecond pulse generation in an all-normal-dispersion Yb:fiber ring laser at 605 MHz repetition rate,” Opt. Lett. 37(5), 954–956 (2012). [CrossRef] [PubMed]

11.

P. Li, G. Wang, C. Li, A. Wang, Z. Zhang, F. Meng, S. Cao, and Z. Fang, “Characterization of the carrier envelope offset frequency from a 490 MHz Yb-fiber-ring laser,” Opt. Express 20(14), 16017–16022 (2012). [CrossRef] [PubMed]

12.

A. Wang, H. Yang, C. Li, and Z. Zhang, “Octave-spanning spectrum generation with a 503MHz repetition rate femtosecond Yb:fiber ring laser,” Conference on Laser and Electro-Optics (CLEO), paper CTu3G.2 (2012).

13.

A. Chong, W. H. Renninger, and F. W. Wise, “Route to the minimum pulse duration in normal-dispersion fiber lasers,” Opt. Lett. 33(22), 2638–2640 (2008). [CrossRef] [PubMed]

14.

L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett. 36(9), 1578–1580 (2011). [CrossRef] [PubMed]

15.

Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express 19(15), 14518–14525 (2011). [CrossRef] [PubMed]

16.

C. Farrell, K. A. Serrels, T. R. Lundquist, P. Vedagarbha, and D. T. Reid, “Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser,” Opt. Lett. 37(10), 1778–1780 (2012). [CrossRef] [PubMed]

17.

H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, and P. S. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express 17(3), 1919–1924 (2009). [CrossRef] [PubMed]

18.

P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express 16(10), 7161–7168 (2008). [CrossRef] [PubMed]

19.

A. Ishizawa, T. Nishikawa, S. Aozasa, A. Mori, O. Tadanaga, M. Asobe, and H. Nakano, “Demonstration of carrier envelope offset locking with low pulse energy,” Opt. Express 16(7), 4706–4712 (2008). [CrossRef] [PubMed]

20.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011). [CrossRef] [PubMed]

21.

X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett. 41(15), 835–837 (2005). [CrossRef]

22.

T. Delmonte, M. A. Watson, E. J. O’Driscoll, X. Feng, T. M. Monro, V. Finazzi, P. Petropoulos, J. H. V. Price, J. C. Baggett, W. Loh, D. J. Richardson, and D. P. Hand, “Generation of mid-IR continuum using tellurite microstructured fiber,” Conference on Electro-Optics (CLEO), paper CTuA4 (2006).

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 2, 2012
Revised Manuscript: January 29, 2013
Manuscript Accepted: February 1, 2013
Published: February 19, 2013

Citation
Guizhong Wang, Tongxiao Jiang, Chen Li, Hongyu Yang, Aimin Wang, and Zhigang Zhang, "Octave-spanning spectrum of femtosecond Yb:fiber ring laser at 528 MHz repetition rate in microstructured tellurite fiber," Opt. Express 21, 4703-4708 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4703


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. T. Cundiff, “Metrology: new generation of combs,” Nature450(7173), 1175–1176 (2007). [CrossRef] [PubMed]
  2. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum.78(3), 035107 (2007). [CrossRef] [PubMed]
  3. T. Wilken, C. Lovis, A. Manescau, T. Steinmetz, L. Pasquini, G. Lo Curto, T. W. Hänsch, R. Holzwarth, and Th. Udem, “High-precision calibration of spectrographs,” Mon. Not. R. Astron. Soc.405(1), L16–L20 (2010). [CrossRef]
  4. T. Wilken, T. W. Hänsch, Th. Udem, T. Steinmetz, R. Holzwarth, A. Manescau, G. Lo Curto, L. Pasquini, and C. Lovis, “High precision Calibration of Spectrographs in Astronomy,” Conference on Laser and Electro-Optics (CLEO), paper CMHH3 (2010).
  5. A. Bartels, D. Heinecke, and S. A. Diddams, “10-GHz self-referenced optical frequency comb,” Science326(5953), 681 (2009). [CrossRef] [PubMed]
  6. M. Hofer, M. E. Fermann, F. Haberl, M. H. Ober, and A. J. Schmidt, “Mode locking with cross-phase and self-phase modulation,” Opt. Lett.16(7), 502–504 (1991). [CrossRef] [PubMed]
  7. D. Ma, Y. Cai, C. Zhou, W. Zong, L. Chen, and Z. Zhang, “37.4 fs pulse generation in an Er:fiber laser at a 225 MHz repetition rate,” Opt. Lett.35(17), 2858–2860 (2010). [CrossRef] [PubMed]
  8. T. Wilken, P. Vilar-Welter, T. W. Hänsch, and Th. Udem, “High repetition rate, tunable femtosecond Yb-fiber laser,” Conference on Laser and Electro-Optics (CLEO), paper CFK2 (2010).
  9. A. Wang, H. Yang, and Z. Zhang, “503MHz repetition rate femtosecond Yb: fiber ring laser with an integrated WDM collimator,” Opt. Express19(25), 25412–25417 (2011). [CrossRef] [PubMed]
  10. H. Yang, A. Wang, and Z. Zhang, “Efficient femtosecond pulse generation in an all-normal-dispersion Yb:fiber ring laser at 605 MHz repetition rate,” Opt. Lett.37(5), 954–956 (2012). [CrossRef] [PubMed]
  11. P. Li, G. Wang, C. Li, A. Wang, Z. Zhang, F. Meng, S. Cao, and Z. Fang, “Characterization of the carrier envelope offset frequency from a 490 MHz Yb-fiber-ring laser,” Opt. Express20(14), 16017–16022 (2012). [CrossRef] [PubMed]
  12. A. Wang, H. Yang, C. Li, and Z. Zhang, “Octave-spanning spectrum generation with a 503MHz repetition rate femtosecond Yb:fiber ring laser,” Conference on Laser and Electro-Optics (CLEO), paper CTu3G.2 (2012).
  13. A. Chong, W. H. Renninger, and F. W. Wise, “Route to the minimum pulse duration in normal-dispersion fiber lasers,” Opt. Lett.33(22), 2638–2640 (2008). [CrossRef] [PubMed]
  14. L. Nugent-Glandorf, T. A. Johnson, Y. Kobayashi, and S. A. Diddams, “Impact of dispersion on amplitude and frequency noise in a Yb-fiber laser comb,” Opt. Lett.36(9), 1578–1580 (2011). [CrossRef] [PubMed]
  15. Y. Song, C. Kim, K. Jung, H. Kim, and J. Kim, “Timing jitter optimization of mode-locked Yb-fiber lasers toward the attosecond regime,” Opt. Express19(15), 14518–14525 (2011). [CrossRef] [PubMed]
  16. C. Farrell, K. A. Serrels, T. R. Lundquist, P. Vedagarbha, and D. T. Reid, “Octave-spanning super-continuum from a silica photonic crystal fiber pumped by a 386 MHz Yb:fiber laser,” Opt. Lett.37(10), 1778–1780 (2012). [CrossRef] [PubMed]
  17. H. Hundertmark, S. Rammler, T. Wilken, R. Holzwarth, T. W. Hänsch, and P. S. Russell, “Octave-spanning supercontinuum generated in SF6-glass PCF by a 1060 nm mode-locked fibre laser delivering 20 pJ per pulse,” Opt. Express17(3), 1919–1924 (2009). [CrossRef] [PubMed]
  18. P. Domachuk, N. A. Wolchover, M. Cronin-Golomb, A. Wang, A. K. George, C. M. B. Cordeiro, J. C. Knight, and F. G. Omenetto, “Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs,” Opt. Express16(10), 7161–7168 (2008). [CrossRef] [PubMed]
  19. A. Ishizawa, T. Nishikawa, S. Aozasa, A. Mori, O. Tadanaga, M. Asobe, and H. Nakano, “Demonstration of carrier envelope offset locking with low pulse energy,” Opt. Express16(7), 4706–4712 (2008). [CrossRef] [PubMed]
  20. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011). [CrossRef] [PubMed]
  21. X. Feng, T. M. Monro, V. Finazzi, R. C. Moore, K. Frampton, P. Petropoulos, and D. J. Richardson, “Extruded singlemode, high-nonlinear, tellurite glass hoely fibre,” Electron. Lett.41(15), 835–837 (2005). [CrossRef]
  22. T. Delmonte, M. A. Watson, E. J. O’Driscoll, X. Feng, T. M. Monro, V. Finazzi, P. Petropoulos, J. H. V. Price, J. C. Baggett, W. Loh, D. J. Richardson, and D. P. Hand, “Generation of mid-IR continuum using tellurite microstructured fiber,” Conference on Electro-Optics (CLEO), paper CTuA4 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited