OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 4728–4733
« Show journal navigation

Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature

K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 4728-4733 (2013)
http://dx.doi.org/10.1364/OE.21.004728


View Full Text Article

Acrobat PDF (1545 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate a continuous wave (CW) sub-wavelength metallic-cavity semiconductor laser with electrical injection at room temperature (RT). Our metal-cavity laser with a cavity volume of 0.67λ3 (λ = 1591 nm) shows a linewidth of 0.5 nm at RT, which corresponds to a Q-value of 3182 compared to 235 of the cavity Q, the highest Q under lasing condition for RT CW operation of any sub-wavelength metallic-cavity laser. Such record performance provides convincing evidences of the feasibility of RT CW sub-wavelength metallic-cavity lasers, thus opening a wide range of practical possibilities of novel nanophotonic devices based on metal-semiconductor structures.

© 2013 OSA

In this paper, we intend to address all these questions by demonstrating a new generation of sub-wavelength lasers with record performance. As we will show, sub-wavelength metallic-cavity lasers (Fig. 1
Fig. 1 Structure of the sub-wavelength metallic-cavity semiconductor laser. (a) Semiconductor pillar with a rectangular cross section is encapsulated in silver to form a metallic cavity. (b) Scanning electron microscope (SEM) image of the semiconductor core. (c) SEM image of the pillar after coating SiN and silver. Scale bars in (b) and (c) are both 1µm.
) are capable of showing similar features of a typical laser, such as narrow linewidth and well-defined threshold, but with a cavity volume as small as 0.67 λ3 (λ = 1591 nm). The linewidth of our lasers is reduced by a factor of 13 from below to above threshold, with transition behavior similar to that of a typical semiconductor laser. To have a fair comparison of linewidth of lasers operating at different wavelengths, the concept of lasing Q-factor Q = λ/Δλ [24

24. C. Z. Ning, “Semiconductor Nanowire Lasers,” in J. J. Coleman, A. C. Bryce, and C. Jagadish, ed. Advances in Semiconductor Lasers, Semiconductors and Semimetals, Vol. 86 (Academic Press, San Diego CA, 2012), pp. 459–463.

](identical to the total Q [25

25. B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004). [CrossRef]

] or observed Q [26

26. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010). [CrossRef] [PubMed]

] including all losses and gain) can be used a good measure of improvement of a laser mode above threshold from below threshold (cavity Q). Our Q-factor of 3182 under lasing condition is the highest reported of any sub-wavelength metallic-cavity laser under RT CW operation. Such Q-value is comparable to or better than most pulse operation metallic-cavity lasers at RT. We believe that this work can finally clear the doubts and concerns about the feasibility of CW RT operation of metallic-cavity lasers with sub-wavelength sizes, and paves the way for eventual applications of such lasers.

Devices were mounted to a heat sink which also formed a p-contact and were forward biased by a DC voltage source. Measurement was conducted at 294 K. Emission from the backside of the substrate was collected by an objective lens and detected by a spectrometer equipped with a liquid nitrogen cooled InGaAs array detector. The light output versus current (L-I curve) for a device with optical cavity dimensions (including the SiN layer) of 1.15 (W) × 1.39 (L) × 1.7 (H) µm3 = 0.67 λ3 (λ = 1591 nm) is shown in Fig. 2(a)
Fig. 2 CW characteristics at 294K. (a) Light intensity (∎: lasing mode and ●: spontaneous emission) and linewidth under DC bias. (b) Spectra (offset for clarity) at different currents with a zoom-in shown in inset at 2.02 mA with a resolution of 0.2 nm. (c) Laser intensity vs. polarizer angle with Z-direction at 180 degree.
. The L-I curve shows a clear turn-on threshold around 1.1 mA. Above the threshold, the integrated lasing mode intensity increases linearly with injection current. The integrated spontaneous emission intensity initially increases faster than the lasing mode intensity but shows a gradual clamping trend afterwards, giving way to the lasing mode. Well below threshold and close to transparency, the full width at half maximum (FWHM) of the lasing peak is 6.8 nm, corresponding to a cavity quality factor of 235. The FWHM shows a rapid decrease with increasing current and further drops to 0.5 nm at 2.02 mA as shown in the inset of Fig. 2(b). Such intensity and linewidth behavior is typical of a laser transition from below to above threshold as pumping current increases. As shown in Fig. 2(b), the threshold behavior is accompanied by a significant blue shift of the laser wavelength from 1601 nm (well below threshold) to 1591 nm (above threshold) due to the band filling effect. Result from the polarization resolved measurement (Fig. 2(c)) shows that the far field emission measured directly normal to the substrate is predominantly linearly polarized along the length direction (Z direction) of the cavity. We were able to drive the device to about twice of its threshold but not higher, due to overheating. The dielectric breakdown of thin SiN layer at high voltage (~5-6 V) is another constraint.

Optical mode properties in this device were investigated through three-dimensional finite-difference time-domain (FDTD) simulations. A mode (E106, corresponding to 1, 0 and 6 E-field nodes in x, y, and z direction of the cavity) with Q-factor of 428 is identified as the lasing mode. Using the surface equivalence theorem [31

31. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989), 329–334.

], the far field radiation in the direction normal to the substrate for this mode is calculated and shows linear polarization along the Z direction, which matches the polarization measurement results. The effective mode volume is estimated to be Veff = 10.29(λ/2neff)3, and the confinement factor is 0.645. The mode profile is shown in Fig. 3(a)
Fig. 3 (a) |E|2 patterns of E106 mode in various planes. (b) L-I curve on a log-log scale (red circle ● from measurement and solid line from RE calculation) with slopes (S) given for three regions. Right Y axis: slopes of log-log LI curve (black diamond ♦ from measurement and solid lines from RE calculation, from top to bottom for β = 0.01, 0.048, 0.132, respectively).
. The Q-factor from experiment is significantly lower than in the simulation, and the difference is likely due to the imperfections of the fabrication, such as deviation of the EBL pattern from a perfect rectangle, non-vertical cavity sidewalls.

To understand the lasing behavior, the experimental results were fitted to the rate equations (REs) described in Ref. 32

32. K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl. 1(7), e20 (2012). [CrossRef]

. By RE fitting and separate calculation of Purcell factor [33

33. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005). [CrossRef] [PubMed]

] for our laser structure (with a value of 13.88), we determined a Purcell enhanced spontaneous emission factor, β, of 0.048. Figure 3(b) shows the L-I curve on a log-log scale, where we also indicated different slopes (S) in the three regions of pumping, representing the evolution of device output from spontaneous emission to threshold transition and eventually above-threshold lasing. Due to the change of slopes around threshold in the log-log scale L-I curve, it is interesting to plot the slope as function of pumping current. As expected, a peak is observed on such a plot (Fig. 3(b), right Y axis). Since this peak represents the most dramatic transition of the laser behavior from amplified spontaneous emission to lasing, we think it is a good measure of laser threshold and can be extracted from the experimental L-I measurement directly. Below the threshold transition region, we observed a slope of 2 in the log-log scale L-I curve. Well below threshold, the lasing mode emission is dominated by spontaneous emission and a linear scaling is expected if current is also dominated by spontaneous emission. The S = 2 scaling below threshold indicates that the current contains significant contributions from non-radiative recombination such as surface recombination and Shockley-Read-Hall (SRH) process. In such a sub-wavelength device, we estimate the surface recombination lifetime is on the order of nanoseconds. Typical bulk SRH recombination lifetime in metal organic chemical vapor deposition (MOCVD) grown high quality intrinsic III-V semiconductors is hundreds of nanoseconds [34

34. G. Beister and H. Wenzel, “Comparison of surface and bulk contributions to non-radiative currents in InGaAs/AlGaAs laser diodes,” Semicond. Sci. Technol. 19(3), 494–500 (2004). [CrossRef]

], so SRH process is negligible compared to surface recombination and therefore ignored in our rate equation analysis. A surface recombination velocity (SRV) of 5 × 104 cm/s is obtained through RE fitting. This value is lower than typical SRV of InGaAs structures produced by dry etching processes which is 1~2 × 105 cm/s [34

34. G. Beister and H. Wenzel, “Comparison of surface and bulk contributions to non-radiative currents in InGaAs/AlGaAs laser diodes,” Semicond. Sci. Technol. 19(3), 494–500 (2004). [CrossRef]

, 35

35. S. Y. Hu, S. W. Corzine, K.-K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479–4487 (1994). [CrossRef]

], and approaches the lowest value reported to our knowledge [36

36. M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87(7), 3497–3504 (2000). [CrossRef]

].

Acknowledgment

This research is supported by the Defense Advanced Research Project Agency (W911NF-07-1-0314) and Air Force Office for Scientific Research (AFOSR, FA9550-10-01-0444). We would like to thank D. Sahin, B. Smalbrugge, E. J. Geluk, T. D. Vries, and J. Bolk for their technical assistance, and M. Smit for his generosity in hosting KD at COBRA Institute.

References and links

1.

C. Z. Ning, “Semiconductor nanolasers,” (Tutorial), Phys. Status Solidi, B Basic Res. 247, 774–788 (2010).

2.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402–027405 (2003). [CrossRef] [PubMed]

3.

A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser using metal coating,” Proc. SPIE 6468, 646801 (2007). [CrossRef]

4.

M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics 1(10), 589–594 (2007). [CrossRef]

5.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]

6.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]

7.

M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature 482(7384), 204–207 (2012). [CrossRef] [PubMed]

8.

M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, M. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics 4(6), 395–399 (2010). [CrossRef]

9.

R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater. 10(2), 110–113 (2011). [CrossRef] [PubMed]

10.

M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express 17(13), 11107–11112 (2009). [CrossRef] [PubMed]

11.

K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260K,” Appl. Phys. Lett. 98(23), 231108 (2011). [CrossRef]

12.

J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express 19(22), 21524–21531 (2011). [CrossRef] [PubMed]

13.

R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett. 95(20), 201114 (2009). [CrossRef]

14.

K. Yu, A. M. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express 18(9), 8790–8799 (2010). [CrossRef] [PubMed]

15.

A. M. Lakhani, M. K. Kim, E. K. Lau, and M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19(19), 18237–18245 (2011). [CrossRef] [PubMed]

16.

S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett. 10(9), 3679–3683 (2010). [CrossRef] [PubMed]

17.

C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett. 96(25), 251101 (2010). [CrossRef]

18.

M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express 19(16), 15109–15118 (2011). [CrossRef] [PubMed]

19.

Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett. 90(11), 111119 (2007). [CrossRef]

20.

Z. Liu, J. M. Shainline, G. E. Fernandes, J. Xu, J. Chen, and C. F. Gmachl, “Continuous-wave subwavelength microdisk lasers at λ = 1.53 µm,” Opt. Express 18(18), 19242–19248 (2010). [CrossRef] [PubMed]

21.

K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B 85(4), 041301–041305 (2012). [CrossRef]

22.

S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express 16(11), 8174–8180 (2008). [CrossRef] [PubMed]

23.

J. C. Palais, Fiber Optic Communications (Prentice Hall, Englewood Cliffs NJ, 1988), Chap. 12.

24.

C. Z. Ning, “Semiconductor Nanowire Lasers,” in J. J. Coleman, A. C. Bryce, and C. Jagadish, ed. Advances in Semiconductor Lasers, Semiconductors and Semimetals, Vol. 86 (Academic Press, San Diego CA, 2012), pp. 459–463.

25.

B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A 70(3), 033803 (2004). [CrossRef]

26.

Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express 18(3), 2601–2612 (2010). [CrossRef] [PubMed]

27.

H. Namatsu, Y. Takahashi, K. Yamazaki, T. Yamaguchi, M. Nagase, and K. Kurihara, “Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations,” J. Vac. Sci. Technol. B 16(1), 69–76 (1998). [CrossRef]

28.

M. J. H. Marell, “Gap plasmon mode distributed feedback laser,” PhD Thesis, Eindhoven University of Technology, 2011.

29.

M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett. 93(11), 113110 (2008). [CrossRef]

30.

K. Ding, L. Yin, M. T. Hill, Z. Liu, P. J. van Veldhoven, and C. Z. Ning, “An electrical injection metallic cavity nanolaser with azimuthal polarization,” Appl. Phys. Lett. In press.

31.

C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989), 329–334.

32.

K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl. 1(7), e20 (2012). [CrossRef]

33.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95(14), 143901 (2005). [CrossRef] [PubMed]

34.

G. Beister and H. Wenzel, “Comparison of surface and bulk contributions to non-radiative currents in InGaAs/AlGaAs laser diodes,” Semicond. Sci. Technol. 19(3), 494–500 (2004). [CrossRef]

35.

S. Y. Hu, S. W. Corzine, K.-K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys. 76(8), 4479–4487 (1994). [CrossRef]

36.

M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys. 87(7), 3497–3504 (2000). [CrossRef]

OCIS Codes
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.3948) Lasers and laser optics : Microcavity devices

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 14, 2012
Revised Manuscript: January 19, 2013
Manuscript Accepted: February 10, 2013
Published: February 19, 2013

Citation
K. Ding, M. T. Hill, Z. C. Liu, L. J. Yin, P. J. van Veldhoven, and C. Z. Ning, "Record performance of electrical injection sub-wavelength metallic-cavity semiconductor lasers at room temperature," Opt. Express 21, 4728-4733 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-4728


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Z. Ning, “Semiconductor nanolasers,” (Tutorial), Phys. Status Solidi, B Basic Res.247, 774–788 (2010).
  2. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett.90(2), 027402–027405 (2003). [CrossRef] [PubMed]
  3. A. V. Maslov and C. Z. Ning, “Size reduction of a semiconductor nanowire laser using metal coating,” Proc. SPIE6468, 646801 (2007). [CrossRef]
  4. M. T. Hill, Y.-S. Oei, B. Smalbrugge, Y. Zhu, T. de Vries, P. J. van Veldhoven, F. W. M. van Otten, T. J. Eijkemans, J. P. Turkiewicz, H. de Waardt, E. J. Geluk, S.-H. Kwon, Y.-H. Lee, R. Nötzel, and M. K. Smit, “Lasing in metallic-coated nanocavities,” Nat. Photonics1(10), 589–594 (2007). [CrossRef]
  5. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009). [CrossRef] [PubMed]
  6. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  7. M. Khajavikhan, A. Simic, M. Katz, J. H. Lee, B. Slutsky, A. Mizrahi, V. Lomakin, and Y. Fainman, “Thresholdless nanoscale coaxial lasers,” Nature482(7384), 204–207 (2012). [CrossRef] [PubMed]
  8. M. P. Nezhad, A. Simic, O. Bondarenko, B. Slutsky, M. Mizrahi, L. Feng, V. Lomakin, and Y. Fainman, “Room-temperature subwavelength metallo-dielectric lasers,” Nat. Photonics4(6), 395–399 (2010). [CrossRef]
  9. R. M. Ma, R. F. Oulton, V. J. Sorger, G. Bartal, and X. Zhang, “Room-temperature sub-diffraction-limited plasmon laser by total internal reflection,” Nat. Mater.10(2), 110–113 (2011). [CrossRef] [PubMed]
  10. M. T. Hill, M. Marell, E. S. P. Leong, B. Smalbrugge, Y. Zhu, M. Sun, P. J. van Veldhoven, E. J. Geluk, F. Karouta, Y.-S. Oei, R. Nötzel, C. Z. Ning, and M. K. Smit, “Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides,” Opt. Express17(13), 11107–11112 (2009). [CrossRef] [PubMed]
  11. K. Ding, Z. Liu, L. Yin, H. Wang, R. Liu, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nötzel, and C. Z. Ning, “Electrical injection, continuous wave operation of subwavelength-metallic-cavity lasers at 260K,” Appl. Phys. Lett.98(23), 231108 (2011). [CrossRef]
  12. J. H. Lee, M. Khajavikhan, A. Simic, Q. Gu, O. Bondarenko, B. Slutsky, M. P. Nezhad, and Y. Fainman, “Electrically pumped sub-wavelength metallo-dielectric pedestal pillar lasers,” Opt. Express19(22), 21524–21531 (2011). [CrossRef] [PubMed]
  13. R. Perahia, T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, “Surface-plasmon mode hybridization in subwavelength microdisk lasers,” Appl. Phys. Lett.95(20), 201114 (2009). [CrossRef]
  14. K. Yu, A. M. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010). [CrossRef] [PubMed]
  15. A. M. Lakhani, M. K. Kim, E. K. Lau, and M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express19(19), 18237–18245 (2011). [CrossRef] [PubMed]
  16. S.-H. Kwon, J.-H. Kang, C. Seassal, S.-K. Kim, P. Regreny, Y.-H. Lee, C. M. Lieber, and H.-G. Park, “Subwavelength plasmonic lasing from a semiconductor nanodisk with silver nanopan cavity,” Nano Lett.10(9), 3679–3683 (2010). [CrossRef] [PubMed]
  17. C. Y. Lu, S. W. Chang, S. L. Chuang, T. D. Germann, and D. Bimberg, “Metal-cavity surface-emitting microlaser at room temperature,” Appl. Phys. Lett.96(25), 251101 (2010). [CrossRef]
  18. M. J. H. Marell, B. Smalbrugge, E. J. Geluk, P. J. van Veldhoven, B. Barcones, B. Koopmans, R. Nötzel, M. K. Smit, and M. T. Hill, “Plasmonic distributed feedback lasers at telecommunications wavelengths,” Opt. Express19(16), 15109–15118 (2011). [CrossRef] [PubMed]
  19. Z. Zhang, L. Yang, V. Liu, T. Hong, K. Vahala, and A. Scherer, “Visible submicron microdisk lasers,” Appl. Phys. Lett.90(11), 111119 (2007). [CrossRef]
  20. Z. Liu, J. M. Shainline, G. E. Fernandes, J. Xu, J. Chen, and C. F. Gmachl, “Continuous-wave subwavelength microdisk lasers at λ = 1.53 µm,” Opt. Express18(18), 19242–19248 (2010). [CrossRef] [PubMed]
  21. K. Ding, Z. C. Liu, L. J. Yin, M. T. Hill, M. J. H. Marell, P. J. van Veldhoven, R. Nöetzel, and C. Z. Ning, “Room-temperature continuous wave lasing in deep-subwavelength metallic cavities under electrical injection,” Phys. Rev. B85(4), 041301–041305 (2012). [CrossRef]
  22. S. Kita, K. Nozaki, and T. Baba, “Refractive index sensing utilizing a cw photonic crystal nanolaser and its array configuration,” Opt. Express16(11), 8174–8180 (2008). [CrossRef] [PubMed]
  23. J. C. Palais, Fiber Optic Communications (Prentice Hall, Englewood Cliffs NJ, 1988), Chap. 12.
  24. C. Z. Ning, “Semiconductor Nanowire Lasers,” in J. J. Coleman, A. C. Bryce, and C. Jagadish, ed. Advances in Semiconductor Lasers, Semiconductors and Semimetals, Vol. 86 (Academic Press, San Diego CA, 2012), pp. 459–463.
  25. B. Min, T. J. Kippenberg, L. Yang, K. J. Vahala, J. Kalkman, and A. Polman, “Erbium-implanted high-Q silica toroidal microcavity laser on a silicon chip,” Phys. Rev. A70(3), 033803 (2004). [CrossRef]
  26. Y. Gong, M. Makarova, S. Yerci, R. Li, M. J. Stevens, B. Baek, S. W. Nam, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. Vuckovic, and L. Dal Negro, “Linewidth narrowing and Purcell enhancement in photonic crystal cavities on an Er-doped silicon nitride platform,” Opt. Express18(3), 2601–2612 (2010). [CrossRef] [PubMed]
  27. H. Namatsu, Y. Takahashi, K. Yamazaki, T. Yamaguchi, M. Nagase, and K. Kurihara, “Three-dimensional siloxane resist for the formation of nanopatterns with minimum linewidth fluctuations,” J. Vac. Sci. Technol. B16(1), 69–76 (1998). [CrossRef]
  28. M. J. H. Marell, “Gap plasmon mode distributed feedback laser,” PhD Thesis, Eindhoven University of Technology, 2011.
  29. M. Kuttge, E. J. R. Vesseur, J. Verhoeven, H. J. Lezec, H. A. Atwater, and A. Polman, “Loss mechanisms of surface plasmon polaritons on gold probed by cathodoluminescence imaging spectroscopy,” Appl. Phys. Lett.93(11), 113110 (2008). [CrossRef]
  30. K. Ding, L. Yin, M. T. Hill, Z. Liu, P. J. van Veldhoven, and C. Z. Ning, “An electrical injection metallic cavity nanolaser with azimuthal polarization,” Appl. Phys. Lett.In press.
  31. C. A. Balanis, Advanced Engineering Electromagnetics (Wiley, New York, 1989), 329–334.
  32. K. Ding and C. Z. Ning, “Metallic subwavelength-cavity semiconductor nanolasers,” Light: Sci. Appl.1(7), e20 (2012). [CrossRef]
  33. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett.95(14), 143901 (2005). [CrossRef] [PubMed]
  34. G. Beister and H. Wenzel, “Comparison of surface and bulk contributions to non-radiative currents in InGaAs/AlGaAs laser diodes,” Semicond. Sci. Technol.19(3), 494–500 (2004). [CrossRef]
  35. S. Y. Hu, S. W. Corzine, K.-K. Law, D. B. Young, A. C. Gossard, L. A. Coldren, and J. L. Merz, “Lateral carrier diffusion and surface recombination in InGaAs/AlGaAs quantum-well ridge-waveguide lasers,” J. Appl. Phys.76(8), 4479–4487 (1994). [CrossRef]
  36. M. Boroditsky, I. Gontijo, M. Jackson, R. Vrijen, E. Yablonovitch, T. Krauss, C.-C. Cheng, A. Scherer, R. Bhat, and M. Krames, “Surface recombination measurements on III-V candidate materials for nanostructure light-emitting diodes,” J. Appl. Phys.87(7), 3497–3504 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited