OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 4 — Feb. 25, 2013
  • pp: 5014–5024
« Show journal navigation

Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip

Xinan Xu, Zhenda Xie, Jiangjun Zheng, Junlin Liang, Tian Zhong, Mingbin Yu, Serdar Kocaman, Guo-Qiang Lo, Dim-Lee Kwong, Dirk R. Englund, Franco N. C. Wong, and Chee Wei Wong  »View Author Affiliations


Optics Express, Vol. 21, Issue 4, pp. 5014-5024 (2013)
http://dx.doi.org/10.1364/OE.21.005014


View Full Text Article

Acrobat PDF (1580 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Near-infrared Hong-Ou-Mandel quantum interference is observed in silicon nanophotonic directional couplers with raw visibilities on-chip at 90.5%. Spectrally-bright 1557-nm two-photon states are generated in a periodically-poled KTiOPO4 waveguide chip, serving as the entangled photon source and pumped with a self-injection locked laser, for the photon statistical measurements. Efficient four-port coupling in the communications C-band and in the high-index-contrast silicon photonics platform is demonstrated, with matching theoretical predictions of the quantum interference visibility. Constituents for the residual quantum visibility imperfection are examined, supported with theoretical analysis of the sequentially-triggered multipair biphoton, towards scalable high-bitrate quantum information processing and communications. The on-chip HOM interference is useful towards scalable high-bitrate quantum information processing and communications.

© 2013 OSA

1. Introduction

Here we report observations of near-infrared Hong-Ou-Mandel (HOM) quantum interference in chip-scale silicon nanophotonics circuits, introducing the biphoton experiments to the integrated optics regime. Employing spectrally-bright type-II periodically-poled KTiOPO4 waveguides (PPKTP) as the entangled photon source, we demonstrate raw quantum visibilities up to 90.5% on-chip—one of the highest visibilities observed in the silicon CMOS-compatible platform. Furthermore, we evaluate the various sources of residual visibility degradation including multiphoton pairs, chip-scale excess loss and non-ideal splitting ratios, and polarization effects. The observed interference visibility matches our theoretical predictions, for the different symmetric and asymmetric integrated directional couplers examined.

2. Near-infrared Hong-Ou-Mandel experimental setup

Figure 1
Fig. 1 (a) Experiment setup for near-infrared Hong-Ou-Mandel interference in silicon quantum photonic chip. Fiber polarization controllers are used to ensure biphoton splitting via fiber polarization beam splitter, and to equalize the TM polarization coupling onto the silicon chip. The photon statistics are collected with one single photon detector triggering the other to diminish the dark counts and accidentals. QWP: quarter-wave plate; HWP: half-wave plate; LPF: low-pass filter; BPF: band-pass filter; PBS: polarization beam splitter; BS: beam splitter. (b) Optical micrograph of nanofabricated directional coupler in silicon-on-insulator. The side trenches (in white) are intended to mark and locate the device. Inset: zoom-in optical micrograph of the waveguide directional. Both scale bars: 1-um. (c) SEM of silicon inverse taper couplers with top oxide cladding waveguides. Scale bar: 20-um. Inset: end-view of protruded silicon waveguide. Scale bar: 200-nm.
illustrates the experimental setup. A 1-cm periodically-poled KTiOPO4 waveguide [35

35. T. Zhong, F. N. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express 17(14), 12019–12030 (2009). [CrossRef] [PubMed]

] from AdvR serves as the source for indistinguishable photons [36

36. F. W. Sun and C. W. Wong, “Indistinguishability of independent single photons,” Phys. Rev. A 79(1), 013824 (2009). [CrossRef]

]; in this case, the waveguide is poled and designed for quasi-phase-matching and high-fluence spontaneous parametric downconversion (SPDC) at approximately 1556-nm to 1558-nm wavelengths. We use a relatively high power (100-mW; QPhotonics QLD-780-80S) semiconductor laser diode as the pump for sufficiently high biphoton rates at approximately 107 per second, to compensate for minimal losses in the fiber and free-space chip coupling setup. The laser is thermally-tuned and stabilized by self-injection locking to 778.9-nm, which is exactly half of the center working wavelength of the PPKTP waveguide. The temperature of the PPKTP waveguide is typically controlled to ~25°C for optimal phase matching. A long-pass-filter with cutoff at 1064-nm (Semrock BLP01-1064R-25) blocks pump photons after the SPDC process, and a band-pass filter with 3-nm (Semrock NIR01-1570/3-25) passes the non-degenerate biphoton states. The polarization controller right before the fiber-based PBS is used to tune the polarization so that the fiber-based polarization beam splitter (PBS) spatially separates the correlated photons. In one branch, a tunable delay is realized by a retroreflector (Thorlabs PS971-C) and a picomotor stage with loss less than 1-dB. In both branches, polarization controllers are introduced to respectively change the polarization of each channel to match the transverse magnetic (TM) mode for coupling into the chip waveguides (Fig. 1(b)).

The chip coupling setup is built with six aspheric lenses, each mounted on individual three-axis precision stages. The two input and output beams are separated by a D-shaped mirror after 60 cm divergence to avoid crosstalk. Single and coincidence measurements are performed by two InGaAs single photon Geiger-mode avalanches detectors D1 and D2 from Princeton Lightwave, with ~300 ps gate widths and ~20% detection efficiencies. The clock of D1 is set to 15 MHz, and its output signal triggers D2. This allows the coincidence rate to be read directly from the D2 counting rate, with the optical delay calibrated to compensate the electronic delay.

3. Design and fabrication of silicon chip-scale two-photon interference directional coupler

To ensure good quantum interference on-chip, we examined the design space of the directional couplers, in both transverse electric (TE) and TM polarization states as shown in Fig. 2
Fig. 2 Design map of silicon photonic directional coupler for two-photon interaction, in both transverse electric (TE; left panels) and transverse magnetic (TM; right panels) polarizations. Panel (a): cross-over coupling length (lc) versus directional coupler gap widths (g) and waveguide width (w). Panel (b): splitting ratio versus designed cross-over coupling length lc and g. The device thickness is fixed at 250-nm on a thick (typically 3-um) silicon oxide, and the biphoton state input center wavelength is in the 1550-nm telecommunications band. The discretization in each of the panels is from finite numerical simulations. The white circle points denote the designed and fabricated device choices.
. Differential gap widths (g), cross-over coupling lengths (lc) and waveguide widths (w) are illustrated for the optimal coupling length and splitting ratios. The silicon waveguides are designed with a 250-nm thickness and for operation at 1550-nm wavelengths.

To calculate the phase velocity of different polarization and symmetry, we use the frequency-domain Maxwell equation fully-vectorial eigenfrequency solver (MPB), which computes by preconditioned conjugate-gradient minimization of the block Rayleigh quotient in a planewave basis [37

37. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]

]. The cross-over coupling length lc of the two waveguides is then represented as lc=π/(vp,symvp,antisym), in which the phase change of π between the symmetric mode and anti-symmetric mode [38

38. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).

] allows for complete crossover from one waveguide to another [39

39. R. Chatterjee, M. Yu, A. Stein, D. L. Kwong, L. C. Kimerling, and C. W. Wong, “Demonstration of a hitless bypass switch using nanomechanical perturbation for high-bitrate transparent networks,” Opt. Express 18(3), 3045–3058 (2010). [CrossRef] [PubMed]

] in an ideal scenario. For a perfect 50-50 splitting ratio, the desired length for the coupler should be
Lc,3dB=(2n1)π2(vp,symvp,antisym)+leff,n=1,2,3...
(1)
in which leff is the effective coupler length for the incoming and outgoing bend regions, which can be estimated by an integral of coupling length as a function of gap size along the bending region and computed to be 3-um in our designs (Fig. 1(b)). In addition to the MPB and integral computations, the designs were examined with both rigorous finite-difference time-domain computations and semi-vectorial BeamPROP method from RSoft. With the birefringent character of the directional coupler, we work with the TM mode rather than the TE mode due to its shorter coupling length and greater length control sensitivity. Furthermore, our simulation models and experimental measurements confirm lower loss in the TM mode for straight waveguide as well as the directional coupler regime due to lower electromagnetic field amplitude at the sidewalls (typically rougher than the top and bottom surfaces) [40

40. S. Afifi and R. Dusséaux, “Statistical study of radiation loss from planar optical waveguides: the curvilinear coordinate method and the small perturbation method,” J. Opt. Soc. Am. A 27(5), 1171–1184 (2010). [CrossRef] [PubMed]

43

43. R. G. Hunsperger, Integrated Optics (Springer, 2009).

]. The lower loss helps to increase the coincidences count rates and reduce the internal phase shift fluctuations of directional coupler. A quantitative calculation suggests the loss of TE mode is 7.4 times higher than TM mode for a consistent sidewall roughness. In one optimized instance, the waveguide width and coupler length for TM symmetric splitting is chosen to be 400-nm and 15-um, respectively, as illustrated in Fig. 2 (Design 1). In this design, the corresponding TM-polarization splitting ratio imbalance (SR), or the ratio of the transferred light to the transmitted light, was numerically computed to be less than -20-dB, limited by the computational accuracy. The TE-polarization SR is computed by to -9-dB. The excess loss at the optimized directional coupler of Design 1 is estimated to be 0.1-dB by finite-difference time-domain computations.

Further increasing the coupler length will change the SR, which could be determined by:
SR=|1+eiπ(leff+l)lcouple1eiπ(leff+l)lcouple|2
(2)
For a general comparison, we illustrate and select two other directional couplers with 28-um and 30-um coupling lengths for experimental comparison (Fig. 2, Designs 2 and 3). These designs have splitting ratio imbalances corresponding to 2.3-dB and 7.7-dB respectively. The splitting ratio imbalance can reduce the indistinguishability and enable the path information, potentially modifying the Hong-Ou-Mandel dip visibility, given by V=2SR/(1+SR2) [24

24. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009). [CrossRef]

,44

44. J. Liang and T. B. Pittman, “Compensating for beamsplitter asymmetries in quantum interference experiments,” J. Opt. Soc. Am. B 27(2), 350–353 (2010). [CrossRef]

]. The visibility is 100% for a perfect beam splitter but is estimated to reduce to 97%, 80% and 47% for splitting ratio imbalances of 1-dB (1.27 × ), 3-dB (2 × ), and 6-dB (4 × ) respectively. For balanced chip-scale splitting, we note that multi-mode interference [25

25. D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O'Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012). [CrossRef]

] and Y-splitters are also good elements for physical realization. Directional couplers on the other hand provides differential and accurate thermal tuning on the SR, enabling controlled asymmetries such as for various C-NOT gate [26

26. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun 2, 566 (2011). [CrossRef] [PubMed]

,30

30. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426(6964), 264–267 (2003). [CrossRef] [PubMed]

,31

31. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, and C. F. RoosJ. Eschner and R. Blatt, “Realization of the Cirac–Zoller controlled-NOT quantum gate,” Nature 422, 408-411(2003). [CrossRef] [PubMed]

], quantum cloning [45

45. Z. Zhao, A. N. Zhang, X. Q. Zhou, Y. A. Chen, C. Y. Lu, A. Karlsson, and J. W. Pan, “Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation,” Phys. Rev. Lett. 95(3), 030502 (2005). [CrossRef] [PubMed]

,46

46. L. Bartůšková, M. Dusek, A. Cernoch, J. Soubusta, and J. Fiurásek, “Fiber-optics implementation of an asymmetric phase-covariant quantum cloner,” Phys. Rev. Lett. 99(12), 120505 (2007). [CrossRef] [PubMed]

], and Fock state filtration [47

47. K. Sanaka, K. J. Resch, and A. Zeilinger, “Filtering out photonic Fock states,” Phys. Rev. Lett. 96(8), 083601 (2006). [CrossRef] [PubMed]

,48

48. K. J. Resch, J. L. O’Brien, T. J. Weinhold, K. Sanaka, B. P. Lanyon, N. K. Langford, and A. G. White, “Entanglement generation by Fock-state filtration,” Phys. Rev. Lett. 98(20), 203602 (2007). [CrossRef] [PubMed]

] applications.

4. 1557.8-nm Hong-Ou-Mandel visibilities on-chip

These measurements are performed on a device carefully selected from an array of devices, particularly one with splitting ratio imbalance of less than 1-dB. The sweep resolution and integral time near the dip are set at 50-um and 1200-seconds respectively, which are twice higher compared to that away from the zero-delay point. During the 21-hour measurement, we observed small coupling drifts with slightly lower coincidence rate on the negative relative delays. The optimized lowest coincidence is 25 per 600 seconds with a swing coincidence (away from the zero-delay point) of 499 per 600 seconds, giving a raw quantum visibility of 90.5%. The visibility is 90.8% after background accidentals subtraction. An inverse triangle fit [50

50. A. V. Sergienko, Y. H. Shih, and M. H. Rubin, “Experimental evaluation of a two-photon wave packet in type-II parametric downconversion,” J. Opt. Soc. Am. B 12(5), 859–862 (1995). [CrossRef]

,51

51. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601 (2005). [CrossRef] [PubMed]

] is used to estimate the shape of the dip. The measured base-to-base width of Hong-Ou-Mandel dip is 1.36 mm ± 0.07 mm, corresponding to two-photon coherence time of 4.53 ps, or an obtained two-photon bandwidth of 1.79 nm, comparable to 3nm bandpass filtering bandwidth.

5. Degradation of on-chip HOM interference visibility

To further uncover the degradation of HOM interference visibility, we compare it with that of a fiber beam splitter (without chip) as illustrated Fig. 3(b). We plot the visibility against different pump powers or the mean photon pair number to estimate the effects of the chip on the visibility. Since a higher pump power with more biphoton pairs will cause a higher probability of multiple biphoton pairs in one detector gate window, the visibility is inversely proportional to the pump power [35

35. T. Zhong, F. N. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express 17(14), 12019–12030 (2009). [CrossRef] [PubMed]

]. Here we note that the effect of multipair biphoton generation in our sequential triggering approach is slightly different from the time-tagging approach. For a baseline model, we assume that the two detectors have uniform detection efficiencies, gate widths and response times, with small timing jitter compared to the gate width. Then the probability of n photon pairs generated in the gate time τ obeys Poisson distribution: p(t,n)|t=τ=(λτ)neλτ/n!=aneα/n!, where α is mean pair number within the gate [52

52. T. Zhong, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO₄ waveguide,” S.M. thesis (Massachusetts Institute of Technology, 2009).

]. To maximize the coincidences, the photon transmitted to the triggered detector is delayed by half the gate time (τ/2) to guarantee it will always appear within the gate whenever the other photon arrives first (Fig. 4(a)
Fig. 4 Scenario of the timeline for the photon pairs. (a) The delay of two photon pairs is set to τ/2 to maximize the coincidences. (b) When there is only one photon pair in the gate window of D1, there is still possibility that D2 will record a photon event due to gate window time mismatch. (c) When there are two photon pairs within the gate window and separated to two detectors, there is possibility that the latter photon pair will be cut off due to the gate window time mismatch.
). To calculate the swing coincidences, or the probability of the coincidence event when two photons are relatively delayed and totally distinguishable, we consider only one photon pair per gate to neglect higher order terms (Fig. 4(a)):
Cmax=p(τ,1)12η2=12αη2
(3)
where η denotes the overall detection efficiency. To calculate the probability of coincidence when two photons are indistinguishable, we consider only one and two photon pairs within the gate. Here we notice that even when there is only one photon pair within the detection gate of triggering detector D1, there are still some coincidences contributions (Fig. 4(b)):
Cmin(1)=p(τ,1)12[1(1η)2]2{012τdt1τp(12τt,1)12+12ττdt1τp(t12τ,1)12}=14α2η2(1η)
(4)
where the possible photon pair within the leak window is considered (Fig. 4(b)) due to gate time mismatch. If there are two photon pairs within the gate window of D1, there are four possible situations: (a) the first photon pair is in the path to D1, and second photon pair is in the path to D2 (Fig. 4(c)); (b) the first photon pair is to D2, and the second photon pair is to D1; (c) both photon pairs are to D2; (d) both photon pairs are to D1. Thus we have
Cmin(2a)=p(τ,2)14[1(1η)2]2(012τdtp1(t)[12ττt+p(12τt,1)12]+12ττdtp1(t)[1+p(t12τ,1)12])
(5)
Cmin(2b)=Cmin(2a)
(6)
Cmin(2c)=0
(7)
Cmin(2d)=p(τ,2)14[1(1η)2]2[1+(1η)2][012τdtp1(t)p(12τt,1)12+12ττdtp1(t)p(t12τ,1)12]
(8)
Taking the first order approximation, we have that
Cmin(2)=Cmin(2a)+Cmin(2b)+Cmin(2c)+Cmin(2d)=34α2η2(1η)
(9)
Here, p1(t)=(2τ2t)/τ2, which denotes the probability distribution of the first arriving photon pair. We notice here the difference between the sequential triggering approach versus the time-tagging approach is that there is a situation that the second photon pair will be located within the gate window of one detector, but is cut off by the gate window of the other detector (Fig. 4(c)). This portion is exactly the same as the contribution of coincidence conditioning only one photon pair per gate (Eq. (4) even when disregarding the detection efficiency distribution within the gate and timing jitter. As these two terms compensate each other, we conclude that, to first order, the visibility for the sequential triggering scenario is the same as the time-tagging scenario: V=14α(1η).

Moreover, to understand the quantum interference effect with variation of polarization, we rotate the polarization for one branch of the input path before the chip using a half-wave plate. The resulting visibility versus the linear polarization angle is depicted in Fig. 5(b). The result shows cosinusoidal behavior that reaches maximum visibility with no polarization rotation, and diminished visibility with orthogonal polarization. The maximum visibility in this set of measurements is 83% due to the higher pump power of 5-mW. Here we note that the different splitting ratio of TE mode does not affect the visibility, as it does not participate in the quantum interference. In our measurements, the input polarizations are optimized and hence unlikely to be cause of the residual 3% decrease in visibility.

Another major possible contribution to the chip-induced visibility reduction can be from excess loss of the directional coupler. An ideal free space beamsplitter gives a 180˚ phase shift for one path of reflection and 0˚ for the other path, while fiber-based beamsplitter or directional coupler should give both 90˚ phase shifts for reflected light compared to transmitted light (not the relative phase shift of the biphoton state) to satisfy energy conservation. The sum of these phase shifts, or the inherent phase shift, accounts for the 180˚ phase difference between the probability amplitude of the Attand Arrcausing the Hong-Ou-Mandel dip. When the on-chip directional coupler has excess loss Lexcess, however, the inherent phase shift will not be 180˚ anymore. Performing a matrix optics calculation, we have the inherent phase shift ψ as cos(ψ)=Lexcess2(1+SR)2/2SR1, or 2Lexcess21for an ideal symmetric (SR = 0-dB) directional coupler. The visibility reduction caused by the excess loss of the directional coupler can therefore be expressed as
1V=Lexcess2(1+SR)22SR
(10)
Here we estimate that the 0.1-dB excess loss via vertical scattering from the chip even with ideal sidewalls, or a 170˚ internal phase shift, computed by FDTD method as noted in the earlier design section, in the balanced directional coupler will reduce the visibility by 1.5%. This excess loss will be larger when including fabrication disorder-induced losses. For unbalanced directional coupler, the internal phase shift will be further away from 180˚ with corresponding reductions in the visibility. Formally, the output annihilation and creation operators of a lossy directional coupler have to include Langevin noise operators to maintain the commutation relation, while at the same time inducing additional phase shifts [53

53. S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, “Quantum optics of lossy beam splitters,” Phys. Rev. A 57(3), 2134–2145 (1998). [CrossRef]

].

6. Conclusion

We have observed 1550-nm Hong-Ou-Mandel interference in silicon quantum photonic circuits, with raw quantum visibility up to 90.5% in near-symmetric directional couplers. With thermally-stabilized spectrally-bright PPKTP chip-scale waveguides as the entangled biphoton source, we examined the constituents of residual visibility degradation through numerically-designed directional couplers, multiphoton pairs, polarization effects, excess loss, and imperfect internal phase shifts. With our sequential triggering approach for negligible coincidental dark counts, we present the theoretical analysis for multipair biphoton contribution to Hong-Ou-Mandel visibility reduction. The results presented here support the scalable realization of two-photon interaction elements on-chip, for quantum information processing and communications.

Acknowledgments

The authors acknowledge discussions with Fangwen Sun, Philip Battle, Tony Roberts, Joseph Poekert, Mark Itzler, Xingsheng Luan, Andrzej Veitia, and Felice Gesuele. We acknowledge the scanning electron micrograph images of Fig. 1(c) from James F. McMillan. This work is supported by the DARPA InPho program under contract number W911NF-10-1-0416.

References and links

1.

C. Weedbrook, S. Pirandola, S. Lloyd, and T. C. Ralph, “Quantum cryptography approaching the classical limit,” Phys. Rev. Lett. 105(11), 110501 (2010). [CrossRef] [PubMed]

2.

C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” presented at International Conference on Computers, Systems and Signal Processing, Bangalore, India, Dec 10–12, 1984.

3.

N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]

4.

A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett. 67(6), 661–663 (1991). [CrossRef] [PubMed]

5.

V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett. 92(5), 057901 (2004). [CrossRef] [PubMed]

6.

M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).

7.

N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett. 95(21), 210505 (2005). [CrossRef] [PubMed]

8.

A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science 329(5998), 1500–1503 (2010). [CrossRef] [PubMed]

9.

N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics 1(3), 165–171 (2007). [CrossRef]

10.

M. A. Albota, F. N. C. Wong, and J. H. Shapiro, “Polarization-independent frequency conversion for quantum optical communication,” J. Opt. Soc. Am. B 23(5), 918–924 (2006). [CrossRef]

11.

A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys. 4(11), 859–863 (2008). [CrossRef]

12.

J. Gao, F. W. Sun, and C. W. Wong, “Implementation scheme for quantum controlled phase-flip gate through quantum dot in slow-light photonic crystal waveguide,” Appl. Phys. Lett. 93(15), 151108 (2008). [CrossRef]

13.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef] [PubMed]

14.

H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science 298(5597), 1372–1377 (2002). [CrossRef] [PubMed]

15.

Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys. 10(12), 123013 (2008). [CrossRef]

16.

Y. F. Xiao, J. Gao, X. Yang, R. Bose, G. C. Guo, and C. W. Wong, “Nanocrystals in silicon photonic crystal standing-wave cavities as spin-photon phase gates for quantum information processing,” Appl. Phys. Lett. 91(15), 151105 (2007). [CrossRef]

17.

F. W. Sun, B. H. Liu, C. W. Wong, and G. C. Guo, “Permutation asymmetry inducing entanglement between degrees of freedom in multiphoton states,” Phys. Rev. A 78(1), 015804 (2008). [CrossRef]

18.

T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science 323(5914), 598–601 (2009). [CrossRef] [PubMed]

19.

A. Veitia, J. Jing, T. Yu, and C. W. Wong, “Mutual preservation of entanglement,” Phys. Lett. A 376(44), 2755–2764 (2012). [CrossRef]

20.

A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature 466(7303), 217–220 (2010). [CrossRef] [PubMed]

21.

J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A 44(7), 4552–4555 (1991). [CrossRef] [PubMed]

22.

C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59(18), 2044–2046 (1987). [CrossRef] [PubMed]

23.

P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett. 75(24), 4337–4341 (1995). [CrossRef] [PubMed]

24.

J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics 3(6), 346–350 (2009). [CrossRef]

25.

D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O'Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys. 14(4), 045003 (2012). [CrossRef]

26.

A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun 2, 566 (2011). [CrossRef] [PubMed]

27.

L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett. 105(20), 200503 (2010). [CrossRef] [PubMed]

28.

A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Strongly correlated photons on a chip,” Nat. Photonics 6(2), 93–96 (2011). [CrossRef]

29.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008). [CrossRef] [PubMed]

30.

J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature 426(6964), 264–267 (2003). [CrossRef] [PubMed]

31.

F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, and C. F. RoosJ. Eschner and R. Blatt, “Realization of the Cirac–Zoller controlled-NOT quantum gate,” Nature 422, 408-411(2003). [CrossRef] [PubMed]

32.

M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci Rep 2, 321 (2012). [CrossRef] [PubMed]

33.

R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express 17(25), 22474–22483 (2009). [CrossRef] [PubMed]

34.

M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express 19(3), 1786–1793 (2011). [CrossRef] [PubMed]

35.

T. Zhong, F. N. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express 17(14), 12019–12030 (2009). [CrossRef] [PubMed]

36.

F. W. Sun and C. W. Wong, “Indistinguishability of independent single photons,” Phys. Rev. A 79(1), 013824 (2009). [CrossRef]

37.

S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]

38.

E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J. 48, 2071–2102 (1969).

39.

R. Chatterjee, M. Yu, A. Stein, D. L. Kwong, L. C. Kimerling, and C. W. Wong, “Demonstration of a hitless bypass switch using nanomechanical perturbation for high-bitrate transparent networks,” Opt. Express 18(3), 3045–3058 (2010). [CrossRef] [PubMed]

40.

S. Afifi and R. Dusséaux, “Statistical study of radiation loss from planar optical waveguides: the curvilinear coordinate method and the small perturbation method,” J. Opt. Soc. Am. A 27(5), 1171–1184 (2010). [CrossRef] [PubMed]

41.

T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23(9), 2719–2732 (2005). [CrossRef]

42.

F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett. 16(7), 1661–1663 (2004). [CrossRef]

43.

R. G. Hunsperger, Integrated Optics (Springer, 2009).

44.

J. Liang and T. B. Pittman, “Compensating for beamsplitter asymmetries in quantum interference experiments,” J. Opt. Soc. Am. B 27(2), 350–353 (2010). [CrossRef]

45.

Z. Zhao, A. N. Zhang, X. Q. Zhou, Y. A. Chen, C. Y. Lu, A. Karlsson, and J. W. Pan, “Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation,” Phys. Rev. Lett. 95(3), 030502 (2005). [CrossRef] [PubMed]

46.

L. Bartůšková, M. Dusek, A. Cernoch, J. Soubusta, and J. Fiurásek, “Fiber-optics implementation of an asymmetric phase-covariant quantum cloner,” Phys. Rev. Lett. 99(12), 120505 (2007). [CrossRef] [PubMed]

47.

K. Sanaka, K. J. Resch, and A. Zeilinger, “Filtering out photonic Fock states,” Phys. Rev. Lett. 96(8), 083601 (2006). [CrossRef] [PubMed]

48.

K. J. Resch, J. L. O’Brien, T. J. Weinhold, K. Sanaka, B. P. Lanyon, N. K. Langford, and A. G. White, “Entanglement generation by Fock-state filtration,” Phys. Rev. Lett. 98(20), 203602 (2007). [CrossRef] [PubMed]

49.

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]

50.

A. V. Sergienko, Y. H. Shih, and M. H. Rubin, “Experimental evaluation of a two-photon wave packet in type-II parametric downconversion,” J. Opt. Soc. Am. B 12(5), 859–862 (1995). [CrossRef]

51.

O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett. 94(8), 083601 (2005). [CrossRef] [PubMed]

52.

T. Zhong, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO₄ waveguide,” S.M. thesis (Massachusetts Institute of Technology, 2009).

53.

S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, “Quantum optics of lossy beam splitters,” Phys. Rev. A 57(3), 2134–2145 (1998). [CrossRef]

OCIS Codes
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(230.7370) Optical devices : Waveguides
(270.5290) Quantum optics : Photon statistics
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: December 3, 2012
Revised Manuscript: January 5, 2013
Manuscript Accepted: January 7, 2013
Published: February 21, 2013

Citation
Xinan Xu, Zhenda Xie, Jiangjun Zheng, Junlin Liang, Tian Zhong, Mingbin Yu, Serdar Kocaman, Guo-Qiang Lo, Dim-Lee Kwong, Dirk R. Englund, Franco N. C. Wong, and Chee Wei Wong, "Near-infrared Hong-Ou-Mandel interference on a silicon quantum photonic chip," Opt. Express 21, 5014-5024 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-4-5014


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. Weedbrook, S. Pirandola, S. Lloyd, and T. C. Ralph, “Quantum cryptography approaching the classical limit,” Phys. Rev. Lett.105(11), 110501 (2010). [CrossRef] [PubMed]
  2. C. H. Bennett and G. Brassard, “Quantum cryptography: public key distribution and coin tossing,” presented at International Conference on Computers, Systems and Signal Processing, Bangalore, India, Dec 10–12, 1984.
  3. N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys.74(1), 145–195 (2002). [CrossRef]
  4. A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett.67(6), 661–663 (1991). [CrossRef] [PubMed]
  5. V. Scarani, A. Acín, G. Ribordy, and N. Gisin, “Quantum cryptography protocols robust against photon number splitting attacks for weak laser pulse implementations,” Phys. Rev. Lett.92(5), 057901 (2004). [CrossRef] [PubMed]
  6. M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2010).
  7. N. Kiesel, C. Schmid, U. Weber, R. Ursin, and H. Weinfurter, “Linear optics controlled-phase gate made simple,” Phys. Rev. Lett.95(21), 210505 (2005). [CrossRef] [PubMed]
  8. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, and J. L. OBrien, “Quantum walks of correlated photons,” Science329(5998), 1500–1503 (2010). [CrossRef] [PubMed]
  9. N. Gisin and R. Thew, “Quantum communication,” Nat. Photonics1(3), 165–171 (2007). [CrossRef]
  10. M. A. Albota, F. N. C. Wong, and J. H. Shapiro, “Polarization-independent frequency conversion for quantum optical communication,” J. Opt. Soc. Am. B23(5), 918–924 (2006). [CrossRef]
  11. A. Faraon, I. Fushman, D. Englund, N. Stoltz, P. Petroff, and J. Vuckovic, “Coherent generation of nonclassical light on a chip via photon-induced tunneling and blockade,” Nat. Phys.4(11), 859–863 (2008). [CrossRef]
  12. J. Gao, F. W. Sun, and C. W. Wong, “Implementation scheme for quantum controlled phase-flip gate through quantum dot in slow-light photonic crystal waveguide,” Appl. Phys. Lett.93(15), 151108 (2008). [CrossRef]
  13. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, and A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature445(7130), 896–899 (2007). [CrossRef] [PubMed]
  14. H. Mabuchi and A. C. Doherty, “Cavity quantum electrodynamics: coherence in context,” Science298(5597), 1372–1377 (2002). [CrossRef] [PubMed]
  15. Y. F. Xiao, J. Gao, X. B. Zou, J. F. McMillan, X. Yang, Y. L. Chen, Z. F. Han, G. C. Guo, and C. W. Wong, “Coupled quantum electrodynamics in photonic crystal cavities towards controlled phase gate operations,” New J. Phys.10(12), 123013 (2008). [CrossRef]
  16. Y. F. Xiao, J. Gao, X. Yang, R. Bose, G. C. Guo, and C. W. Wong, “Nanocrystals in silicon photonic crystal standing-wave cavities as spin-photon phase gates for quantum information processing,” Appl. Phys. Lett.91(15), 151105 (2007). [CrossRef]
  17. F. W. Sun, B. H. Liu, C. W. Wong, and G. C. Guo, “Permutation asymmetry inducing entanglement between degrees of freedom in multiphoton states,” Phys. Rev. A78(1), 015804 (2008). [CrossRef]
  18. T. Yu and J. H. Eberly, “Sudden death of entanglement,” Science323(5914), 598–601 (2009). [CrossRef] [PubMed]
  19. A. Veitia, J. Jing, T. Yu, and C. W. Wong, “Mutual preservation of entanglement,” Phys. Lett. A376(44), 2755–2764 (2012). [CrossRef]
  20. A. Dousse, J. Suffczyński, A. Beveratos, O. Krebs, A. Lemaître, I. Sagnes, J. Bloch, P. Voisin, and P. Senellart, “Ultrabright source of entangled photon pairs,” Nature466(7303), 217–220 (2010). [CrossRef] [PubMed]
  21. J. D. Franson, “Two-photon interferometry over large distances,” Phys. Rev. A44(7), 4552–4555 (1991). [CrossRef] [PubMed]
  22. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett.59(18), 2044–2046 (1987). [CrossRef] [PubMed]
  23. P. G. Kwiat, K. Mattle, H. Weinfurter, A. Zeilinger, A. V. Sergienko, and Y. Shih, “New high-intensity source of polarization-entangled photon pairs,” Phys. Rev. Lett.75(24), 4337–4341 (1995). [CrossRef] [PubMed]
  24. J. C. F. Matthews, A. Politi, A. Stefanov, and J. L. O’Brien, “Manipulation of multiphoton entanglement in waveguide quantum circuits,” Nat. Photonics3(6), 346–350 (2009). [CrossRef]
  25. D. Bonneau, E. Engin, K. Ohira, N. Suzuki, H. Yoshida, N. Iizuka, M. Ezaki, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, J. L. O'Brien, and M. G. Thompson, “Quantum interference and manipulation of entanglement in silicon wire waveguide quantum circuits,” New J. Phys.14(4), 045003 (2012). [CrossRef]
  26. A. Crespi, R. Ramponi, R. Osellame, L. Sansoni, I. Bongioanni, F. Sciarrino, G. Vallone, and P. Mataloni, “Integrated photonic quantum gates for polarization qubits,” Nat Commun2, 566 (2011). [CrossRef] [PubMed]
  27. L. Sansoni, F. Sciarrino, G. Vallone, P. Mataloni, A. Crespi, R. Ramponi, and R. Osellame, “Polarization entangled state measurement on a chip,” Phys. Rev. Lett.105(20), 200503 (2010). [CrossRef] [PubMed]
  28. A. Reinhard, T. Volz, M. Winger, A. Badolato, K. J. Hennessy, E. L. Hu, and A. Imamoğlu, “Strongly correlated photons on a chip,” Nat. Photonics6(2), 93–96 (2011). [CrossRef]
  29. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008). [CrossRef] [PubMed]
  30. J. L. O’Brien, G. J. Pryde, A. G. White, T. C. Ralph, and D. Branning, “Demonstration of an all-optical quantum controlled-NOT gate,” Nature426(6964), 264–267 (2003). [CrossRef] [PubMed]
  31. F. Schmidt-Kaler, H. Häffner, M. Riebe, S. Gulde, G. P. T. Lancaster, T. Deuschle, C. Becher, and C. F. RoosJ. Eschner and R. Blatt, “Realization of the Cirac–Zoller controlled-NOT quantum gate,” Nature422, 408-411(2003). [CrossRef] [PubMed]
  32. M. D. Birowosuto, H. Sumikura, S. Matsuo, H. Taniyama, P. J. van Veldhoven, R. Nötzel, and M. Notomi, “Fast Purcell-enhanced single photon source in 1,550-nm telecom band from a resonant quantum dot-cavity coupling,” Sci Rep2, 321 (2012). [CrossRef] [PubMed]
  33. R. Bose, J. Gao, J. F. McMillan, A. D. Williams, and C. W. Wong, “Cryogenic spectroscopy of ultra-low density colloidal lead chalcogenide quantum dots on chip-scale optical cavities towards single quantum dot near-infrared cavity QED,” Opt. Express17(25), 22474–22483 (2009). [CrossRef] [PubMed]
  34. M. T. Rakher, R. Bose, C. W. Wong, and K. Srinivasan, “Fiber-based cryogenic and time-resolved spectroscopy of PbS quantum dots,” Opt. Express19(3), 1786–1793 (2011). [CrossRef] [PubMed]
  35. T. Zhong, F. N. Wong, T. D. Roberts, and P. Battle, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO4 waveguide,” Opt. Express17(14), 12019–12030 (2009). [CrossRef] [PubMed]
  36. F. W. Sun and C. W. Wong, “Indistinguishability of independent single photons,” Phys. Rev. A79(1), 013824 (2009). [CrossRef]
  37. S. G. Johnson and J. D. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express8(3), 173–190 (2001). [CrossRef] [PubMed]
  38. E. A. J. Marcatili, “Dielectric rectangular waveguide and directional coupler for integrated optics,” Bell Syst. Tech. J.48, 2071–2102 (1969).
  39. R. Chatterjee, M. Yu, A. Stein, D. L. Kwong, L. C. Kimerling, and C. W. Wong, “Demonstration of a hitless bypass switch using nanomechanical perturbation for high-bitrate transparent networks,” Opt. Express18(3), 3045–3058 (2010). [CrossRef] [PubMed]
  40. S. Afifi and R. Dusséaux, “Statistical study of radiation loss from planar optical waveguides: the curvilinear coordinate method and the small perturbation method,” J. Opt. Soc. Am. A27(5), 1171–1184 (2010). [CrossRef] [PubMed]
  41. T. Barwicz and H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol.23(9), 2719–2732 (2005). [CrossRef]
  42. F. Grillot, L. Vivien, S. Laval, D. Pascal, and E. Cassan, “Size influence on the propagation loss induced by sidewall roughness in ultrasmall SOI waveguides,” IEEE Photon. Technol. Lett.16(7), 1661–1663 (2004). [CrossRef]
  43. R. G. Hunsperger, Integrated Optics (Springer, 2009).
  44. J. Liang and T. B. Pittman, “Compensating for beamsplitter asymmetries in quantum interference experiments,” J. Opt. Soc. Am. B27(2), 350–353 (2010). [CrossRef]
  45. Z. Zhao, A. N. Zhang, X. Q. Zhou, Y. A. Chen, C. Y. Lu, A. Karlsson, and J. W. Pan, “Experimental realization of optimal asymmetric cloning and telecloning via partial teleportation,” Phys. Rev. Lett.95(3), 030502 (2005). [CrossRef] [PubMed]
  46. L. Bartůšková, M. Dusek, A. Cernoch, J. Soubusta, and J. Fiurásek, “Fiber-optics implementation of an asymmetric phase-covariant quantum cloner,” Phys. Rev. Lett.99(12), 120505 (2007). [CrossRef] [PubMed]
  47. K. Sanaka, K. J. Resch, and A. Zeilinger, “Filtering out photonic Fock states,” Phys. Rev. Lett.96(8), 083601 (2006). [CrossRef] [PubMed]
  48. K. J. Resch, J. L. O’Brien, T. J. Weinhold, K. Sanaka, B. P. Lanyon, N. K. Langford, and A. G. White, “Entanglement generation by Fock-state filtration,” Phys. Rev. Lett.98(20), 203602 (2007). [CrossRef] [PubMed]
  49. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  50. A. V. Sergienko, Y. H. Shih, and M. H. Rubin, “Experimental evaluation of a two-photon wave packet in type-II parametric downconversion,” J. Opt. Soc. Am. B12(5), 859–862 (1995). [CrossRef]
  51. O. Kuzucu, M. Fiorentino, M. A. Albota, F. N. Wong, and F. X. Kärtner, “Two-photon coincident-frequency entanglement via extended phase matching,” Phys. Rev. Lett.94(8), 083601 (2005). [CrossRef] [PubMed]
  52. T. Zhong, “High performance photon-pair source based on a fiber-coupled periodically poled KTiOPO₄ waveguide,” S.M. thesis (Massachusetts Institute of Technology, 2009).
  53. S. M. Barnett, J. Jeffers, A. Gatti, and R. Loudon, “Quantum optics of lossy beam splitters,” Phys. Rev. A57(3), 2134–2145 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited