OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 5 — Mar. 11, 2013
  • pp: 6045–6052
« Show journal navigation

Supercontinuum-based 10-GHz flat-topped optical frequency comb generation

Rui Wu, Victor Torres-Company, Daniel E. Leaird, and Andrew M. Weiner  »View Author Affiliations


Optics Express, Vol. 21, Issue 5, pp. 6045-6052 (2013)
http://dx.doi.org/10.1364/OE.21.006045


View Full Text Article

Acrobat PDF (948 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The generation of high-repetition-rate optical frequency combs with an ultra-broad, coherent and smooth spectrum is important for many applications in optical communications, radio-frequency photonics and optical arbitrary waveform generation. Usually, nonlinear broadening techniques of comb-based sources do not provide the required flatness over the whole available bandwidth. Here we present a 10-GHz ultra-broadband flat-topped optical frequency comb (> 3.64-THz or 28 nm bandwidth with ~365 spectral lines within 3.5-dB power variation) covering the entire C-band. The key enabling point is the development of a pre-shaping-free directly generated Gaussian comb-based 10-GHz pulse train to seed a highly nonlinear fiber with normal dispersion profile. The combination of the temporal characteristics of the seed pulses with the nonlinear device allows the pulses to enter into the optical wave-breaking regime, thus achieving a smooth flat-topped comb spectral envelope. To further illustrate the high spectral coherence of the comb, we demonstrate high-quality pedestal-free short pulse compression to the transform-limited duration.

© 2013 OSA

1. Introduction

Optical frequency combs with a high degree of coherence, excellent spectral flatness, stability, as well as a broad bandwidth at high repetition rates are desirable for various applications such as wavelength division multiplexing [1

1. T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett. 29(10), 862–864 (1993). [CrossRef]

], optical orthogonal frequency division multiplexing [2

2. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]

], and optical arbitrary waveform generation [3

3. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007). [CrossRef]

].

The most recent efforts to generate very broad optical frequency combs with high repetition rates in the range of 10 to 1,000 GHz involve the use of parametric frequency conversion in ultrahigh-quality-factor monolithic microresonators [4

4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef] [PubMed]

] or cascaded highly nonlinear fibers (HNLF) [5

5. Z. Tong, A. O. Wiberg, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012). [CrossRef] [PubMed]

]. Although very promising due to the huge spectral bandwidth, these approaches do not provide the high degree of flatness [4

4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef] [PubMed]

] or reconfiguration flexibility [5

5. Z. Tong, A. O. Wiberg, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012). [CrossRef] [PubMed]

] required by some mentioned applications. Furthermore, the microring-resonator based combs may be temporally partially coherent which limits the performance in, e.g. short pulse generation [6

6. F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011). [CrossRef]

8

8. F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20(19), 21033–21043 (2012). [CrossRef] [PubMed]

].

Alternatively, a more established approach to generate optical frequency combs with repetition rates up to tens of GHz is by employing cascaded electro-optic modulators [9

9. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol. 21(11), 2705–2714 (2003). [CrossRef]

11

11. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010). [CrossRef] [PubMed]

]. This approach is very versatile because the comb’s repetition rate can be continuously tuned independently of the optical center frequency. Unfortunately the efficiency of the electro-optic modulation limits the resulting bandwidth to several nanometers at best without compromising the complexity of the setup. Instead, one can use nonlinear optics to achieve further broadening [12

12. K. Imai, M. Kourogi, and M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” J. Lightwave Technol. 34(1), 54–60 (1998).

14

14. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008). [CrossRef] [PubMed]

]. This has been reported using dispersion-flattened fiber [12

12. K. Imai, M. Kourogi, and M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” J. Lightwave Technol. 34(1), 54–60 (1998).

] or dispersion decreasing fiber [13

13. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a mach-zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 34(15), 2297–2299 (2009). [CrossRef] [PubMed]

,14

14. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008). [CrossRef] [PubMed]

]. However, typical electro-optic frequency comb generators are configured to provide a relatively flat optical spectrum, and the corresponding sinc-like temporal profile is far from optimum to preserve the flatness while achieving the broadening [13

13. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a mach-zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 34(15), 2297–2299 (2009). [CrossRef] [PubMed]

,14

14. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008). [CrossRef] [PubMed]

]. Reference [15

15. V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37(15), 3066–3068 (2012). [CrossRef] [PubMed]

] is an exception, in which the comb bandwidth is broadened while keeping the flat-topped comb profile based on a cascaded four-wave mixing scheme in a length of HNLF with near zero dispersion. However to increase the flat comb bandwidth to >10 nm is experimentally very challenging.

Prior investigations in spectral broadening of high-rep-rate temporal pulse trains from actively mode-locked lasers [16

16. K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol. 36(7), 773–779 (2000).

20

20. X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping,” J. Lightwave Technol. 30(12), 1971–1977 (2012). [CrossRef]

] or electro-optic frequency comb generator [21

21. K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010). [CrossRef]

] showed a high degree of flatness with broad bandwidth when sech [17

17. Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11(3), 322–324 (1999). [CrossRef]

,18

18. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006). [CrossRef] [PubMed]

], parabolic [18

18. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006). [CrossRef] [PubMed]

,19

19. A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett. 28(1), 97–103 (2010).

] or Gaussian [20

20. X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping,” J. Lightwave Technol. 30(12), 1971–1977 (2012). [CrossRef]

,21

21. K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010). [CrossRef]

] profile pulses are launched into an HNLF operating in the normal dispersion regime. However, achieving this kind of temporal pulse shapes directly (i.e., without optical pre-shaping [21

21. K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010). [CrossRef]

24

24. Y. Tanaka, R. Kobe, T. Kurokawa, T. Shioda, and H. Tsuda, “Generation of 100-Gb/s packets having 8-bit return-to-zero patterns using an optical pulse synthesizer with a lookup table,” IEEE Photon. Technol. Lett. 21(1), 39–41 (2009). [CrossRef]

]) from an electro-optic frequency comb generator has remained challenging. Recently, we have shown the synthesis of a Gaussian-shaped comb [25

25. R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett. 24(17), 1484–1486 (2012). [CrossRef]

] using the concepts of time-to-frequency mapping [26

26. V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33(16), 1822–1824 (2008). [CrossRef] [PubMed]

29

29. V. Torres-Company, J. Lancis, and P. Andres, “Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011). [CrossRef]

]. Here, we show that the temporal profile emerging from this comb can be used as a seed to achieve an ultra-broad optical spectrum (> 3.64-THz or 28-nm) with excellent flatness (more than 365 lines within 3.5 dB power variation) and a high-degree of coherence. To illustrate the high-degree of stability and coherence of the source, we demonstrate pulse compression to the transform-limited duration.

2. System setup and results

Figure 1
Fig. 1 Experimental scheme to generate supercontinuum flat-topped comb and the application for high quality temporal pulse compression. CW: continuous wave; IM: intensity modulator; PM: phase modulator; PS: phase shifter; AMP: RF amplifier; SMF: single-mode fibers; PC: polarization controller; OFA: Er-Yb-doped optical fiber amplifier; HNLF: highly nonlinear fiber; AC: autocorrelator.
shows the system setup to generate super-continuum flat-topped optical comb and the application for high-quality short-pulse compression. The whole setup is composed of three subsystems as follows:

2.1. Gaussian pulse generation

The first part of Fig. 1 explains our Gaussian-shaped comb generation scheme [25

25. R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett. 24(17), 1484–1486 (2012). [CrossRef]

]. Briefly, the synthesis concept is based on time-to-frequency mapping theory, where quadratic and periodic temporal phase causes the spectral envelope generated at the output of the phase modulators to mimic the input intensity profile [26

26. V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33(16), 1822–1824 (2008). [CrossRef] [PubMed]

29

29. V. Torres-Company, J. Lancis, and P. Andres, “Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011). [CrossRef]

]. The Gaussian comb is generated by cascading three intensity modulators (IMs) for gating Gaussian pulses and two phase modulators (PMs). The PMs are driven by a “quasi-quadratic” temporal signal, which is formed by combining the first and second harmonics from an RF oscillator with an appropriate power ratio which improves the approximation to the target quadratic phase profile [25

25. R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett. 24(17), 1484–1486 (2012). [CrossRef]

], resulting in significantly improved time-to-frequency mapping [11

11. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010). [CrossRef] [PubMed]

]. By cascading two phase modulators driven at their maximum RF input power (30 dBm), we double the total modulation index seen by the gated Gaussian pulse and double the number of comb lines. The RF oscillator in our experiments is set to 10 GHz, which determines the repetition rate of the comb to 10 GHz. At 10 GHz, Vπ is ~9 V for the IM’s and ~3 V for the PM’s. IM1 and IM2 are both biased at 0.5 Vπ with RF drive amplitude 0.5 Vπ. IM3 is biased at the maximum transmission point with RF drive amplitude Vπ .

Figure 2(a)
Fig. 2 Experimental results [25]. (a) Experimentally measured optical spectrum of the frequency comb generated from Fig. 1 (blue) with Gaussian fit (red); (b) Experimentally measured comb phase (blue) with quadratic fit (red) vs. comb line number which increases in wavelength; (c) Normalized intensity autocorrelation (blue) of the output pulse after comb propagation through 750 m of SMF and calculation (red) based on the comb spectrum in (a) assuming a flat phase on a linear scale.
shows the optical spectrum of the output comb, which has ~40 lines, and whose shape agrees very well with a Gaussian fit. The power in the central 23 lines matches within a standard deviation of 2% to an ideal Gaussian shape. Figure 2(b) shows the spectral phase of the comb (blue) vs. comb line number which increases in wavelength measured using a linear optical implementation of spectral shearing interferometry [33

33. V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express 18(17), 18171–18179 (2010). [CrossRef] [PubMed]

]. The phase has quadratic profile (red), as expected. This indicates that pulse compression can be accomplished using the appropriate length of single-mode fiber (SMF). The blue solid curve in Fig. 2(c) shows on a linear scale the measured intensity autocorrelation of the output pulse after passing the comb in Fig. 2(a) through 740 meter of SMF. The theoretical intensity autocorrelation (red dashed curve) taking into account the measured comb spectrum and assuming a flat phase is plotted as well. The excellent agreement between the two curves indicates high-quality pulse compression to the bandwidth-limit duration. The measured autocorrelation trace shown in Fig. 2(c) has 4.35 ps full width at the half maximum (FWHM), corresponding to a deconvolved 3.1 ps pulse width assuming a Gaussian pulse shape.

2.2. SPM-Broadened flat-topped supercontinuum comb generation

Next, in order to perform spectral broadening, the transform-limited Gaussian pulse was amplified with an Er-Yb-doped optical fiber amplifier (OFA) and fed into 150 meters of HNLF with dispersion −1.88 ps/nm/km (as specified by the manufacturer), nonlinear coefficient of 10 (W•km)−1 and fiber attenuation of 0.22 dB/km as shown in the second part of Fig. 1. Figure 3
Fig. 3 Simulation results (a) Propagating Gaussian pulse in 150 m HNLF with 1.7 W average power. Initial pulse with 3-ps FWHM (black), output pulse (blue) and corresponding autocorrelation trace (red); (b) Output optical spectrum envelope (blue) and phase (black) with quadratic fit (red).
shows our simulation results from solving the nonlinear Schrödinger equation using the split-step Fourier method [34

34. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

]. For a qualitative study, we simulate the initial input pulse as a single perfect Gaussian-shaped profile with 3-ps FWHM as shown in black dotted trace of Fig. 3(a). The blue trace in Fig. 3(a) shows the output broadened pulse. Figure 3(b) shows the simulated output comb spectrum envelope (blue) and phase (red) with quadratic fit (black). The spectral phase has a quadratic profile within the turning points of the shoulders of the comb spectrum. From a practical perspective, a specific length of SMF can be used to compensate for most of the spectral phase. Figure 4
Fig. 4 Experimental optical power spectrum after propagation in 150-m HNLF with 1.7-W pulse average power before HNLF measured with 0.01nm OSA resolution. A spectral window, equivalent to a bandpass filter, keeps the center spectrum with linear chirp.
shows the experimental output ultra-broadband flat-topped optical frequency comb spectrum when we tune the power of the OFA to 1.7 Watt. This comb shows excellent broadening and a flatness corresponding to 3.5 dB variation over 3.64 THz (28 nm or 365 lines), similar to the simulation prediction in Fig. 3(b). The characteristics of this comb source are promising for the realization of high-performance microwave photonic filters [30

30. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012). [CrossRef]

], where the ultimate limit in the achievable time-bandwidth product is directly proportional to the number of comb lines. This supercontinuum comb has already been demonstrated to be a promising source for such applications, with excellent stability in spectral amplitude, a large number of comb lines, and a broad bandwidth contributing to programmable microwave photonic phase filters with record time-bandwidth product [32

32. M. Song, R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Programmable microwave photonic phase filters with large time-bandwidth product based on ultra-broadband optical frequency comb generation,” in Microwave Photonics (MWP),2012 IEEE Topical Meeting (2012).

].

We note that regions of the simulated intensity profile of Fig. 3(a) exhibit a nearly vertical rise or fall. Furthermore, the simulated and experimental spectra, Figs. 3(b) and 4, respectively, show clear spectral sidelobes on either side of the flat-topped central region. These observations are indicators that the pulse has entered into the wave-breaking regime [34

34. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

36

36. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 10(9), 457–459 (1985). [CrossRef] [PubMed]

]. This nonlinear phenomenon has been exploited as a route to achieve smooth and broad spectra with a high degree of stability [35

35. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008). [CrossRef]

] when pumped with bell-shaped pulses, and is gaining increasing popularity for applications requiring high-quality ultrashort-pulse compression [37

37. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett. 37(12), 2172–2174 (2012). [CrossRef] [PubMed]

]. Our experiments indicate that this phenomenon can also take place in the high-repetition-rate regime and is indeed suitable for applications involving electro-optic frequency comb generators.

We have also performed measurements – at a lower average power level (0.75 W) – to test the stability of the comb. Figure 5 (a)
Fig. 5 Stability analysis: (a) Simulated optical spectrum (blue) with spectral phase (black) and quadratic fit (red) at 0.75 W average power. (b) Optical spectrum measured with 0.01nm OSA resolution. (c) Stability analysis which shows spectral amplitude standard deviation of each comb line versus the number of comb line and wavelength after approximately 70 minutes of measurements.
shows the simulated optical spectrum (blue) with spectral phase (black) and quadratic fit (red) at 0.75 W average power. Comparing with the simulated comb spectrum at 1.7 W average power in Fig. 3(b), the comb bandwidth in Fig. 5(a) is somewhat decreased due to the reduced pump power. We repeatedly measured the comb spectrum using an OSA set for 0.01 nm spectral resolution, recording 14 spectra over a period of approximately 70 minutes. The output comb spectrum has 237 lines (18.6 nm or 2.36 THz) within 4.5 dB power variation as shown in Fig. 5(b). Figure 5(c) provides data on the stability of each of the individual comb lines over this data set. Most of the comb lines have variations with standard deviation below 0.1 dB. The average and median standard deviations of all the comb line variations are 0.08 dB and 0.09 dB, respectively. The largest fluctuations are observed for the four lines closest to the input CW laser (1542 nm), with a standard deviation ranging from 0.35 dB to 0.66 dB. Overall, this indicates the stability of this comb source can be very good.

2.3. Application for short pulse compression

3. Conclusion

In summary, we have generated a flat-topped optical frequency comb at 10-GHz repetition rate covering the whole C-band with >3.64 THz or ~365 lines within 3.5 dB power variation by seeding a directly generated 3.1-ps Gaussian pulse train from an electro-optic modulated comb followed by a HNLF in the normal dispersion regime. The combination of broad bandwidth, flatness and the demonstrated high degree of coherence should enable further applications in ultrafast photonics such as microwave photonic phase filters [31

31. M. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett. 37(5), 845–847 (2012). [CrossRef] [PubMed]

,32

32. M. Song, R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Programmable microwave photonic phase filters with large time-bandwidth product based on ultra-broadband optical frequency comb generation,” in Microwave Photonics (MWP),2012 IEEE Topical Meeting (2012).

], for which the accurate synthesis of optical waveforms with a large time-bandwidth product is of paramount importance.

Acknowledgment

References and links

1.

T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett. 29(10), 862–864 (1993). [CrossRef]

2.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]

3.

Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007). [CrossRef]

4.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332(6029), 555–559 (2011). [CrossRef] [PubMed]

5.

Z. Tong, A. O. Wiberg, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express 20(16), 17610–17619 (2012). [CrossRef] [PubMed]

6.

F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics 5(12), 770–776 (2011). [CrossRef]

7.

S. Papp and S. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A 84(5), 053833–053839 (2011). [CrossRef]

8.

F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express 20(19), 21033–21043 (2012). [CrossRef] [PubMed]

9.

M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol. 21(11), 2705–2714 (2003). [CrossRef]

10.

T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multicarrier light source with flattened spectrum using phase modulators and dispersion medium,” J. Lightwave Technol. 27(19), 4297–4305 (2009). [CrossRef]

11.

R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett. 35(19), 3234–3236 (2010). [CrossRef] [PubMed]

12.

K. Imai, M. Kourogi, and M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” J. Lightwave Technol. 34(1), 54–60 (1998).

13.

I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a mach-zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett. 34(15), 2297–2299 (2009). [CrossRef] [PubMed]

14.

C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express 16(4), 2520–2527 (2008). [CrossRef] [PubMed]

15.

V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett. 37(15), 3066–3068 (2012). [CrossRef] [PubMed]

16.

K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol. 36(7), 773–779 (2000).

17.

Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett. 11(3), 322–324 (1999). [CrossRef]

18.

F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express 14(17), 7617–7622 (2006). [CrossRef] [PubMed]

19.

A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett. 28(1), 97–103 (2010).

20.

X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping,” J. Lightwave Technol. 30(12), 1971–1977 (2012). [CrossRef]

21.

K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010). [CrossRef]

22.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000). [CrossRef]

23.

H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol. 26(6), 670–677 (2008). [CrossRef]

24.

Y. Tanaka, R. Kobe, T. Kurokawa, T. Shioda, and H. Tsuda, “Generation of 100-Gb/s packets having 8-bit return-to-zero patterns using an optical pulse synthesizer with a lookup table,” IEEE Photon. Technol. Lett. 21(1), 39–41 (2009). [CrossRef]

25.

R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett. 24(17), 1484–1486 (2012). [CrossRef]

26.

V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett. 33(16), 1822–1824 (2008). [CrossRef] [PubMed]

27.

J. Azana, “Time-to-frequency conversion using a single time lens,” Opt. Commun. 217(1–6), 205–209 (2003). [CrossRef]

28.

J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006). [CrossRef]

29.

V. Torres-Company, J. Lancis, and P. Andres, “Space-time analogies in optics,” Prog. Opt. 56, 1–80 (2011). [CrossRef]

30.

V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics 6(3), 186–194 (2012). [CrossRef]

31.

M. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett. 37(5), 845–847 (2012). [CrossRef] [PubMed]

32.

M. Song, R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Programmable microwave photonic phase filters with large time-bandwidth product based on ultra-broadband optical frequency comb generation,” in Microwave Photonics (MWP),2012 IEEE Topical Meeting (2012).

33.

V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express 18(17), 18171–18179 (2010). [CrossRef] [PubMed]

34.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).

35.

C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B 25(11), 1938–1948 (2008). [CrossRef]

36.

W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett. 10(9), 457–459 (1985). [CrossRef] [PubMed]

37.

Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett. 37(12), 2172–2174 (2012). [CrossRef] [PubMed]

38.

J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett. 47(2), 87–89 (1985). [CrossRef]

39.

A. M. Weiner, Ultrafast Optics (Wiley, 2009), Chap. 3.

OCIS Codes
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.4510) Fiber optics and optical communications : Optical communications
(060.5060) Fiber optics and optical communications : Phase modulation
(060.5530) Fiber optics and optical communications : Pulse propagation and temporal solitons
(190.7110) Nonlinear optics : Ultrafast nonlinear optics
(230.2090) Optical devices : Electro-optical devices
(320.5520) Ultrafast optics : Pulse compression

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: December 27, 2012
Revised Manuscript: February 14, 2013
Manuscript Accepted: February 23, 2013
Published: March 4, 2013

Citation
Rui Wu, Victor Torres-Company, Daniel E. Leaird, and Andrew M. Weiner, "Supercontinuum-based 10-GHz flat-topped optical frequency comb generation," Opt. Express 21, 6045-6052 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-5-6045


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Morioka, K. Mori, and M. Saruwatari, “More than 100-wavelength-channel picosecond optical pulse generation from single laser source using supercontinuum in optical fibers,” Electron. Lett.29(10), 862–864 (1993). [CrossRef]
  2. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. Ben Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s−1 line-rate super-channel transmission utilizing all-optical fast fourier transform processing,” Nat. Photonics5(6), 364–371 (2011). [CrossRef]
  3. Z. Jiang, C. B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics1(8), 463–467 (2007). [CrossRef]
  4. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science332(6029), 555–559 (2011). [CrossRef] [PubMed]
  5. Z. Tong, A. O. Wiberg, E. Myslivets, B. P. Kuo, N. Alic, and S. Radic, “Spectral linewidth preservation in parametric frequency combs seeded by dual pumps,” Opt. Express20(16), 17610–17619 (2012). [CrossRef] [PubMed]
  6. F. Ferdous, H. Miao, D. E. Learid, K. Srinivasan, J. Wang, L. Chen, L. T. Varghese, and A. M. Weiner, “Spectral line-by-line pulse shaping of on-chip microresonator frequency combs,” Nat. Photonics5(12), 770–776 (2011). [CrossRef]
  7. S. Papp and S. Diddams, “Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb,” Phys. Rev. A84(5), 053833–053839 (2011). [CrossRef]
  8. F. Ferdous, H. Miao, P. H. Wang, D. E. Leaird, K. Srinivasan, L. Chen, V. Aksyuk, and A. M. Weiner, “Probing coherence in microcavity frequency combs via optical pulse shaping,” Opt. Express20(19), 21033–21043 (2012). [CrossRef] [PubMed]
  9. M. Fujiwara, M. Teshima, J. Kani, H. Suzuki, N. Takachio, and K. Iwatsuki, “Optical carrier supply module using flattened optical multicarrier generation based on sinusoidal amplitude and phase hybrid modulation,” J. Lightwave Technol.21(11), 2705–2714 (2003). [CrossRef]
  10. T. Yamamoto, T. Komukai, K. Suzuki, and A. Takada, “Multicarrier light source with flattened spectrum using phase modulators and dispersion medium,” J. Lightwave Technol.27(19), 4297–4305 (2009). [CrossRef]
  11. R. Wu, V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms,” Opt. Lett.35(19), 3234–3236 (2010). [CrossRef] [PubMed]
  12. K. Imai, M. Kourogi, and M. Ohtsu, “30-THz span optical frequency comb generation by self-phase modulation in an optical fiber,” J. Lightwave Technol.34(1), 54–60 (1998).
  13. I. Morohashi, T. Sakamoto, H. Sotobayashi, T. Kawanishi, and I. Hosako, “Broadband wavelength-tunable ultrashort pulse source using a mach-zehnder modulator and dispersion-flattened dispersion-decreasing fiber,” Opt. Lett.34(15), 2297–2299 (2009). [CrossRef] [PubMed]
  14. C. B. Huang, S. G. Park, D. E. Leaird, and A. M. Weiner, “Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding,” Opt. Express16(4), 2520–2527 (2008). [CrossRef] [PubMed]
  15. V. R. Supradeepa and A. M. Weiner, “Bandwidth scaling and spectral flatness enhancement of optical frequency combs from phase-modulated continuous-wave lasers using cascaded four-wave mixing,” Opt. Lett.37(15), 3066–3068 (2012). [CrossRef] [PubMed]
  16. K. Tamura, H. Kubota, and M. Nakazawa, “Fundamentals of stable continuum generation at high repetition rates,” J. Lightwave Technol.36(7), 773–779 (2000).
  17. Y. Takushima and K. Kikuchi, “10-GHz, over 20-channel multiwavelength pulse source by slicing super-continuum spectrum generated in normal-dispersion fiber,” IEEE Photon. Technol. Lett.11(3), 322–324 (1999). [CrossRef]
  18. F. Parmigiani, C. Finot, K. Mukasa, M. Ibsen, M. A. Roelens, P. Petropoulos, and D. J. Richardson, “Ultra-flat SPM-broadened spectra in a highly nonlinear fiber using parabolic pulses formed in a fiber Bragg grating,” Opt. Express14(17), 7617–7622 (2006). [CrossRef] [PubMed]
  19. A. Clarke, D. Williams, M. Roelens, and B. Eggleton, “Reconfigurable optical pulse generator employing a fourier-domain programmable optical processor,” IEEE Photon. Technol. Lett.28(1), 97–103 (2010).
  20. X. Yang, D. J. Richardson, and P. Petropoulos, “Nonlinear generation of ultra-flat broadened spectrum based on adaptive pulse shaping,” J. Lightwave Technol.30(12), 1971–1977 (2012). [CrossRef]
  21. K. Kashiwagi, H. Ishizu, Y. Kodama, S. Choi, and T. Kurokawa, “Highly precise optical pulse synthesis for flat spectrum supercontinuum generation with wide mode spacing,” in European Conference on Optical Communication (ECOC), We.7.E.5 (2010). [CrossRef]
  22. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000). [CrossRef]
  23. H. Tsuda, Y. Tanaka, T. Shioda, and T. Kurokawa, “Analog and digital optical pulse synthesizers using arrayed-waveguide gratings for high-speed optical signal processing,” J. Lightwave Technol.26(6), 670–677 (2008). [CrossRef]
  24. Y. Tanaka, R. Kobe, T. Kurokawa, T. Shioda, and H. Tsuda, “Generation of 100-Gb/s packets having 8-bit return-to-zero patterns using an optical pulse synthesizer with a lookup table,” IEEE Photon. Technol. Lett.21(1), 39–41 (2009). [CrossRef]
  25. R. Wu, C. M. Long, D. E. Leaird, and A. M. Weiner, “Directly generated Gaussian-shaped optical frequency comb for microwave photonic filtering and picosecond pulse generation,” IEEE Photon. Technol. Lett.24(17), 1484–1486 (2012). [CrossRef]
  26. V. Torres-Company, J. Lancis, and P. Andrés, “Lossless equalization of frequency combs,” Opt. Lett.33(16), 1822–1824 (2008). [CrossRef] [PubMed]
  27. J. Azana, “Time-to-frequency conversion using a single time lens,” Opt. Commun.217(1–6), 205–209 (2003). [CrossRef]
  28. J. van Howe and C. Xu, “Ultrafast optical signal processing based upon space-time dualities,” J. Lightwave Technol.24(7), 2649–2662 (2006). [CrossRef]
  29. V. Torres-Company, J. Lancis, and P. Andres, “Space-time analogies in optics,” Prog. Opt.56, 1–80 (2011). [CrossRef]
  30. V. R. Supradeepa, C. M. Long, R. Wu, F. Ferdous, E. Hamidi, D. E. Leaird, and A. M. Weiner, “Comb-based radiofrequency photonic filters with rapid tunability and high selectivity,” Nat. Photonics6(3), 186–194 (2012). [CrossRef]
  31. M. Song, V. Torres-Company, A. J. Metcalf, and A. M. Weiner, “Multitap microwave photonic filters with programmable phase response via optical frequency comb shaping,” Opt. Lett.37(5), 845–847 (2012). [CrossRef] [PubMed]
  32. M. Song, R. Wu, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “Programmable microwave photonic phase filters with large time-bandwidth product based on ultra-broadband optical frequency comb generation,” in Microwave Photonics (MWP),2012 IEEE Topical Meeting (2012).
  33. V. R. Supradeepa, C. M. Long, D. E. Leaird, and A. M. Weiner, “Self-referenced characterization of optical frequency combs and arbitrary waveforms using a simple, linear, zero-delay implementation of spectral shearing interferometry,” Opt. Express18(17), 18171–18179 (2010). [CrossRef] [PubMed]
  34. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  35. C. Finot, B. Kibler, L. Provost, and S. Wabnitz, “Beneficial impact of wave-breaking for coherent continuum formation in normally dispersive nonlinear fibers,” J. Opt. Soc. Am. B25(11), 1938–1948 (2008). [CrossRef]
  36. W. J. Tomlinson, R. H. Stolen, and A. M. Johnson, “Optical wave breaking of pulses in nonlinear optical fibers,” Opt. Lett.10(9), 457–459 (1985). [CrossRef] [PubMed]
  37. Y. Liu, H. Tu, and S. A. Boppart, “Wave-breaking-extended fiber supercontinuum generation for high compression ratio transform-limited pulse compression,” Opt. Lett.37(12), 2172–2174 (2012). [CrossRef] [PubMed]
  38. J. P. Heritage, R. N. Thurston, W. J. Tomlinson, A. M. Weiner, and R. H. Stolen, “Spectral windowing of frequency-modulated optical pulses in a grating compressor,” Appl. Phys. Lett.47(2), 87–89 (1985). [CrossRef]
  39. A. M. Weiner, Ultrafast Optics (Wiley, 2009), Chap. 3.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited