OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 6 — Mar. 25, 2013
  • pp: 7740–7747
« Show journal navigation

High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass

Wenjiang Tan, Zhiguang Zhou, Aoxiang Lin, Jinhai Si, Pingping Zhan, Bin Wu, and Xun Hou  »View Author Affiliations


Optics Express, Vol. 21, Issue 6, pp. 7740-7747 (2013)
http://dx.doi.org/10.1364/OE.21.007740


View Full Text Article

Acrobat PDF (1958 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigated the ballistic imaging technique using femtosecond optical Kerr gate of a tellurite glass. High contrast images of an object hidden behind turbid media were obtained. Compared to the conventional femtosecond optical Kerr gate using fused quartz, the optical Kerr gate using tellurite glass has more capacity to acquire high quality images of the object hidden behind a high optical density turbid medium. The experimental results indicated that the tellurite glass is a good candidate as the optical Kerr material for the ballistic imaging technique due to its large optical nonlinearity.

© 2013 OSA

1. Introduction

Time-gated ballistic-photon imaging (commonly referred to as ballistic imaging) is a kind of special optical shadowgraph imaging that employs a short time gate to suppress multiply scattered photons and improve the visualization of objects hidden in the turbid media [1

1. M. Paciaroni and M. A. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43(26), 5100–5109 (2004). [CrossRef] [PubMed]

,2

2. M. E. Zevallos L, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005). [CrossRef]

]. It relies on the fact that ballistic photons propagating straight through a turbid media without scattering will exit earlier than the multiply scattered photons [3

3. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991). [CrossRef] [PubMed]

,4

4. J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng. 50(4), 043607 (2011). [CrossRef]

]. This optical diagnosis technique is originally developed for medical applications [5

5. D. J. Hall, J. C. Hebden, and D. T. Delpy, “Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method,” Appl. Opt. 36(28), 7270–7276 (1997). [CrossRef] [PubMed]

,6

6. J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006). [CrossRef] [PubMed]

], for instance, to detect human tumors in soft tissue. Recently, ballistic imaging technique has been implemented to investigate the dynamics of high-pressure diesel sprays and liquid jets in gaseous cross-flow [7

7. M. Paciaroni, M. A. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atom. Sprays 16(1), 51–70 (2006). [CrossRef]

9

9. J. B. Schmidt, Z. D. Schaefer, T. R. Meyer, S. Roy, S. A. Danczyk, and J. R. Gord, “Ultrafast time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays,” Appl. Opt. 48(4), B137–B144 (2009). [CrossRef] [PubMed]

]. Because it has the ability to acquire breakup information from dense region of the spray that is heretofore inaccessible to conventional imaging technique [10

10. M. A. Linne, D. Sedarsky, T. R. Meyer, J. R. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2010). [CrossRef]

].

A number of nonlinear optical phenomena [11

11. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003). [CrossRef]

], for example the optical Kerr effect [12

12. S. Idlahcen, L. Méès, C. Rozé, T. Girasole, and J. B. Blaisot, “Time gate, optical layout, and wavelength effects on ballistic imaging,” J. Opt. Soc. Am. A 26(9), 1995–2004 (2009). [CrossRef] [PubMed]

] and the second harmonic generation [13

13. A. Kuditcher, B. G. Hoover, M. P. Hehlen, E. N. Leith, S. C. Rand, and M. P. Shih, “Ultrafast, cross-correlated harmonic imaging through scattering media,” Appl. Opt. 40(1), 45–51 (2001). [CrossRef] [PubMed]

], have been demonstrated to have the potential for the application of the ballistic imaging. However, most ballistic imaging systems have gradually taken the advantage of the optical Kerr gate (OKG) to mitigate scattered photons due to its advantages, such as no need of satisfaction of the phase-matching condition or high intensity of the imaging signal [14

14. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010). [CrossRef] [PubMed]

17

17. D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010). [CrossRef]

]. An amplified femtosecond laser is often used as the ideal light source to activate the OKG for photon discrimination. It is especially important when the approximate time spread of ballistic versus multiply scattered photons is of the order of several picoseconds [9

9. J. B. Schmidt, Z. D. Schaefer, T. R. Meyer, S. Roy, S. A. Danczyk, and J. R. Gord, “Ultrafast time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays,” Appl. Opt. 48(4), B137–B144 (2009). [CrossRef] [PubMed]

,18

18. F. X. d’Abzac, M. Kervella, L. Hespel, and T. Dartigalongue, “Experimental and numerical analysis of ballistic and scattered light using femtosecond optical Kerr gating: a way for the characterization of strongly scattering media,” Opt. Express 20(9), 9604–9615 (2012). [CrossRef] [PubMed]

].

As the key factor of the performance of the OKG, a suitable Kerr material should be of large nonlinearity, ultrafast response time, and wide transparent window, which could offer higher signal-to-noise ratio, better temporal resolution, and wider applicable wavelength range. However, there is an inherent tradeoff between high sensitivity and fast response in the applications based on the OKG in femtosecond regime. For example, as two widely used optical Kerr materials, carbon disulfide owns very large optical nonlinearity but suffers a slow relaxation time of about 1.6 ps [19

19. J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt. 14(4), 045203 (2012). [CrossRef]

], and the fused quartz has ultrafast response but suffers a low optical nonlinearity of about 2.48 × 10−16 cm2/W [20

20. A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett. 21(22), 1812–1814 (1996). [CrossRef] [PubMed]

]. Recently, it has emerged that the tellurite glass seems to be a preferable nonlinear optical material because of its large optical nonlinearity, ultrafast response time, low phonon energy, and good thermal and mechanical stability, which has been extensively exploited in many nonlinear optical applications [21

21. R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett. 89(17), 171917 (2006). [CrossRef]

24

24. W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun. 291, 337–340 (2013). [CrossRef]

].

In this study, we investigated the ballistic imaging technique using femtosecond OKG of a tellurite glass. High contrast images of a 1.41-line-pair/mm (1.41-lp/mm) section of the resolution test chart hidden behind turbid media were obtained. Compared to the conventional femtosecond OKG using fused quartz, the OKG using tellurite glass has more capacity to acquire high quality images of the object hidden behind the high optical density turbid media due to its large optical nonlinearity.

2. Experiments

Figure 1
Fig. 1 Schematic of the ballistic imaging system in our experiment. SPF, short pass filter; NA1, NA2, and NA3, neutral attenuators; λ/2, half-wave plate; O, object; T, turbid media; P, polarizer; K, optical Kerr material; A, analyzer; OKG, optical Kerr gate; D, dump; LPF, long pass filter; L1, L2, L3, and L4, lenses with focal lengths of 180, 150, 100, and 100 mm, respectively. All the diameters of the lenses is 50 mm. a = 190 mm, b = 250 mm, c = 330 mm, d = 160 mm.
shows the schematic of the ballistic imaging system in our measurement. A Ti:sapphire laser system, emitting 50 fs, 4 mJ, and 800 nm laser pulses at a repetition rate of 1 kHz, was used in our experiments. The laser beam was split into two parts by using a short pass filter (SPF). Two neutral attenuators (NA1 and NA2) were used to adjust their intensities. The reflective part, passing through an optical delay translation and a half-wave plate (λ/2), was focused onto an optical Kerr material as the gating beam by a lens (L1). The half-wave plate was used to control its polarization for the maximum gating efficiency. The transmitted part was modulated by a 1.41-1p/mm section of the resolution test pattern (a United States Air Force test pattern) and passed through turbid media as the imaging beam. The turbid media used here were various concentrations of suspensions of 0.4-μm-diameter polystyrene microspheres filled in a 10 mm path-length sample cell. In our experiments, the energy of the gating beam was about 18 µJ/pulse, while the energy of the imaging beam was about 288 µJ/pulse. The spot diameters at the optical Kerr material surface of the gating beam and the imaging beam were measured to be about 120 µm and 100 µm, respectively.

Emerging from the turbid media, the disturbed imaging beam was then collected and introduced into an OKG by a lens (L2). The OKG consisted of a pair of crossed polarizers (P and A) and a Kerr material between them. When the OKG was opened by the gating beam, a time-sliced imaging beam (the part of the imaging beam gated by the OKG) could pass through the analyzer. By adjusting the time delay between the gating pulse and the imaging pulse, the ballistic component of imaging beam could be temporally picked out by the OKG. After recollimation by a lens (L3), the imaging beam was detected by CCD camera through an imaging lens (L4). A long pass filter (LPF) was placed before the CCD camera to block noise light caused by the gating beam because some gating light was scattered forward into the imaging system. A neutral attenuator (NA3) was used to avoid laser damage on the CCD camera, when the intensity of the gated imaging beam was too strong.

A piece of 1 mm tellurite glass with composition of TeO2-ZnO-Na2O was used here as the optical Kerr material. The nonlinear refractive index n2 of the tellurite glass was estimated to be about 4.56 × 10−15 cm2/W and the details about its preparation were given in the reference [24

24. W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun. 291, 337–340 (2013). [CrossRef]

]. Moreover, a fused quartz plate with the same thickness was also used as the optical Kerr material for comparison. The time-resolved OKG signals of the tellurite glass and the fused quartz were measured and shown in Fig. 2
Fig. 2 The time-resolved OKG signals of the tellurite glass and the fused quartz. The inset shows the spectra of the gating and imaging beams.
. The full width at half maximum of the signals was about 200 fs. There is a little degradation of the temporal resolution because the duration of the laser pulses was expanded due to the dispersion of the optical elements. The measured spectra of the gating beam and the imaging beam were also shown in the inset of Fig. 2. Both the short and long-wave pass filters have low out-of-band transmittance less than 0.1%. The average transmittance is 80% for the long pass filter and 65% for the short pass filter.

3. Results and discussion

The 1.41-1p/mm section of the resolution test pattern was selected as the imaging object. Firstly, we filled the sample cell with the distilled water and obtained the image of the object without using the OKG as shown in Fig. 3(a)
Fig. 3 Images of a 1.41-1p/mm section of the resolution test pattern from the ballistic imaging system in our experiment. (a) sample cell filled with distilled water without using the OKG. (b) sample cell filled with dense suspensions of polystyrene microspheres without using the OKG. (c) sample cell filled with dense suspensions of polystyrene microspheres using the OKG.
. Then, we filled the sample cell with the dense suspensions of 0.4-μm-diameter polystyrene microspheres and obtained a seriously disturbed image of the object as shown in Fig. 3(b). Finally, we acquired the image of the object using the OKG with the same turbid media as shown in Fig. 3(c). We can see that the ballistic imaging greatly improved the visualization of the object and almost retains its undistorted structure information. It should be noted that the boundary sharpness of the ballistic images decreased to a certain extent due to the low-pass spatial filtering effect of the OKG [25

25. L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993). [CrossRef] [PubMed]

].

To further analysis the performance of the ballistic imaging at different optical densities of the turbid media, we then varied the concentrations of the suspensions of polystyrene microspheres and obtained some ballistic images at different optical densities of 7.4, 8.0, 8.7, 9.3, 9.8, 10.2 and 11.5 using the OKG of the tellurite glass. The disturbed images without using the OKG were also taken for comparison. We calculated the contrast of all the images as:

Contrast=ImaxIminImax+Imin
(1)

Where Imax is the average image intensity of the unshadowed parts in the square-wave grating region and Imin is the average image intensity of the shadowed parts in the square-wave grating region of the object.

From Fig. 4
Fig. 4 Imaging contrasts with and without using the OKG at different optical densities of the turbid media.
, we can see that the image contrasts using the OKG vary from 0.85 to 0.92. The contrasts of the images without using the OKG decrease from 0.18 to 0.01 with the increasing of the optical densities of the turbid media. The ballistic imaging contrast is improved by more than 67% compared with the direct imaging. At the same optical density, the contrast for the ballistic imaging is much higher than that for the directly imaging because the OKG can effectively eliminate the scattered photons which obviously deteriorate the image contrast. These results indicated that ballistic imaging using the OKG was an effective method to improve the visualization of objects hidden in the turbid media.

Furthermore, we compared the performance of the ballistic imaging using the OKG of the tellurite glass, or using the OKG of the fused quartz. Figure 5
Fig. 5 Ballistic-imaging intensities versus optical densities for the tellurite glass and the fused quartz.
shows the ballistic-imaging intensities for these two materials. Plotted on the nature logarithmic ordinate is the relative intensity of these images versus the optical density of the turbid media. In our experiment, the transmittance of the OKG using the tellurite glass is about 21% but only about 0.13% for the fused quartz in the same condition due to their distinctly different optical nonlinearities. So we can see that the ballistic-imaging intensity for the tellurite glass is much larger than that for the fused quartz at the same optical density from Fig. 5. And the ballistic-imaging intensity decreased with increasing the optical density of the turbid media. As a result, the optical Kerr gated imaging beam would be unable to form an image, when its intensity was not high enough to reach the sensitivity limitation of the CCD camera used here. The maximum measurable optical density for the tellurite glass in our experiment is measured to be about 11.5 but only about 9.3 for the fused quartz as shown in Fig. 5. These results indicated that ballistic imaging using the OKG of the tellurite glass could be more suitable for dense turbid media. From Fig. 5, we can also see that there is a good linear relationship between the logarithm of the ballistic-imaging intensity and the optical density. As well known, the intensity of the pure ballistic light is attenuated in turbid media according to the Beer-Lambert relation. So this result also demonstrated that the OKG could reject the scattered photons effectively.

In addition, we also compared the ballistic-imaging contrasts versus optical densities for the tellurite glass and the fused quartz as mentioned above. From Fig. 6
Fig. 6 Ballistic-imaging contrasts versus optical densities for the tellurite glass and the fused quartz. The inset shows the spatial intensity distributions of the ballistic images for both optical Kerr materials at the optical density 8.7.
, we can see the ballistic-imaging contrasts for both of the optical Kerr materials are higher than 0.85 and larger than the directly-imaging contrasts obtained in Fig. 4. Besides, the imaging contrasts for the tellurite glass are slightly higher than that for the fused quartz. We inferred that the optical Kerr gated slightly-scattered photons and nonuniformities in the laser beam affect the ballistic-imaging contrast for fused quartz due to its low signal intensity. So we further compared the spatial intensity distributions of the square-wave grating region of the ballistic images for both optical Kerr materials. The inset of Fig. 6 shows a typical result at the optical density 8.7. We can see that both of the images have some intensity glitches due to the uniform laser intensity distribution and the noise light. But the images for fused quartz have more serious and comparable intensity glitches in both unshadowed and shadowed regions, which reduce the imaging contrast. While the images for the tellurite glass have negligible intensity glitches in the shadowed regions than that in the unshadowed regions because of the large signal intensity. These results indicated that the ballistic imaging using the OKG of the tellurite glass had superiority compared to that using the OKG of the fused quartz. Moreover, there were always some slightly-scattered photons which were able to pass through the OKG. These slightly-scattered photons increased as a proportion of the optical Kerr gated photons with increasing the optical density of the turbid media. However, the amount of these slightly-scattered photons decreased gradually and was not high enough to reach the sensitivity limitation of the CCD camera with the optical density from 10 to 12 in our experiment. On the contrary, the gated ballistic photons can be still detected normally. So we can see the imaging contrast for tellurite glass in Fig. 6 increases slightly with the optical density from 10 to 12.

4. Conclusion

In summary, we investigated the ballistic imaging technique using the femtosecond OKG of a tellurite glass. High contrast images of a 1.41-1p/mm section of the resolution test pattern hidden behind the dense suspensions of polystyrene microspheres have been obtained. Experimental results showed that the ballistic imaging could greatly improve the visualization of object and almost retains its undistorted structure information. The image contrast is improved by more than 67% compared with the direct imaging. Compared to the conventional femtosecond OKG using the fused quartz, the maximum measurable optical density using the femtosecond OKG of the tellurite glass in our experiment is about 11.5 and larger than that about 9.3 for the fused quartz. In addition, the ballistic images acquired with using the OKG of the tellurite glass could have larger intensity and higher contrast than that for the fused quartz. These results indicated that the tellurite glass was a good candidate as the optical Kerr material for the ballistic imaging due to its large optical nonlinearity.

Acknowledgments

The authors gratefully acknowledge the financial support for this work provided by the National Science Foundation of China under the Grant Nos. 61205129, 61235003, and 60907039, the Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2012JQ8002), and the “Hundreds of Talents Programs” from the Chinese Academy of Sciences.

References and links

1.

M. Paciaroni and M. A. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt. 43(26), 5100–5109 (2004). [CrossRef] [PubMed]

2.

M. E. Zevallos L, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86(1), 011115 (2005). [CrossRef]

3.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253(5021), 769–771 (1991). [CrossRef] [PubMed]

4.

J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng. 50(4), 043607 (2011). [CrossRef]

5.

D. J. Hall, J. C. Hebden, and D. T. Delpy, “Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method,” Appl. Opt. 36(28), 7270–7276 (1997). [CrossRef] [PubMed]

6.

J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt. 11(4), 044008 (2006). [CrossRef] [PubMed]

7.

M. Paciaroni, M. A. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atom. Sprays 16(1), 51–70 (2006). [CrossRef]

8.

M. A. Linne, M. Paciaroni, J. R. Gord, and T. R. Meyer, “Ballistic imaging of the liquid core for a steady jet in crossflow,” Appl. Opt. 44(31), 6627–6634 (2005). [CrossRef] [PubMed]

9.

J. B. Schmidt, Z. D. Schaefer, T. R. Meyer, S. Roy, S. A. Danczyk, and J. R. Gord, “Ultrafast time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays,” Appl. Opt. 48(4), B137–B144 (2009). [CrossRef] [PubMed]

10.

M. A. Linne, D. Sedarsky, T. R. Meyer, J. R. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids 49(4), 911–923 (2010). [CrossRef]

11.

C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys. 36(14), R207–R227 (2003). [CrossRef]

12.

S. Idlahcen, L. Méès, C. Rozé, T. Girasole, and J. B. Blaisot, “Time gate, optical layout, and wavelength effects on ballistic imaging,” J. Opt. Soc. Am. A 26(9), 1995–2004 (2009). [CrossRef] [PubMed]

13.

A. Kuditcher, B. G. Hoover, M. P. Hehlen, E. N. Leith, S. C. Rand, and M. P. Shih, “Ultrafast, cross-correlated harmonic imaging through scattering media,” Appl. Opt. 40(1), 45–51 (2001). [CrossRef] [PubMed]

14.

A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett. 35(16), 2732–2734 (2010). [CrossRef] [PubMed]

15.

A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum. 82(3), 033703 (2011). [CrossRef] [PubMed]

16.

J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).

17.

D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett. 96(1), 011109 (2010). [CrossRef]

18.

F. X. d’Abzac, M. Kervella, L. Hespel, and T. Dartigalongue, “Experimental and numerical analysis of ballistic and scattered light using femtosecond optical Kerr gating: a way for the characterization of strongly scattering media,” Opt. Express 20(9), 9604–9615 (2012). [CrossRef] [PubMed]

19.

J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt. 14(4), 045203 (2012). [CrossRef]

20.

A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett. 21(22), 1812–1814 (1996). [CrossRef] [PubMed]

21.

R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett. 89(17), 171917 (2006). [CrossRef]

22.

A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express 17(19), 16716–16721 (2009). [CrossRef] [PubMed]

23.

S. J. Madden and K. T. Vu, “Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics,” Opt. Express 17(20), 17645–17651 (2009). [CrossRef] [PubMed]

24.

W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun. 291, 337–340 (2013). [CrossRef]

25.

L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett. 18(3), 241–243 (1993). [CrossRef] [PubMed]

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4400) Nonlinear optics : Nonlinear optics, materials
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

ToC Category:
Imaging Systems

History
Original Manuscript: January 22, 2013
Revised Manuscript: March 10, 2013
Manuscript Accepted: March 13, 2013
Published: March 21, 2013

Virtual Issues
Vol. 8, Iss. 4 Virtual Journal for Biomedical Optics

Citation
Wenjiang Tan, Zhiguang Zhou, Aoxiang Lin, Jinhai Si, Pingping Zhan, Bin Wu, and Xun Hou, "High contrast ballistic imaging using femtosecond optical Kerr gate of tellurite glass," Opt. Express 21, 7740-7747 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-6-7740


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Paciaroni and M. A. Linne, “Single-shot, two-dimensional ballistic imaging through scattering media,” Appl. Opt.43(26), 5100–5109 (2004). [CrossRef] [PubMed]
  2. M. E. Zevallos L, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett.86(1), 011115 (2005). [CrossRef]
  3. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science253(5021), 769–771 (1991). [CrossRef] [PubMed]
  4. J. Tong, Y. Yang, J. Si, W. Tan, F. Chen, W. Yi, and X. Hou, “Measurements of the scattering coefficients of intralipid solutions by a femtosecond optical Kerr gate,” Opt. Eng.50(4), 043607 (2011). [CrossRef]
  5. D. J. Hall, J. C. Hebden, and D. T. Delpy, “Imaging very-low-contrast objects in breastlike scattering media with a time-resolved method,” Appl. Opt.36(28), 7270–7276 (1997). [CrossRef] [PubMed]
  6. J. Selb, D. K. Joseph, and D. A. Boas, “Time-gated optical system for depth-resolved functional brain imaging,” J. Biomed. Opt.11(4), 044008 (2006). [CrossRef] [PubMed]
  7. M. Paciaroni, M. A. Linne, T. Hall, J. P. Delplanque, and T. Parker, “Single-shot two-dimensional ballistic imaging of the liquid core in an atomizing spray,” Atom. Sprays16(1), 51–70 (2006). [CrossRef]
  8. M. A. Linne, M. Paciaroni, J. R. Gord, and T. R. Meyer, “Ballistic imaging of the liquid core for a steady jet in crossflow,” Appl. Opt.44(31), 6627–6634 (2005). [CrossRef] [PubMed]
  9. J. B. Schmidt, Z. D. Schaefer, T. R. Meyer, S. Roy, S. A. Danczyk, and J. R. Gord, “Ultrafast time-gated ballistic-photon imaging and shadowgraphy in optically dense rocket sprays,” Appl. Opt.48(4), B137–B144 (2009). [CrossRef] [PubMed]
  10. M. A. Linne, D. Sedarsky, T. R. Meyer, J. R. Gord, and C. Carter, “Ballistic imaging in the near-field of an effervescent spray,” Exp. Fluids49(4), 911–923 (2010). [CrossRef]
  11. C. Dunsby and P. M. W. French, “Techniques for depth-resolved imaging through turbid media including coherence-gated imaging,” J. Phys. D Appl. Phys.36(14), R207–R227 (2003). [CrossRef]
  12. S. Idlahcen, L. Méès, C. Rozé, T. Girasole, and J. B. Blaisot, “Time gate, optical layout, and wavelength effects on ballistic imaging,” J. Opt. Soc. Am. A26(9), 1995–2004 (2009). [CrossRef] [PubMed]
  13. A. Kuditcher, B. G. Hoover, M. P. Hehlen, E. N. Leith, S. C. Rand, and M. P. Shih, “Ultrafast, cross-correlated harmonic imaging through scattering media,” Appl. Opt.40(1), 45–51 (2001). [CrossRef] [PubMed]
  14. A. Bassi, D. Brida, C. D’Andrea, G. Valentini, R. Cubeddu, S. De Silvestri, and G. Cerullo, “Time-gated optical projection tomography,” Opt. Lett.35(16), 2732–2734 (2010). [CrossRef] [PubMed]
  15. A. Mermillod-Blondin, C. Mauclair, J. Bonse, R. Stoian, E. Audouard, A. Rosenfeld, and I. V. Hertel, “Time-resolved imaging of laser-induced refractive index changes in transparent media,” Rev. Sci. Instrum.82(3), 033703 (2011). [CrossRef] [PubMed]
  16. J. Tong, W. Tan, J. Si, F. Cheng, W. Yi, and X. Hou, “High time-resolved imaging of targets in turbid media using ultrafast optical Kerr gate,” Chin. Phys. Lett. 29(2), 0242072–1-3 (2012).
  17. D. R. Symes, U. Wegner, H.-C. Ahlswede, M. J. V. Streeter, P. L. Gallegos, E. J. Divall, R. A. Smith, P. P. Rajeev, and D. Neely, “Ultrafast gated imaging of laser produced plasmas using the optical Kerr effect,” Appl. Phys. Lett.96(1), 011109 (2010). [CrossRef]
  18. F. X. d’Abzac, M. Kervella, L. Hespel, and T. Dartigalongue, “Experimental and numerical analysis of ballistic and scattered light using femtosecond optical Kerr gating: a way for the characterization of strongly scattering media,” Opt. Express20(9), 9604–9615 (2012). [CrossRef] [PubMed]
  19. J. Tong, W. Tan, J. Si, W. Cui, W. Yi, F. Chen, and X. Hou, “Femtosecond optical Kerr effect measurement using supercontinuum for eliminating the nonlinear coherent coupling effect,” J. Opt.14(4), 045203 (2012). [CrossRef]
  20. A. J. Taylor, G. Rodriguez, and T. S. Clement, “Determination of n2 by direct measurement of the optical phase,” Opt. Lett.21(22), 1812–1814 (1996). [CrossRef] [PubMed]
  21. R. F. Souza, M. A. R. C. Alencar, J. M. Hichmann, R. Kobayashi, and L. R. P. Kassab, “Femtosecond nonlinear optical properties of tellurite glasses,” Appl. Phys. Lett.89(17), 171917 (2006). [CrossRef]
  22. A. Lin, A. Zhang, E. J. Bushong, and J. Toulouse, “Solid-core tellurite glass fiber for infrared and nonlinear applications,” Opt. Express17(19), 16716–16721 (2009). [CrossRef] [PubMed]
  23. S. J. Madden and K. T. Vu, “Very low loss reactively ion etched Tellurium Dioxide planar rib waveguides for linear and non-linear optics,” Opt. Express17(20), 17645–17651 (2009). [CrossRef] [PubMed]
  24. W. Tan, Z. Zhou, A. Lin, J. Si, J. Tong, and X. Hou, “Femtosecond nonlinear optical property of a TeO2-ZnO-Na2O glass and its application in time-resolved three-dimensional imaging,” Opt. Commun.291, 337–340 (2013). [CrossRef]
  25. L. Wang, P. P. Ho, X. Liang, H. Dai, and R. R. Alfano, “Kerr - Fourier imaging of hidden objects in thick turbid media,” Opt. Lett.18(3), 241–243 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited