OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 7875–7881
« Show journal navigation

Heralded generation of multipartite entanglement for one photon by using a single two-dimensional nonlinear photonic crystal

J. Shi, P. Xu, M. L. Zhong, Y. X. Gong, Y. F. Bai, W. J. Yu, Q. W. Li, H. Jin, and S. N. Zhu  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 7875-7881 (2013)
http://dx.doi.org/10.1364/OE.21.007875


View Full Text Article

Acrobat PDF (1188 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a compact scheme for the heralded generation of single-photon multipartite entanglement by using a single two-dimensional nonlinear photonic crystal. Studies have shown that by appropriate structure design, the single-photon entanglement shared among three spatially distinct optical modes can be generated through three concurrent spontaneous parametric down-conversion processes by using the other photon in an identical spatial mode as a trigger. Furthermore, we analyze the entanglement of such heralded single-photon tripartite W-type state theoretically. This method can be expanded for the heralded single-photon N-partite entanglement generation. This compact and stable quantum light source may act as a key ingredient in quantum information science.

© 2013 OSA

1. Introduction

A single-photon multipartite entanglement delocalized between multiple spatial modes belongs to the W-type entangled state [15

15. S. B. Papp, K. S. Choi, H. Deng, P. Lougovski, S. J. van Enk, and H. J. Kimble, “Characterization of multipartite entanglement for one photon shared among four optical modes,” Science 324(5928), 764–768 (2009). [CrossRef] [PubMed]

,16

16. P. Lougovski, S. J. van Enk, K. S. Choi, S. B. Papp, H. Deng, and H. J. Kimble, “Verifying multi-partite mode entanglement of W states,” New J. Phys. 11(6), 063029 (2009). [CrossRef]

], which is robust against loss [17

17. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62(6), 062314 (2000). [CrossRef]

]. Usually it can be prepared by using a couple of linear optical components from a single-photon source. Here we report a compact scheme for the single-photon N-mode entanglement generation directly from a single two-dimensional (2D) nonlinear photonic crystal (NPC), which contains a periodical variation of the second-order nonlinearity while the refractive index keeps constant [18

18. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998). [CrossRef]

,19

19. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000). [CrossRef] [PubMed]

]. Studies have shown that the NPC opens a new way to engineer the spatial entanglement either resulting in new types of path-entangled states [20

20. Y. X. Gong, P. Xu, Y. F. Bai, J. Yang, H. Y. Leng, Z. D. Xie, and S. N. Zhu, “Multiphoton path-entanglement generation by concurrent parametric down-conversion in a single χ(2) nonlinear photonic crystal,” Phys. Rev. A 86(2), 023835 (2012). [CrossRef]

] or transform the two-photon wavefront [21

21. J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, “Quasi-phase-matching engineering for spatial control of entangled two-photon states,” Opt. Lett. 29(4), 376–378 (2004). [CrossRef] [PubMed]

,22

22. H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat Commun 2, 429 (2011). [CrossRef] [PubMed]

] with the unique quasi-phase-matching (QPM) technique. Here, in this work, by appropriate structure design in a single 2D NPC, we show the single-photon entanglement shared among N (N = 2,3,4) spatially distinct optical modes can be generated through N concurrent QPM spontaneous parametric down-conversion (SPDC) processes while the other photon sharing an identical spatial mode is used as the trigger. The detection of the heralded single-photon entanglement can refer to the uncertainly relations [15

15. S. B. Papp, K. S. Choi, H. Deng, P. Lougovski, S. J. van Enk, and H. J. Kimble, “Characterization of multipartite entanglement for one photon shared among four optical modes,” Science 324(5928), 764–768 (2009). [CrossRef] [PubMed]

,16

16. P. Lougovski, S. J. van Enk, K. S. Choi, S. B. Papp, H. Deng, and H. J. Kimble, “Verifying multi-partite mode entanglement of W states,” New J. Phys. 11(6), 063029 (2009). [CrossRef]

] in an interferometric setup [23

23. M. Z-dotukowski, A. Zeilinger, and M. A. Horne, “Realizable higher-dimensional two-particle entanglements via multiport beam splitters,” Phys. Rev. A 55(4), 2564–2579 (1997). [CrossRef]

]. The multipartite entanglement is ensured by the coherent beamsplitting of single-photon inside the NPC, which indicates such a method to be compact and stable, hence can act as a useful quantum light source for integrated quantum information processing. This method is extendable to any high-dimensional mode-entanglement based on the principle of structure design.

2. Theoretic analysis

In this work, the designed 2D NPC follows a hexagonally sequence as shown in Fig. 1(a)
Fig. 1 (a) Sketch of a hexagonal poled 2D NPC. (b) Reciprocal lattice of the crystal and the geometries of three concurrent QPM SPDC processes. (c) Transverse pattern of the parametric light in the Fourier plane.
, where circularly inverted domains (with -χ(2)) distribute periodically on a + χ(2) background with a period of Λ. First, we investigate the structure design and theoretically characterize the single-photon tripartite entanglement. In Fig. 1(b), three reciprocal vectors Gm,n=me1+ne2, (m, n are integers) are designed to simultaneously work for different SPDC processes, respectively. We consider the pump is incident along z-axis and the photon-pair is nondegenerate. Figure 1(c) is the transverse pattern of parametric light in the Fourier plane. The paired tilted reciprocal vectors ensure the photon-pair to emit noncollinearly as four conical beams. It is notable that the photon-pair either propagates along the left two conical beams or the right two conical beams in a superposed way as shown in Fig. 1(c), which is not available from the birefringence-phase-matching (BPM) crystals. For the degenerate photon-pair, the signal and idler conical beams are overlapped. The reciprocal vector along the z-axis ensures a collinear SPDC and the signal photon and idler photon both emit along z-axis in a beam-like way. So for a pair of photons, due to three concurrent SPDC processes, when the idler photon is captured within the overlapped region along z-axis, the signal photon should be shared indistinguishably among three optical modes a, b and c. For the single-photon two-mode entanglement, the structure design is rather simple. It requires that only a pair of tiled reciprocal vectors take the role in the SPDC processes, which can be easily designed in a common 2D NPC.

When the crystal size is considered infinitely large, the nonlinear susceptibility χ(2) can be written as a Fourier series
χ(2)(r)=deffm,nfm,neiGm,nr,
(1)
where deff is the effective nonlinear coefficient and r=(y,z) is the 2D spatial coordinate. The Fourier coefficient takes the form of fm,n=8π(l/Λ)2×J1(|Gm,n|l)/(3×|Gm,n|l). J1 is the first order Bessel function and |Gm,n|=4πm2+n2+mn/(3Λ). The l,l/Λ are the radius of the circularly inverted domain and the duty cycle, respectively. Using multi-mode description of SPDC processes, we obtain the interaction Hamiltonian inside such 2D NPC [20

20. Y. X. Gong, P. Xu, Y. F. Bai, J. Yang, H. Y. Leng, Z. D. Xie, and S. N. Zhu, “Multiphoton path-entanglement generation by concurrent parametric down-conversion in a single χ(2) nonlinear photonic crystal,” Phys. Rev. A 86(2), 023835 (2012). [CrossRef]

]
H^I(t)=ε0Vd3rχ(2)(r)Ep(+)(r,t)E^s()(r,t)E^i()(r,t)+H.c.,
(2)
where V denotes the interaction volume. The pump field is assumed to be plane wave while the signal and idler fields are represented by quantum operators. By using the first-order perturbation approximation in the interaction picture, we obtain the two-photon state as
|Φ=A1dνΨ1(ν)|ωs1ωi1ab+A2dνΨ2(ν)|ωs2ωi2bb+A3dνΨ3(ν)|ωs3ωi3bc,
(3)
in which the coefficient Aj=d33Lfmj,njΩsjΩij/(nsjnij)×iEp/(2c), (j = 1,2,3), and we have A1=A3. Ep is the electrical field amplitude of pump and ns(i) denotes the refraction index of an e-polarized photon at central frequency Ωs(i). The detuning variable ν is the bandwidth of the down-converted light and |ν|Ωs(i). The joint spectrum density determines the bandwidth of two-photon state and takes the following form
Ψj(ν)=1eiΔkzj(ν)LiΔkzj(ν)L=eiΔkzj(ν)L2sinc(Δkzj(ν)L2),
(4)
where L is the length of NPC along z direction and Δkzj(ν)is the phase mismatching along z direction for the different SPDC process denoted by j. For the noncollinear type-0 nondegenerate QPM SPDC, the joint spectrum density can be written as |Ψ1(3)(ν)|=|sinc(νL(cosθ/u(Ωs)1/u(Ωi))/2)|, while under the collinear situation, |Ψ2(ν)|=|sinc(νL(1/u(Ωs)1/u(Ωi))/2)|,where u(Ωs(i)) is the group velocity of parametric photon at Ωs(i) and θ is the angle between the signal and pump beams. After taking the single-frequency approximation, we can write the output entangled state as

|Φ=A1(|Ωs,aΩi,b+|Ωs,bΩi,c)+A2|Ωs,bΩi,b.
(5)

To show the experimental feasibility of our scheme, we design a 2D periodic poled lithium niobate (PPLN) crystal for simultaneous realization of three QPM SPDC processes at 440.36nm810nm+964.97nmfollowing theee+e configuration. |G5,5|=|G0,5|=20π/(3Λ)ensure the QPM condition (kp=ks+ki+Gm,n) in the noncollinear way for the conical emission of the photon-pair, while |G2,0|=8π/(3Λ) is designed to match the collinear SPDC process. Setting working temperature as 180CO, we get the modulationperiod Λ=8.14μm. The angle between ks,a(c) and kp is θ1(2)=13.17o (smaller than the total reflection angle of about 27o). We can quantify this three-body pure state by using distributed entanglement [17

17. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62(6), 062314 (2000). [CrossRef]

,24

24. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61(5), 052306 (2000). [CrossRef]

]. Ca,b(c) means the concurrence between a and b(c), Ca,bc means the concurrence between a and bc. We can obtain Ca,b(c)=2|A1A2(3)/(A12+A22+A32)|,Ca,bc=2|A1A22+A32/(A12+A22+A32)|. The entanglement quality is affected by several experimental parameters, like the duty cycle (l/Λ). We have made such calculations as shown in Fig. 2
Fig. 2 (a) The concurrence Ca,b(c) varies with the duty cycle of 2D PPLN crystal. (b) The concurrence Ca,bc varies with the duty cycle of 2D PPLN crystal.
. We can get the maximally entangled state when l/Λ0.0001,0.2475,0.2704,0.4726, which corresponds to the case ofA1=A2, andCa,b(c)=2/3, Ca,bc=22/3.

The setup for achieving a heralded single-photon tripartite entanglement is shown in Fig. 3
Fig. 3 Schematic for single-photon tripartite W state generation and entanglement analysis. IF, interference filter; DM, dichroic mirror. Beam-splitter setup to project onto the three |Wj> states: 3 input modes are converted into 3 output modes by 3 lossless beamsplitters. The lowermost beam splitter has a reflectivity R = 1/3, for the other two R = 1/2.
. The entangled photon-pair is nondegenerate and we use a dichroic mirror to separate the idler photon from the signal photon after the pump photons are suppressed. When the idler photon is triggered, we get a heralded single-photon three-mode entangled state as the following
|Φabc=A1η1(|100abc+|001abc)+A2η2|010abc,
(6)
where η1 and η2 are the collection efficiency for the signal photon belonging to the two symmetric non-conlinear SPDC processes and the conlinear SPDC process, respectively. For the W-type maximally entangled state generation, we should design A1η1=A2η2. Since η1 and η2 can both be altered by different experimental conditions, like the temperature and the coupling technique, we can alter η1 and η2 to achieve the necessary condition when the duty cycle is not well achieved.

For simple experimental tests, we can use uncertainty relations as the entanglement criterion to verify our single-photon tripartite entanglement [15

15. S. B. Papp, K. S. Choi, H. Deng, P. Lougovski, S. J. van Enk, and H. J. Kimble, “Characterization of multipartite entanglement for one photon shared among four optical modes,” Science 324(5928), 764–768 (2009). [CrossRef] [PubMed]

,16

16. P. Lougovski, S. J. van Enk, K. S. Choi, S. B. Papp, H. Deng, and H. J. Kimble, “Verifying multi-partite mode entanglement of W states,” New J. Phys. 11(6), 063029 (2009). [CrossRef]

]. The mode transformation from {|100,|010,|001} to {|Wj=(|100+e2π(j1)/3|010+e4π(j1)/3|001)/3}, (j = 1,2,3) can be easily decomposed in terms of unitary operations that can be implemented with beamsplitters and phaseshifters (see Fig. 3) [23

23. M. Z-dotukowski, A. Zeilinger, and M. A. Horne, “Realizable higher-dimensional two-particle entanglements via multiport beam splitters,” Phys. Rev. A 55(4), 2564–2579 (1997). [CrossRef]

]. We choose three projectors onto the basis |Wj> as nonlocal observables Mj = |Wj>< Wj |. For any state ρ
Δρ=j=13{Tr(ρ[|WjWj|]2)(Trρ[|WjWj|])2}.
(7)
The single-photon tripartite entanglement is three-body pure state for the relative phase between any two modes is fixed in a single crystal wafer. So for maximal three-mode entanglement, Δρ=0 and for partial three-mode entanglement, 0<Δρ<1/2.

Furthermore, we design a structure appropriate for the generation of four-partite entanglement from a hexagonally domain-inverted PPLN crystal. The involved reciprocal vectors are |G2,1|=|G1,2|=4π/Λ,|G6,4|=|G4,6|=87π/(3Λ).As shown in Fig. 4
Fig. 4 (a) Transverse pattern of the parametric light in the Fourier plane. (b) Reciprocal lattice of the crystal and the geometries of four concurrent QPM SPDC processes.
, for 519.1nm810nm+1445.4nm,four type-0 QPM SPDC processes can happen simultaneously. The working temperature is set as 180CO.The modulation period Λ=5.85μm.The angle between ks,a(d) and kp is 21.45o and the angle between ks,b(c) and kp is 6.31o.Using the uncertainty relations mentioned above, we can further theoretically characterize this heralded single-photon four-partite W-state. In principle, for any single-photon N-partite (N>4) mode-entanglement, it is achievable when the cascaded 1D or 2D domain structures are engineered in a single crystal wafer. In this case, the phase of spatial modes from different domain-structure may differ, then each component of W-state may contain a phase term (A1|10...0+eiφ1A2|01...0+...+eiφ(N1)AN|00...1), but the relative phase between any two modes are fixed, so the single-photon W-state from a single wafer is a pure state.

3. Conclusion

In summary, we have proposed a compact scheme for single-photon N-partite (N = 2,3,4) entanglement by utilizing the flexible QPM technique. The N concurrent SPDC processes act as (N-1) coherent beamsplitters to distribute the single-photon into N distinct optical modes, which ensures the generated N components can be maximally entangled in a W-state not partially entangled. The method is extendable to any N-mode entanglement generation when the cascaded 1D or 2D structure on a single wafer is adopted. Such compact and stable N-partite entangled state with high generation rate can have potential applications in quantum fundamental tests and quantum repeater for quantum networks.

Compared with the conventional bi-particle entanglement such as polarization or time-bin entanglement, there are mainly two advantages of our single-photon mode-entangled source. Firstly, we can improve the efficiency of many protocols about quantum repeaters and quantum networks by the heralded generation of multipartite entanglement for one photon. Secondly, single-photon multi-mode W-type entangled source is the more economy resource than bi-particle entanglement and we can improve the performance of quantum information processing using single-photon N-mode entangled source like an entangled multi-particle system does. On the other hand, though our single-photon N-mode W-type entangled state is more robust to loss than other type entangled state, this type of entanglement is also sensitive to decoherence inevitably during the practical transmission of long-distance quantum communication and quantum networks. We can “repair” entanglement by using entanglement purification technique [4

4. D. Salart, O. Landry, N. Sangouard, N. Gisin, H. Herrmann, B. Sanguinetti, C. Simon, W. Sohler, R. T. Thew, A. Thomas, and H. Zbinden, “Purification of single-photon entanglement,” Phys. Rev. Lett. 104(18), 180504 (2010). [CrossRef] [PubMed]

,25

25. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76(5), 722–725 (1996). [CrossRef] [PubMed]

29

29. S. L. Zhang, S. Yang, X. B. Zou, B. S. Shi, and G. C. Guo, “Protecting single-photon entangled state from photon loss with noiseless linear amplification,” Phys. Rev. A 86(3), 034302 (2012). [CrossRef]

].

Acknowledgments

This work was supported by the State Key Program for Basic Research of China (No. 2012CB921802 and No. 2011CBA00205), the National Natural Science Foundations of China (No. 91121001, and No. 11021403), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Program for New Century Excellent Talents in University (NCET).

References and links

1.

S. J. van Enk, “Single-particle entanglement,” Phys. Rev. A 72(6), 064306 (2005). [CrossRef]

2.

S. M. Tan, D. F. Walls, and M. J. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett. 66(3), 252–255 (1991). [CrossRef] [PubMed]

3.

L. Hardy, “Nonlocality of a single photon revisited,” Phys. Rev. Lett. 73(17), 2279–2283 (1994). [CrossRef] [PubMed]

4.

D. Salart, O. Landry, N. Sangouard, N. Gisin, H. Herrmann, B. Sanguinetti, C. Simon, W. Sohler, R. T. Thew, A. Thomas, and H. Zbinden, “Purification of single-photon entanglement,” Phys. Rev. Lett. 104(18), 180504 (2010). [CrossRef] [PubMed]

5.

E. Lombardi, F. Sciarrino, S. Popescu, and F. De Martini, “Teleportation of a vacuum--one-photon qubit,” Phys. Rev. Lett. 88(7), 070402 (2002). [CrossRef] [PubMed]

6.

G. Björk, A. Laghaout, and U. L. Andersen, “Deterministic teleportation using single-photon entanglement as a resource,” Phys. Rev. A 85(2), 022316 (2012). [CrossRef]

7.

I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics 6(4), 234–237 (2012). [CrossRef]

8.

L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature 414(6862), 413–418 (2001). [CrossRef] [PubMed]

9.

C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science 316(5829), 1316–1320 (2007). [CrossRef] [PubMed]

10.

J. Laurat, K. S. Choi, H. Deng, C. W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett. 99(18), 180504 (2007). [CrossRef] [PubMed]

11.

K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature 452(7183), 67–71 (2008). [CrossRef] [PubMed]

12.

C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett. 98(19), 190503 (2007). [CrossRef] [PubMed]

13.

S. Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express 17(16), 13639–13645 (2009). [CrossRef] [PubMed]

14.

J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys. 84(2), 777–838 (2012). [CrossRef]

15.

S. B. Papp, K. S. Choi, H. Deng, P. Lougovski, S. J. van Enk, and H. J. Kimble, “Characterization of multipartite entanglement for one photon shared among four optical modes,” Science 324(5928), 764–768 (2009). [CrossRef] [PubMed]

16.

P. Lougovski, S. J. van Enk, K. S. Choi, S. B. Papp, H. Deng, and H. J. Kimble, “Verifying multi-partite mode entanglement of W states,” New J. Phys. 11(6), 063029 (2009). [CrossRef]

17.

W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A 62(6), 062314 (2000). [CrossRef]

18.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81(19), 4136–4139 (1998). [CrossRef]

19.

N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett. 84(19), 4345–4348 (2000). [CrossRef] [PubMed]

20.

Y. X. Gong, P. Xu, Y. F. Bai, J. Yang, H. Y. Leng, Z. D. Xie, and S. N. Zhu, “Multiphoton path-entanglement generation by concurrent parametric down-conversion in a single χ(2) nonlinear photonic crystal,” Phys. Rev. A 86(2), 023835 (2012). [CrossRef]

21.

J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, “Quasi-phase-matching engineering for spatial control of entangled two-photon states,” Opt. Lett. 29(4), 376–378 (2004). [CrossRef] [PubMed]

22.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat Commun 2, 429 (2011). [CrossRef] [PubMed]

23.

M. Z-dotukowski, A. Zeilinger, and M. A. Horne, “Realizable higher-dimensional two-particle entanglements via multiport beam splitters,” Phys. Rev. A 55(4), 2564–2579 (1997). [CrossRef]

24.

V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A 61(5), 052306 (2000). [CrossRef]

25.

C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett. 76(5), 722–725 (1996). [CrossRef] [PubMed]

26.

J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature 410(6832), 1067–1070 (2001). [CrossRef] [PubMed]

27.

C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express 19(25), 25685–25695 (2011). [CrossRef] [PubMed]

28.

N. Sangouard, C. Simon, T. Coudreau, and N. Gisin, “Purification of single-photon entanglement with linear optics,” Phys. Rev. A 78(5), 080301(R) (2008). [CrossRef]

29.

S. L. Zhang, S. Yang, X. B. Zou, B. S. Shi, and G. C. Guo, “Protecting single-photon entangled state from photon loss with noiseless linear amplification,” Phys. Rev. A 86(3), 034302 (2012). [CrossRef]

OCIS Codes
(190.4390) Nonlinear optics : Nonlinear optics, integrated optics
(190.4410) Nonlinear optics : Nonlinear optics, parametric processes
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

History
Original Manuscript: December 17, 2012
Revised Manuscript: March 14, 2013
Manuscript Accepted: March 17, 2013
Published: February 25, 2013

Citation
J. Shi, P. Xu, M. L. Zhong, Y. X. Gong, Y. F. Bai, W. J. Yu, Q. W. Li, H. Jin, and S. N. Zhu, "Heralded generation of multipartite entanglement for one photon by using a single two-dimensional nonlinear photonic crystal," Opt. Express 21, 7875-7881 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-7875


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. J. van Enk, “Single-particle entanglement,” Phys. Rev. A72(6), 064306 (2005). [CrossRef]
  2. S. M. Tan, D. F. Walls, and M. J. Collett, “Nonlocality of a single photon,” Phys. Rev. Lett.66(3), 252–255 (1991). [CrossRef] [PubMed]
  3. L. Hardy, “Nonlocality of a single photon revisited,” Phys. Rev. Lett.73(17), 2279–2283 (1994). [CrossRef] [PubMed]
  4. D. Salart, O. Landry, N. Sangouard, N. Gisin, H. Herrmann, B. Sanguinetti, C. Simon, W. Sohler, R. T. Thew, A. Thomas, and H. Zbinden, “Purification of single-photon entanglement,” Phys. Rev. Lett.104(18), 180504 (2010). [CrossRef] [PubMed]
  5. E. Lombardi, F. Sciarrino, S. Popescu, and F. De Martini, “Teleportation of a vacuum--one-photon qubit,” Phys. Rev. Lett.88(7), 070402 (2002). [CrossRef] [PubMed]
  6. G. Björk, A. Laghaout, and U. L. Andersen, “Deterministic teleportation using single-photon entanglement as a resource,” Phys. Rev. A85(2), 022316 (2012). [CrossRef]
  7. I. Usmani, C. Clausen, F. Bussières, N. Sangouard, M. Afzelius, and N. Gisin, “Heralded quantum entanglement between two crystals,” Nat. Photonics6(4), 234–237 (2012). [CrossRef]
  8. L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, “Long-distance quantum communication with atomic ensembles and linear optics,” Nature414(6862), 413–418 (2001). [CrossRef] [PubMed]
  9. C. W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science316(5829), 1316–1320 (2007). [CrossRef] [PubMed]
  10. J. Laurat, K. S. Choi, H. Deng, C. W. Chou, and H. J. Kimble, “Heralded entanglement between atomic ensembles: preparation, decoherence, and scaling,” Phys. Rev. Lett.99(18), 180504 (2007). [CrossRef] [PubMed]
  11. K. S. Choi, H. Deng, J. Laurat, and H. J. Kimble, “Mapping photonic entanglement into and out of a quantum memory,” Nature452(7183), 67–71 (2008). [CrossRef] [PubMed]
  12. C. Simon, H. de Riedmatten, M. Afzelius, N. Sangouard, H. Zbinden, and N. Gisin, “Quantum repeaters with photon pair sources and multimode memories,” Phys. Rev. Lett.98(19), 190503 (2007). [CrossRef] [PubMed]
  13. S. Y. Lan, A. G. Radnaev, O. A. Collins, D. N. Matsukevich, T. A. B. Kennedy, and A. Kuzmich, “A multiplexed quantum memory,” Opt. Express17(16), 13639–13645 (2009). [CrossRef] [PubMed]
  14. J. W. Pan, Z. B. Chen, C. Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, “Multiphoton entanglement and interferometry,” Rev. Mod. Phys.84(2), 777–838 (2012). [CrossRef]
  15. S. B. Papp, K. S. Choi, H. Deng, P. Lougovski, S. J. van Enk, and H. J. Kimble, “Characterization of multipartite entanglement for one photon shared among four optical modes,” Science324(5928), 764–768 (2009). [CrossRef] [PubMed]
  16. P. Lougovski, S. J. van Enk, K. S. Choi, S. B. Papp, H. Deng, and H. J. Kimble, “Verifying multi-partite mode entanglement of W states,” New J. Phys.11(6), 063029 (2009). [CrossRef]
  17. W. Dür, G. Vidal, and J. I. Cirac, “Three qubits can be entangled in two inequivalent ways,” Phys. Rev. A62(6), 062314 (2000). [CrossRef]
  18. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett.81(19), 4136–4139 (1998). [CrossRef]
  19. N. G. R. Broderick, G. W. Ross, H. L. Offerhaus, D. J. Richardson, and D. C. Hanna, “Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal,” Phys. Rev. Lett.84(19), 4345–4348 (2000). [CrossRef] [PubMed]
  20. Y. X. Gong, P. Xu, Y. F. Bai, J. Yang, H. Y. Leng, Z. D. Xie, and S. N. Zhu, “Multiphoton path-entanglement generation by concurrent parametric down-conversion in a single χ(2) nonlinear photonic crystal,” Phys. Rev. A86(2), 023835 (2012). [CrossRef]
  21. J. P. Torres, A. Alexandrescu, S. Carrasco, and L. Torner, “Quasi-phase-matching engineering for spatial control of entangled two-photon states,” Opt. Lett.29(4), 376–378 (2004). [CrossRef] [PubMed]
  22. H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat Commun2, 429 (2011). [CrossRef] [PubMed]
  23. M. Z-dotukowski, A. Zeilinger, and M. A. Horne, “Realizable higher-dimensional two-particle entanglements via multiport beam splitters,” Phys. Rev. A55(4), 2564–2579 (1997). [CrossRef]
  24. V. Coffman, J. Kundu, and W. K. Wootters, “Distributed entanglement,” Phys. Rev. A61(5), 052306 (2000). [CrossRef]
  25. C. H. Bennett, G. Brassard, S. Popescu, B. Schumacher, J. A. Smolin, and W. K. Wootters, “Purification of noisy entanglement and faithful teleportation via noisy channels,” Phys. Rev. Lett.76(5), 722–725 (1996). [CrossRef] [PubMed]
  26. J. W. Pan, C. Simon, Č. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature410(6832), 1067–1070 (2001). [CrossRef] [PubMed]
  27. C. Wang, Y. Zhang, and R. Zhang, “Entanglement purification based on hybrid entangled state using quantum-dot and microcavity coupled system,” Opt. Express19(25), 25685–25695 (2011). [CrossRef] [PubMed]
  28. N. Sangouard, C. Simon, T. Coudreau, and N. Gisin, “Purification of single-photon entanglement with linear optics,” Phys. Rev. A78(5), 080301(R) (2008). [CrossRef]
  29. S. L. Zhang, S. Yang, X. B. Zou, B. S. Shi, and G. C. Guo, “Protecting single-photon entangled state from photon loss with noiseless linear amplification,” Phys. Rev. A86(3), 034302 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited