OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 8605–8613
« Show journal navigation

On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation

Feng Gao, Ravi Pant, Enbang Li, Christopher G. Poulton, Duk-Yong Choi, Stephen J. Madden, Barry Luther-Davies, and Benjamin J. Eggleton  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 8605-8613 (2013)
http://dx.doi.org/10.1364/OE.21.008605


View Full Text Article

Acrobat PDF (1301 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report the first demonstration of a photonic-chip laser frequency sensor using Brillouin mutually-modulated cross-gain modulation (MMXGM). A large sensitivity (∼9.5 mrad/kHz) of the modulation phase shift to probe carrier frequency is demonstrated at a modulation frequency of 50 kHz using Brillouin MMXGM in a ∼7 cm long chalcogenide rib waveguide.

© 2013 OSA

1. Introduction

Devices with large spectral sensitivity are becoming increasingly desirable in applications such as metrology, optical sensing, quantum information processing, and biomedical engineering [1

1. O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S. W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett. 28, 890–892 (2003) [CrossRef] [PubMed] .

4

4. S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett. 29, 2770–2772 (2004) [CrossRef] [PubMed] .

]. Although the spectral sensitivity can be enhanced using slow light [5

5. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32, 915–917 (2007) [CrossRef] [PubMed] .

, 6

6. Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B, 25, C136–C143 (2008) [CrossRef] .

], the central measurement is usually that of the optical phase, and therefore requires the use of an interferometer. Recently, Sternklar et al. exploited a novel slow-light configuration known as Brillouin mutually-modulated cross-gain modulation (MMXGM). In this configuration, both a pump and Stokes signal are modulated at the same frequency; the Brillouin gain then introduces higher harmonics to the Stokes signal, with the first harmonic possessing a phase delay that is extremely sensitive to the value of the gain. By measuring the phase delay of the first harmonic, an extremely sensitive measurement of the detuning of the Stokes shift may be obtained. This technique relies on the gain associated with the Brillouin resonance rather than the dispersion, and so differs from frequency measurements that directly exploit the presence of slow- and fast-light near an SBS resonance [7

7. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008) [CrossRef] .

14

14. S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt. 12, 104016 (2010) [CrossRef] .

]. With such a configuration, an impressive spectral sensitivity ∼6.5 mrad/kHz in the modulation phase was achieved for a modulation frequency of 100 Hz in a 3km long optical fiber [15

15. S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36, 4161–4163 (2011) [CrossRef] [PubMed] .

]. The striking feature of this configuration is that it does not require an interferometer: the spectral sensitivity is enhanced in the modulation phase rather than the optical phase, which makes it convenient for many optical applications.

2. Principle and theory

Figure 1 shows the concept of laser frequency sensing using Brillouin MMXGM in a chalcogenide (As2S3) photonic-chip [17

17. B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. , 6, Issue 1, 97–114 (2012) [CrossRef] .

, 18

18. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics , 5, 141–148 (2011).

]. A pump (ωp) and a Stokes signal (ωs) are both modulated at the same frequency fmodfBrillouin and are counter-propagated through the chip. If the frequency difference between pump and Stokes signals is close to the Brillouin resonant frequency fBrillouin then the Stokes will experience Brillouin gain, and will undergo selective amplification at the points where the peaks of the modulated pump coincide with the troughs of the modulated Stokes. This effect distorts the Stokes wave and introduces higher harmonics. The first harmonic wave possesses a phase delay which is extremely sensitive to the detuning from the Brillouin resonance. It is important to note that the phase modulation due to MMXGM is fundamentally different from the phase changes induced by the dispersion of SBS, and can be made extremely sensitive to frequency detuning.

Fig. 1 MMXGM in the SBS medium. Both pump and signal are intensity modulated and the modulation phase shift at the front (left) facet is φ2.

The theory and principle of laser frequency sensing using Brillouin MMXGM has been previously derived in [14

14. S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt. 12, 104016 (2010) [CrossRef] .

], for the specific case in which the modulation phase difference φ2 between pump and Stokes is equal to π. In the following we give an outline of this theory, both to clarify the underlying physics and also to discuss the effects of deviations of φ2 from the exact value of π.

Assuming a modulation depth of α for the pump signal, the pump intensity I1(z, t) can be written at the end of the waveguide (z = L) as:
I1(L,t)=I10[1+αcos(KL+Ωt)],
(1)
where Ω = 2πfmod is the angular modulation frequency and K = Ωn/c is the modulation wavenumber for a waveguide with effective index n. The Stokes signal is modulated with modulation depth β. At the front facet (z = 0) the intensity I2(z, t) of the modulated Stokes is:
I2(0,t)=I20[1+βcos(φ2Ωt)],
(2)
where φ2 is the modulation phase shift between the pump and the Stokes signals at the front facet of the sample as shown in Fig. 1. As it propagates through the waveguide the Stokes signal experiences Brillouin gain. Under the approximation that the pump is undepleted, at the output facet (z = L) the Stokes signal can be written [14

14. S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt. 12, 104016 (2010) [CrossRef] .

]:
I2(z=L,t)=I20[1+βcos(KLΩtφ2)]exp[G+αGsinc(KL)cos(Ωt)],
(3)
where the gain G depends on detuning δωs from the Brillouin maximum according to the Lorentzian function:
G=G0[1+(2δωsΓB)2]1,
(4)
where G0=gBI10L is the peak gain and ΓB is the Brillouin linewidth, which is typically on the order of 10–50 MHz in most optical materials.

The expression for the amplified Stokes can be expressed equivalently as a sum of harmonics:
I2(L,t)=iDC+i1cos(θ1Ωt)+i2cos(θ22Ωt)+
(5)
where the coefficients im (m ≥ 1) and phases θm are functions of K, L, α, β, G and φ2. With weak modulation and KL ≪ 1, Eq. (3) can be expanded as
I2(L,t)I20exp(G)[1+βcos(KLΩtφ2)+αGsinc(KL)cos(Ωt)].
(6)
In Eq. (6), the terms on the right are the DC gain of the Stokes, the modulation from the Stokes and the modulation from the pump, respectively.

The total phase shift of the first harmonic θ1 is
θ1=KL+tan1(G^KL+sin(φ2)cos(KLφ2)G^),
(7)
where Ĝ=/β. In Eq. (7), the KL term represents the linear phase delay across the propagation medium and the inverse tangent denotes the nonlinear phase delay that occurs as a result of Brillouin MMXGM. This effect depends on the detuning of the central Stokes peak from the center of the Brillouin resonance, as given by Eq. (4). This change in the gain will in turn advance or delay the phase of the first harmonic. The spectral sensitivity S depends directly on the change in the first-harmonic phase Δθ1 when there is a change in δωs:
S:=dθ1d(δωs)=dθ1dG^dG^d(δωs)=KLcosφ2+sinφ2(cosφ2+G^)2+(G^KL+sinφ2)2dG^d(δωs);
(8)
From Eq. (8) it can be seen that when φ2 = π, the maximum sensitivity at Ĝ ≈ 1 will be inversely proportional to both L and fmod, yielding the same result as previously derived in [14

14. S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt. 12, 104016 (2010) [CrossRef] .

] and [15

15. S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36, 4161–4163 (2011) [CrossRef] [PubMed] .

]. In principle, provided an exact phase modulation shift of φ2 = π can be reached, extremely high sensitivities can be attained by using short waveguides and low modulation frequencies. In practice, however, there is a limit to the resolution with which the modulation phase can be determined. We now consider the modulation phase shift to be close but not equal to π, such that φ2 = π + δφ2, where δφ2 is small. Continuing the assumption that KL ≪ 1, we find from Eq. (8) that the maximum sensitivity is
Smax1KLδφ2dG^d(δωs)
(9)
This result shows that the limitation on the maximum sensitivity is determined by the larger of the quantities KL and δφ2. We note that in Eq. (9), the sensitivity changes sign when KLδφ2. This corresponds to a transition between the slow light and fast light regions [13

13. S. Sternklar, E. Sarid, A. Arbel, and E. Granot, “Brillouin cross-gain modulation and 10 m/s group velocity,” Opt. Lett. 34, 2832–2834 (2009) [CrossRef] [PubMed] .

, 19

19. K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, “Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation,” Opt. Lett. 36, 2185–2188 (2011) [CrossRef] [PubMed] .

]. Because KL is always positive, the situation when φ2 is exactly equal to π corresponds to the slow-light configuration.

As noted previously [15

15. S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36, 4161–4163 (2011) [CrossRef] [PubMed] .

], there exist two sensing windows, spaced symmetrically around the Stokes frequency. Within each sensing window, and provided that KL is small, the phase shift θ1 varies monotonically with δωs between either zero and π, for the slow-light configuration, or between zero and −π for the fast-light configuration. At the position of maximum sensitivity, which occurs in the middle of the sensing window, θ1 is equal to ±π/2.

From the above analysis, we note that Eq. (7) for the modulation phase shift was derived assuming only the first-order harmonic. However, the actual output Stokes wave (see Eq. (3) and Eq. (5)) contains higher-order harmonics. Figure 2 shows the theoretically calculated amplitudes of first- and second-order harmonics around the sensing window (centered around 17 MHz) as calculated using Eq. (10) and Eq. (14) from [14

14. S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt. 12, 104016 (2010) [CrossRef] .

], for a 7 cm chalcogenide rib-waveguide used in the experiments. For these calculations we used the following parameters: n =2.4, ΓB=34 MHz, fmod=50 kHz, Ĝ0=αG0/β=2 and φ2=π. From Fig. 2, we note that the amplitude of the second-order harmonic is larger than that of the fundamental in the sensing window where the spectral sensitivity S is large. Therefore, in order to measure the phase change of first harmonic wave, higher-order harmonics must be removed in the experiment. In our experiments, we used an electrical filter to remove the higher harmonics.

Fig. 2 Calculated amplitude of the first order harmonic wave i1 (black solid line) and the amplitude of the second order harmonic wave i2 (black dotted line) at different sensitivity with Ĝ0 = 2 and φ2 = π. The blue dash curve shows the sensitivity S.

The calculations shown in Fig. 2 were performed for a sensing window centered around 17 MHz. However, the position of the sensing window, defined by the detuning of its center frequency from the peak of the Brillouin resonance, varies with the value of Ĝ0[15

15. S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36, 4161–4163 (2011) [CrossRef] [PubMed] .

]. In Fig. 3 we show the calculated position of the sensing window and the corresponding maximum sensitivity S for different values of Ĝ0. Typically the sensing window is a narrow frequency region around the center frequency. However, it is possible to apply the sensing technique in a large frequency range around the the peak of the Brillouin resonance by changing the value of Ĝ0. From Fig. 3, we note that when Ĝ0 increased from 1.5 to 5.5, the maximum sensitivity varies slowly, changing less than 25%.

Fig. 3 Calculated maximum sensitivity (black solid line) and position of the sensing window (blue dotted line) with different Ĝ0.

3. Experiment

Figure 4 shows the experimental set-up for the on-chip Brillouin MMXGM sensor. A tunable laser around 1550 nm was split with a 50/50 coupler to generate the pump and Stokes wave. After the Stokes signal was generated in one arm using the intensity modulator EOMH (electro-optic modulator of high frequency) driven by a signal generator SG, the light in both the arms was sinusoidally modulated by intensity modulators EOML1 and EOML2 (electro-optic modulator of low frequency) driven by function generators FG1 and FG2 at 50 kHz. The modulation phase could be controlled by adjusting the phase delay from the function generator FG2 triggered by FG1. Both the pump and signal were amplified by erbium doped fiber amplifiers (EDFAs) and coupled to a 7 cm long waveguide with a cross section 4μm×850nm through circulators (C1, C2) using lensed fibers. The total insertion loss was around 13 dB during the experiment, measured through port 3 of C1. The amplified Stokes signal was sent into a circulator C3 with a Bragg grating connected to port 2 (see Fig. 4). The 3dB-bandwidth of the Bragg grating was about 0.13 nm and one of its steep edges of the reflection peak was used to suppress the parasitic pump originated from the reflection at the chip input facet. The filtered signal was split using a 99/1 coupler where the 1% port was sent to the OSA and the 99% port was sent to a photo detector D. An electronic band pass filter BPF with a 2 kHz bandwidth was used before the detector to filter out the higher harmonics and DC component. The electronically filtered signal was observed on the oscilloscope OS.

Fig. 4 The configuration of the experiment. FG1 and FG2 are function generators; FPC1-4 is the fiber polarization controller; SG is the signal generator to create Stokes wave; C1, C2 and C3 are circulators; EOML1, EOML2 and EOMH are intensity modulators; EDFA is the Erbrium doped fiber amplifier; OSA is the optical spectrum analyzer; D is optical detector; BPF is electronic band pass filter and OS is the oscilloscope. Blue wires indicate the electronic wire.

From Fig. 3, we note that the frequency at which the maximum sensitivity occurs depends on the value of Ĝ0, which enables the application of this technique over a large frequency range around the peak of the Brillouin resonance (∼7.63 GHz). In our experiment, we first adjusted the pump and Stokes polarization to achieve a maximum gain (∼5–6 dB) at the peak of the Brillouin gain while keeping αβ≈0. In order to show that we can achieve large sensitivity for any frequency around the peak of the Brillouin resonance by adjusting the value of Ĝ0, we arbitrarily picked a frequency detuning of Δ(δωs)∼25 MHz up-shifted from the peak of the Brillouin resonance. By observing the pump and Stokes waveform on OS, at port 2 of C1, we set φ2=π. The value of Ĝ0 was then varied by adjusting the modulation depths α and β (whilst keeping them small) so that θ1 = π/2, which corresponds to the maximum sensitivity, occurs at Δ(δωs)∼25 MHz. Finally, we measured the sensitivity for a range of different values of φ2 around a detuning δωs∼25 MHz, and determined the value of φ2 for which the sensitivity was maximized. With this optimized value of φ2, the frequency of the Stokes was detuned from δωs∼25 MHz in steps of 100 kHz to observe the phase shift evolution of the first-harmonic on OS. In our experiments, the maximum sensitivity was obtained for a phase evolution from −π to 0, therefore occurring in the fast-light regime. We also observed phase evolution from the slow-light regime of 0 to π, however the sensitivity at this value of φ2 was smaller. In the following we present here the results for the overall maximum sensitivity from the fast-light regime.

Figure 5 shows the output waveform recorded on OS with the largest sensitivity we could obtain at the modulation frequency of 50 kHz, together with the normalized phase shift of the first harmonic wave. The black dashed curve in the center of Fig. 5(A) shows the evolution of the phase when the frequency detuning was changed. A phase shift evolution from −π to 0 was observed when the frequency was detuned from 24.876 MHz to 25.876 MHz in steps of 100 kHz. In our experiment, we observed a small distortion arising from the residual higher-order harmonics remaining after the band pass filter. The normalized phase shift plotted in Fig. 5 (B) shows a phase shift from −π to 0 when the frequency was detuned away from the peak of the Brillouin resonance. A maximum phase shift of Δθ1∼0.95 rad was observed around detuning of 25.476 MHz (see Fig. 5(B)), corresponding to a maximum sensitivity of ∼9.5 mrad/kHz. The maximum attainable sensitivity is limited by the ability to measure the phase change of the first harmonic, the amplitude of which approaches zero near the maximum sensitivity point. The frequency window of large sensitivity is ∼450 kHz, within which the normalized phase shift changed from 0.9 to 0.1. By fitting the experimental result to the theoretical phase shift given by Eq. (7), which is presented as the red solid curve in Fig. 5(B), we deduce values of Ĝ0=3.245 and φ2=1.0009π, thereby confirming that the sensing window lies in the fast-light region.

Fig. 5 The output first harmonic wave measured at different frequency detunings and the normalized phase shift of the first harmonic wave together with the simulation. The black dash curve in (A) shows the evolution of the modulation phase when the frequency of signal is detuning. The normalized phase shift is shown in (B). The red solid curve is the calculation with Ĝ0=3.245 and φ2=1.0009π and the sensing window is around 450 kHz.

4. Conclusion

In conclusion, we have demonstrated a high spectral sensitivity on-chip Brillouin MMXGM frequency sensor. A spectral sensitivity of ∼9.5 mrad/kHz was achieved for a 50 kHz modulation in the fast-light regime, which is of comparable sensitivity to km-long fiber experiments. This demonstration paves the way for photonic integration of high sensitivity spectral sensors.

Acknowledgments

This work was funded by the Australian Research Council (ARC) through its Discovery grant ( DP1096838), Future fellowship ( FT110100853), Laureate Fellowship ( FL120100029) and Center of Excellence CUDOS ( CE110001018). All experiments were performed in the laboratory of Prof Eggleton at the University of Sydney. The visit of corresponding author to USYD is supported by the 973 Programs ( 2013CB328702, 2011CB922003, and 2010CB934101), the 111 Project ( B07013), the Natural Science Foundation of Tianjin ( 12JCQNJC00900 and 12JC-QNJC00800), and the International S&T Cooperation Program of China ( 2011DFA52870).

References and links

1.

O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S. W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett. 28, 890–892 (2003) [CrossRef] [PubMed] .

2.

Z. Xie and H. F. Taylor, “Fabry-Perot optical binary switch for aircraft applications,” Opt. Lett. 31, 2695–2697 (2006) [CrossRef] [PubMed] .

3.

X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett. 30, 2632–2634 (2005) [CrossRef] [PubMed] .

4.

S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett. 29, 2770–2772 (2004) [CrossRef] [PubMed] .

5.

Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett. 32, 915–917 (2007) [CrossRef] [PubMed] .

6.

Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B, 25, C136–C143 (2008) [CrossRef] .

7.

L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics 2, 474–481 (2008) [CrossRef] .

8.

M. González-Herráez, K. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” AppL. Phys. Lett. 87, 081113 (2005) [CrossRef] .

9.

Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett. 94, 153902 (2005) [CrossRef] [PubMed] .

10.

R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express 16, 2764–2777 (2008) [CrossRef] [PubMed] .

11.

R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett. 37, 969–971 (2012) [CrossRef] [PubMed] .

12.

T. Arditi, E. Granot, and S. Sternklar, “Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scatting,” J. Opt. 12, 104016 (2010).

13.

S. Sternklar, E. Sarid, A. Arbel, and E. Granot, “Brillouin cross-gain modulation and 10 m/s group velocity,” Opt. Lett. 34, 2832–2834 (2009) [CrossRef] [PubMed] .

14.

S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt. 12, 104016 (2010) [CrossRef] .

15.

S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett. 36, 4161–4163 (2011) [CrossRef] [PubMed] .

16.

R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express 19, 8285–8290 (2011) [CrossRef] [PubMed] .

17.

B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev. , 6, Issue 1, 97–114 (2012) [CrossRef] .

18.

B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics , 5, 141–148 (2011).

19.

K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, “Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation,” Opt. Lett. 36, 2185–2188 (2011) [CrossRef] [PubMed] .

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(190.0190) Nonlinear optics : Nonlinear optics
(190.2640) Nonlinear optics : Stimulated scattering, modulation, etc.
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Nonlinear Optics

History
Original Manuscript: February 4, 2013
Revised Manuscript: March 18, 2013
Manuscript Accepted: March 21, 2013
Published: April 2, 2013

Citation
Feng Gao, Ravi Pant, Enbang Li, Christopher G. Poulton, Duk-Yong Choi, Stephen J. Madden, Barry Luther-Davies, and Benjamin J. Eggleton, "On-chip high sensitivity laser frequency sensing with Brillouin mutually-modulated cross-gain modulation," Opt. Express 21, 8605-8613 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-8605


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. O. P. Lay, S. Dubovitsky, R. D. Peters, J. P. Burger, S. W. Ahn, W. H. Steier, H. R. Fetterman, and Y. Chang, “MSTAR: a submicrometer absolute metrology system,” Opt. Lett.28, 890–892 (2003). [CrossRef] [PubMed]
  2. Z. Xie and H. F. Taylor, “Fabry-Perot optical binary switch for aircraft applications,” Opt. Lett.31, 2695–2697 (2006). [CrossRef] [PubMed]
  3. X. F. Mo, B. Zhu, Z. F. Han, Y. Z. Gui, and G. C. Guo, “Faraday-Michelson system for quantum cryptography,” Opt. Lett.30, 2632–2634 (2005). [CrossRef] [PubMed]
  4. S. Sakadzic and L. V. Wang, “High-resolution ultrasound-modulated optical tomography in biological tissues,” Opt. Lett.29, 2770–2772 (2004). [CrossRef] [PubMed]
  5. Z. Shi, R. W. Boyd, D. J. Gauthier, and C. C. Dudley, “Enhancing the spectral sensitivity of interferometers using slow-light media,” Opt. Lett.32, 915–917 (2007). [CrossRef] [PubMed]
  6. Z. Shi and R. W. Boyd, “Slow-light interferometry: practical limitations to spectroscopic performance,” J. Opt. Soc. Am. B,25, C136–C143 (2008). [CrossRef]
  7. L. Thévenaz, “Slow and fast light in optical fibres,” Nat. Photonics2, 474–481 (2008). [CrossRef]
  8. M. González-Herráez, K. Song, and L. Thévenaz, “Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering,” AppL. Phys. Lett.87, 081113 (2005). [CrossRef]
  9. Y. Okawachi, M. S. Bigelow, J. E. Sharping, Z. Zhu, A. Schweinsberg, D. J. Gauthier, R. W. Boyd, and A. L. Gaeta, “Tunable All-Optical Delays via Brillouin Slow Light in an Optical Fiber,” Phys. Rev. Lett.94, 153902 (2005). [CrossRef] [PubMed]
  10. R. Pant, M. D. Stenner, M. A. Neifeld, and D. J. Gauthier, “Optimal pump profile designs for broadband SBS slow-light systems,” Opt. Express16, 2764–2777 (2008). [CrossRef] [PubMed]
  11. R. Pant, A. Byrnes, C. G. Poulton, E. Li, D. Choi, S. Madden, B. Luther-Davies, and B. J. Eggleton, “Photonic-chip-based tunable slow and fast light via stimulated Brillouin scattering,” Opt. Lett.37, 969–971 (2012). [CrossRef] [PubMed]
  12. T. Arditi, E. Granot, and S. Sternklar, “Nonlinear phase shifts of modulated light waves with slow and superluminal group delay in stimulated Brillouin scatting,” J. Opt.12, 104016 (2010).
  13. S. Sternklar, E. Sarid, A. Arbel, and E. Granot, “Brillouin cross-gain modulation and 10 m/s group velocity,” Opt. Lett.34, 2832–2834 (2009). [CrossRef] [PubMed]
  14. S. Sternklar, E. Sarid, M. Wart, and E. Granot, “Mutually-modulated cross-gain modulation and slow light,” J. Opt.12, 104016 (2010). [CrossRef]
  15. S. Sternklar, M. Vart, A. Lifshitz, S. Bloch, and E. Granot, “Kilohertz laser frequency sensing with Brillouin mutually modulated cross-gain modulation,” Opt. Lett.36, 4161–4163 (2011). [CrossRef] [PubMed]
  16. R. Pant, C. G. Poulton, D. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, and B. J. Eggleton, “On-chip stimulated Brillouin scattering,” Opt. Express19, 8285–8290 (2011). [CrossRef] [PubMed]
  17. B. J. Eggleton, T. D. Vo, R. Pant, J. Schroeder, M. D. Pelusi, D. Yong Choi, S. J. Madden, and B. Luther-Davies, “Photonic chip based ultrafast optical processing based on high nonlinearity dispersion engineered chalcogenide waveguides,” Laser Photonics Rev., 6, Issue 1, 97–114 (2012). [CrossRef]
  18. B. J. Eggleton, B. Luther-Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics, 5, 141–148 (2011).
  19. K. Qian, L. Zhan, L. Zhang, Z. Q. Zhu, J. S. Peng, Z. C. Gu, X. Hu, S. Y. Luo, and Y. X. Xia, “Group velocity manipulation in active fibers using mutually modulated cross-gain modulation: from ultraslow to superluminal propagation,” Opt. Lett.36, 2185–2188 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited