OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 7 — Apr. 8, 2013
  • pp: 9005–9010
« Show journal navigation

Surface enhanced infrared spectroscopy with gold strip gratings

Tao Wang, Vu Hoa Nguyen, Andreas Buchenauer, Uwe Schnakenberg, and Thomas Taubner  »View Author Affiliations


Optics Express, Vol. 21, Issue 7, pp. 9005-9010 (2013)
http://dx.doi.org/10.1364/OE.21.009005


View Full Text Article

Acrobat PDF (1015 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate surface enhanced infrared absorption (SEIRA) spectroscopy with gold strip gratings made by standard optical lithography. By exciting surface plasmon polaritons on both air-gold and gold-substrate interfaces, the resonance of the 1D gratings is linearly tunable with the grating period. With the field enhancement at the edge of the gold strips, a SEIRA enhancement factor more than 6000 for PMMA molecules is achieved. The strong SEIRA enhancement together with the easy fabrication makes the gold strip grating a promising candidate for SEIRA experiments.

© 2013 OSA

1. Introduction

Infrared spectroscopy is an important tool for chemistry, biology and medicine, because it delivers vibrational fingerprints of the molecular structure. However, the intrinsic cross-section of a molecular vibration for infrared spectroscopy is rather small, which limits the sensitivity of the detection. To improve the sensitivity, surface enhanced spectroscopy, such as surface enhanced Raman scattering (SERS) spectroscopy and surface enhanced infrared absorption (SEIRA) spectroscopy have been used [1

1. T. R. Jensen, R. P. V. Duyne, S. A. Johnson, and V. A. Maroni, “Surface-enhanced infrared spectroscopy: A comparison of metal island films with discrete and nondiscrete surface plasmons,” Appl. Spectrosc. 54(3), 371–377 (2000). [CrossRef]

5

5. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5(11), 682–687 (2011). [CrossRef]

]. Although the enhancement of SERS is much higher, SEIRA is still important as a complementary technique for probing dipole-active vibrational modes of analyte molecules due to different selection rules [6

6. P. J. Larkin, IR and Raman spectroscopy (Elsevier, 2011).

].

Recently, nanostructures with plasmonic resonances have been introduced for SEIRA spectroscopy [7

7. H. Wang, J. Kundu, and N. J. Halas, “Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate,” Angew. Chem. Int. Ed. Engl. 46(47), 9040–9044 (2007). [CrossRef] [PubMed]

16

16. H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013). [CrossRef] [PubMed]

]. By tuning the plasmonic resonances to the vibrational bands of the molecules, a SEIRA enhancement 104-105 is achieved. There are several formations of the plasmonic structures for SEIRA: single nanoantennas, single nanoantenna ensembles, periodic nanoantenna arrays. Due to the low signal-to-noise ratio, the SEIRA experiment with a single nanoantenna is very difficult. However, with the light from synchrotron radiation, Neubrech et al. achieved an attomolar sensitivity of monolayer octadecanethiol (ODT) molecules using a single metallic nanowire [9

9. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008). [CrossRef] [PubMed]

]. More practically, SEIRA experiments were performed with single nanoantenna ensembles [10

10. E. Cubukcu, S. Zhang, Y. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009). [CrossRef]

, 12

12. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011). [CrossRef] [PubMed]

16

16. H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013). [CrossRef] [PubMed]

]. In this case, single nanoantennas are randomly distributed or periodically distributed with enough separation from each other. Moreover, periodic nanoantenna arrays were designed to have collective resonances which provide strongly enhanced near-field intensities for SEIRA [7

7. H. Wang, J. Kundu, and N. J. Halas, “Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate,” Angew. Chem. Int. Ed. Engl. 46(47), 9040–9044 (2007). [CrossRef] [PubMed]

, 8

8. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008). [CrossRef] [PubMed]

, 11

11. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009). [CrossRef] [PubMed]

].

In this paper, we present sensitive SEIRA experiments with gold strip gratings fabricated by standard optical lithography. We first investigate the surface plasmon polariton (SPP) resonances of the gold strip gratings. The resonance peaks of gold strip gratings are found to have a linear relation with the grating period, which largely facilitates the grating design when a specific resonance position is needed. The SPP resonances of gold strip gratings are then designed to match the molecular vibrational modes of PMMA (Poly (methyl methacrylate)) molecules. Due to the enhanced near-fields excited by the SPP at the edge of the gold strips, a SEIRA enhancement more than 6000 is realized, which makes the gold strip grating a promising candidate for SEIRA experiments. The variation of SEIRA enhancement with different grating periods is also discussed.

2. Sample and methods

The cross-section schematic of the gold strip grating is shown in Fig. 1
Fig. 1 Sketch of the side view (a) and optical image (b) of the gold strip grating. The yellow rectangular in (b) indicates the knife edge aperture.
. The grating period is defined as L, the width of the gold strip is w and the space between the strips is d. The thickness h of the gold strip is 40 nm. Under the gold layer a 15 nm thick Ti adhesion layer is deposited. The gratings of different periods are fabricated on a CaF2 substrate (MatecK GmbH, Germany) by using standard optical UV-lithography in combination with sputter deposition of the metal layers. The reflectance spectra are taken with a Bruker Vertex 70 Fourier transform infrared (FTIR) spectrometer in combination with a Hyperion 2000 infrared microscope. The objective used for the measurements has a 15 times magnification and its numerical aperture is 0.4. The FTIR spectra are recorded using a MCT (Mercury Cadmium Telluride) detector with a polarizer (electric field parallel to the grating direction). During the experiments, knife edge apertures set to form a 160 × 85 µm2 measurement area [Fig. 1(b)]. Background spectrum is measured with the same aperture size on a 40 nm thick gold film deposited on a CaF2 substrate as a reference. All spectra shown in this paper are normalized to this reference. The noise level of the spectra is corresponding to 100 scans with a resolution of 4 cm−1.

3. Reflectance spectra of the gratings

We systematically investigated the FTIR spectra of seven gratings. The period L of these gratings decreases gradually from 4.5 µm to 3.3 µm in steps of 0.2 µm. The space d of these gratings is kept constant at 1.6 µm. Figure 2(a)
Fig. 2 (a) Reflectance spectra of the gold strip gratings. From grating 1 to grating 7, the grating period L decreases from 4.5 µm to 3.3 µm in 0.2 µm steps. The dot line indicates the absorption peak of PMMA molecules at 5.773 µm (1732 cm−1, C = O stretch). (b) Resonance peak positions (in (a)) as a function of the grating period L. The two black lines are λ = 1.292L and λ = 1.692L, respectively.
shows the FTIR reflectance spectra of the gratings. It is clear that there are two main peaks (λ > 4 µm) in each reflectance curve. The peaks are both blue shifted as the period L decreases.

The reflectance peaks are due to the excitation of surface plasmon polaritons on the gratings. When light irradiates on the grating, it couples to SPP on both the air-gold and gold-CaF2 interfaces with the coupling condition [17

17. P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express 18(19), 19558–19565 (2010). [CrossRef] [PubMed]

]:
2πλsin(θ)±2πLm=±Re(kSPP)=±2πλε1ε2ε1+ε2,
(1)
where λ is the free space wavelength of the SPP, θ is the incident angle, L is the grating period, m is an integer, kSPP is the wavevector of the SPP, and ε1 and ε2 are the dielectric constants of the respective materials. In our case, in the infrared spectral range, the wavevectors of SPP propagating along the air-gold and gold-CaF2 interfaces are about 2π/λ and nCaF2·2π/λ. As shown in Fig. 2(a), the peak wavelengths are larger than the corresponding grating period L. In this case, when m = 1, the two peaks (peak 1 [SPP at the air-gold interface] and peak 2 [SPP at the gold-CaF2 interface]) are located at:
λ1=L(1+sin(θ)),
(2)
λ2=L(nCaF2+sin(θ)).
(3)
If the incident angle θ is 0° (normal incident), Eq. (2) and Eq. (3) equal to λ1 = L and λ2 = nCaF2·L, respectively. In our experiment we use a Schwarzschild reflective objective, and θ is ranged from around 10° to 24° [18

18. V. Liberman, R. Adato, A. Mertiri, A. A. Yanik, K. Chen, T. H. Jeys, S. Erramilli, and H. Altug, “Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express 19(12), 11202–11212 (2011). [CrossRef] [PubMed]

]. For simplicity, we use the central angle of our objective 17° to estimate the resonance peaks. Thus, the two peaks are around 1.292L and 1.692L. Here, the refractive index of CaF2 (nCaF2) is set to be 1.4. Figure 2(b) shows the peak positions of the reflectance curves as a function of grating period L. The two straight black lines are λ = 1.292L and λ = 1.692L, respectively. Although the optical response of a 1D plasmon grating is complicated [e.g. the higher order modes (λ < 4 µm) in Fig. 2(a)] [17

17. P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express 18(19), 19558–19565 (2010). [CrossRef] [PubMed]

, 19

19. J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem. 59(1), 179–202 (2008). [CrossRef] [PubMed]

], it is clear that in our experiment the positions of the two main peaks are well fitted with the theoretical model discussed above. Therefore, Fig. 2(b) is a useful guide for the design of gratings when a specific resonance peak position is needed.

4. SEIRA experiment with the gratings

After verification of the resonance properties, we deposited a thin layer of PMMA (less than 30 nm) on these gratings by spin coating to perform SEIRA experiments.

Figure 3
Fig. 3 (a) Reflectance spectra of the gratings 1 and 7. (b) Reflectance spectra of the gratings 1 and 7 covered with the PMMA layer. (c) Reflectance spectra on a 40 nm gold film reference without and with the PMMA layer. (d) Reflectance difference (ΔR) on the gold film and on the gratings 1 and 7.
presents the SEIRA spectra of the grating 1 (L = 4.5 µm) and grating 7 (L = 3.3 µm). Peak 1 of grating 1 and peak 2 of grating 7 are at the same position as the absorption peak of PMMA [see Fig. 3(a)]. In Fig. 3(b), we see a dip at the same peak position in each reflectance curve. These dips are due to the absorption of the PMMA molecules. Figure 3(c) shows the reflectance curves on a 40 nm thick gold film deposited on a CaF2 substrate without and with the PMMA layer. To compare the infrared absorption efficiency of the three cases (grating 1, grating 7 and gold film), the difference spectra ΔR are shown in Fig. 3(d). ΔR is defined as the difference between the reflectance curves without and with the PMMA layer. The enhanced absorption signals when using the gratings are clearly seen. For grating 1 and grating 7, the ΔR is determined to be about 3.7% and 6.0%, respectively; while ΔR of the gold film is about 0.44%. In Fig. 3(b) the absorption of PMMA molecules around 8.5 µm is also displayed. However, the lineshapes of these absorption peaks are asymmetric, which is due to the mismatch between the absorption peak and the plasmonic resonance peak [9

9. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008). [CrossRef] [PubMed]

]. In Fig. 3(d), ΔR curves of the gratings are not symmetric, which is due to the slight red shift of the plasmonic resonance when the gratings are covered with the PMMA [11

11. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009). [CrossRef] [PubMed]

].

To calculate the SEIRA enhancement factor, we compare the enhanced signal from the gratings to the expected signal from the PMMA layer on a bare CaF2 substrate. The PMMA absorption signal on a bare CaF2 substrate is estimated from the infrared reflection absorption spectroscopy of the PMMA layer on a 40 nm thick gold film deposited on a CaF2 substrate [11

11. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009). [CrossRef] [PubMed]

, 14

14. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012). [CrossRef] [PubMed]

, 20

20. D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006). [CrossRef]

]. Using three-layer Fresnel equations [20

20. D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006). [CrossRef]

], a ΔR of 0.04% from the PMMA layer on a bare CaF2 substrate is estimated. Meanwhile, for an accurate estimate of the enhancement factor, we also need to consider the fact that the observed enhanced signal is due to the molecules at the close vicinity of the gold strip edges, where high intensity near-fields are excited. In each period, the fraction of the active area with intense near-fields compare to the whole area is around 2h/L. Considering the enhancement factors together we estimate the SEIRA enhancement factor to be around 6200 for the grating 7 and around 5200 for the grating 1 at 5.773 µm (1732 cm−1) for PMMA molecules.

Interestingly, we also notice that the enhancement factor of grating 2 is slightly higher than that of grating 1. This may be due to the resonance shift between far field and near field spectra. As shown in recent works, comparing to the far field spectra, there is a red shift for the near field spectra [22

22. J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Akerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011). [CrossRef] [PubMed]

, 23

23. P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat Commun 3, 684 (2012). [CrossRef] [PubMed]

]. Therefore, the near field spectrum of grating 2 matches better to the absorption peak of PMMA molecules and the enhancement factor is a little higher.

5. Conclusions

In summary, we have experimentally demonstrated that gold strip gratings can be used for sensitive SEIRA experiments. The gold strip grating supports surface plasmon polaritons on both air-gold and gold-substrate interfaces, which gives an SEIRA enhancement factor more than 6000 for a thin layer of PMMA molecules at the absorption peak around 5.773 µm (1732 cm−1). When the resonance of the gold strip grating is closer to the absorption peak of the molecules, a higher SEIRA enhancement is found. The resonance peaks of the gold strip gratings can be linearly tuned by the grating period, which makes the design for a specific absorption peak much easier. Furthermore, the double resonance peaks of the gold strip gratings may be used for multi-frequency sensing [13

13. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012). [CrossRef] [PubMed]

, 16

16. H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013). [CrossRef] [PubMed]

]. The SEIRA enhancement may be further improved by forming sharp corners on the gold strip edges [24

24. J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett. 101(19), 193105 (2012). [CrossRef]

] or decreasing the space between the strips [25

25. F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012). [CrossRef] [PubMed]

].

Acknowledgments

We acknowledge financial support from the Ministry of Innovation NRW, the German Excellence Initiative, and FhG internal program (Grant No. Attract 692220).

References and links

1.

T. R. Jensen, R. P. V. Duyne, S. A. Johnson, and V. A. Maroni, “Surface-enhanced infrared spectroscopy: A comparison of metal island films with discrete and nondiscrete surface plasmons,” Appl. Spectrosc. 54(3), 371–377 (2000). [CrossRef]

2.

R. F. Aroca, D. J. Ross, and C. Domingo, “Surface-enhanced infrared spectroscopy,” Appl. Spectrosc. 58(11), 324–338 (2004). [CrossRef] [PubMed]

3.

K. Kneipp and H. Kneipp, “Single molecule Raman scattering,” Appl. Spectrosc. 60(12), 322A–334A (2006). [CrossRef] [PubMed]

4.

S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics 1(11), 641–648 (2007). [CrossRef]

5.

F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics 5(11), 682–687 (2011). [CrossRef]

6.

P. J. Larkin, IR and Raman spectroscopy (Elsevier, 2011).

7.

H. Wang, J. Kundu, and N. J. Halas, “Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate,” Angew. Chem. Int. Ed. Engl. 46(47), 9040–9044 (2007). [CrossRef] [PubMed]

8.

F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano 2(4), 707–718 (2008). [CrossRef] [PubMed]

9.

F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett. 101(15), 157403 (2008). [CrossRef] [PubMed]

10.

E. Cubukcu, S. Zhang, Y. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009). [CrossRef]

11.

R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A. 106(46), 19227–19232 (2009). [CrossRef] [PubMed]

12.

I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano 5(10), 8167–8174 (2011). [CrossRef] [PubMed]

13.

K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano 6(9), 7998–8006 (2012). [CrossRef] [PubMed]

14.

S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano 6(1), 979–985 (2012). [CrossRef] [PubMed]

15.

F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Top. Quantum Electron. PP (99), 1 (2012).

16.

H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano 7(1), 669–675 (2013). [CrossRef] [PubMed]

17.

P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express 18(19), 19558–19565 (2010). [CrossRef] [PubMed]

18.

V. Liberman, R. Adato, A. Mertiri, A. A. Yanik, K. Chen, T. H. Jeys, S. Erramilli, and H. Altug, “Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express 19(12), 11202–11212 (2011). [CrossRef] [PubMed]

19.

J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem. 59(1), 179–202 (2008). [CrossRef] [PubMed]

20.

D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett. 88(18), 184104 (2006). [CrossRef]

21.

M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander Jr, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22(7), 1099–20 (1983). [CrossRef] [PubMed]

22.

J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Akerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small 7(16), 2341–2347 (2011). [CrossRef] [PubMed]

23.

P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat Commun 3, 684 (2012). [CrossRef] [PubMed]

24.

J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett. 101(19), 193105 (2012). [CrossRef]

25.

F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano 6(8), 7326–7332 (2012). [CrossRef] [PubMed]

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(300.6340) Spectroscopy : Spectroscopy, infrared
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Optics at Surfaces

History
Original Manuscript: February 19, 2013
Revised Manuscript: March 19, 2013
Manuscript Accepted: March 20, 2013
Published: April 4, 2013

Citation
Tao Wang, Vu Hoa Nguyen, Andreas Buchenauer, Uwe Schnakenberg, and Thomas Taubner, "Surface enhanced infrared spectroscopy with gold strip gratings," Opt. Express 21, 9005-9010 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-7-9005


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. R. Jensen, R. P. V. Duyne, S. A. Johnson, and V. A. Maroni, “Surface-enhanced infrared spectroscopy: A comparison of metal island films with discrete and nondiscrete surface plasmons,” Appl. Spectrosc.54(3), 371–377 (2000). [CrossRef]
  2. R. F. Aroca, D. J. Ross, and C. Domingo, “Surface-enhanced infrared spectroscopy,” Appl. Spectrosc.58(11), 324–338 (2004). [CrossRef] [PubMed]
  3. K. Kneipp and H. Kneipp, “Single molecule Raman scattering,” Appl. Spectrosc.60(12), 322A–334A (2006). [CrossRef] [PubMed]
  4. S. Lal, S. Link, and N. J. Halas, “Nano-optics from sensing to waveguiding,” Nat. Photonics1(11), 641–648 (2007). [CrossRef]
  5. F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M. L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R. P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, and E. Di Fabrizio, “Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures,” Nat. Photonics5(11), 682–687 (2011). [CrossRef]
  6. P. J. Larkin, IR and Raman spectroscopy (Elsevier, 2011).
  7. H. Wang, J. Kundu, and N. J. Halas, “Plasmonic nanoshell arrays combine surface-enhanced vibrational spectroscopies on a single substrate,” Angew. Chem. Int. Ed. Engl.46(47), 9040–9044 (2007). [CrossRef] [PubMed]
  8. F. Le, D. W. Brandl, Y. A. Urzhumov, H. Wang, J. Kundu, N. J. Halas, J. Aizpurua, and P. Nordlander, “Metallic nanoparticle arrays: A common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption,” ACS Nano2(4), 707–718 (2008). [CrossRef] [PubMed]
  9. F. Neubrech, A. Pucci, T. W. Cornelius, S. Karim, A. García-Etxarri, and J. Aizpurua, “Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection,” Phys. Rev. Lett.101(15), 157403 (2008). [CrossRef] [PubMed]
  10. E. Cubukcu, S. Zhang, Y. Park, G. Bartal, and X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett.95(4), 043113 (2009). [CrossRef]
  11. R. Adato, A. A. Yanik, J. J. Amsden, D. L. Kaplan, F. G. Omenetto, M. K. Hong, S. Erramilli, and H. Altug, “Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays,” Proc. Natl. Acad. Sci. U.S.A.106(46), 19227–19232 (2009). [CrossRef] [PubMed]
  12. I. M. Pryce, Y. A. Kelaita, K. Aydin, and H. A. Atwater, “Compliant metamaterials for resonantly enhanced infrared absorption spectroscopy and refractive index sensing,” ACS Nano5(10), 8167–8174 (2011). [CrossRef] [PubMed]
  13. K. Chen, R. Adato, and H. Altug, “Dual-band perfect absorber for multispectral plasmon-enhanced infrared spectroscopy,” ACS Nano6(9), 7998–8006 (2012). [CrossRef] [PubMed]
  14. S. Cataldo, J. Zhao, F. Neubrech, B. Frank, C. Zhang, P. V. Braun, and H. Giessen, “Hole-mask colloidal nanolithography for large-area low-cost metamaterials and antenna-assisted surface-enhanced infrared absorption substrates,” ACS Nano6(1), 979–985 (2012). [CrossRef] [PubMed]
  15. F. Neubrech and A. Pucci, “Plasmonic enhancement of vibrational excitations in the infrared,” IEEE J. Sel. Top. Quantum Electron. PP (99), 1 (2012).
  16. H. Aouani, H. Šípová, M. Rahmani, M. Navarro-Cia, K. Hegnerová, J. Homola, M. Hong, and S. A. Maier, “Ultrasensitive broadband probing of molecular vibrational modes with multifrequency optical antennas,” ACS Nano7(1), 669–675 (2013). [CrossRef] [PubMed]
  17. P. Zilio, D. Sammito, G. Zacco, and F. Romanato, “Absorption profile modulation by means of 1D digital plasmonic gratings,” Opt. Express18(19), 19558–19565 (2010). [CrossRef] [PubMed]
  18. V. Liberman, R. Adato, A. Mertiri, A. A. Yanik, K. Chen, T. H. Jeys, S. Erramilli, and H. Altug, “Angle-and polarization-dependent collective excitation of plasmonic nanoarrays for surface enhanced infrared spectroscopy,” Opt. Express19(12), 11202–11212 (2011). [CrossRef] [PubMed]
  19. J. V. Coe, J. M. Heer, S. Teeters-Kennedy, H. Tian, and K. R. Rodriguez, “Extraordinary transmission of metal films with arrays of subwavelength holes,” Annu. Rev. Phys. Chem.59(1), 179–202 (2008). [CrossRef] [PubMed]
  20. D. Enders and A. Pucci, “Surface enhanced infrared absorption of octadecanethiol on wet-chemically prepared Au nanoparticle films,” Appl. Phys. Lett.88(18), 184104 (2006). [CrossRef]
  21. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt.22(7), 1099–20 (1983). [CrossRef] [PubMed]
  22. J. Chen, P. Albella, Z. Pirzadeh, P. Alonso-González, F. Huth, S. Bonetti, V. Bonanni, J. Akerman, J. Nogués, P. Vavassori, A. Dmitriev, J. Aizpurua, and R. Hillenbrand, “Plasmonic nickel nanoantennas,” Small7(16), 2341–2347 (2011). [CrossRef] [PubMed]
  23. P. Alonso-González, P. Albella, M. Schnell, J. Chen, F. Huth, A. García-Etxarri, F. Casanova, F. Golmar, L. Arzubiaga, L. E. Hueso, J. Aizpurua, and R. Hillenbrand, “Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots,” Nat Commun3, 684 (2012). [CrossRef] [PubMed]
  24. J. M. Hoffmann, B. Hauer, and T. Taubner, “Antenna-enhanced infrared near-field nanospectroscopy of a polymer,” Appl. Phys. Lett.101(19), 193105 (2012). [CrossRef]
  25. F. Neubrech, D. Weber, J. Katzmann, C. Huck, A. Toma, E. Di Fabrizio, A. Pucci, and T. Härtling, “Infrared optical properties of nanoantenna dimers with photochemically narrowed gaps in the 5 nm regime,” ACS Nano6(8), 7326–7332 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited