OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 8 — Apr. 22, 2013
  • pp: 9198–9205
« Show journal navigation

Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators

Guangtao Cao, Hongjian Li, Shiping Zhan, Haiqing Xu, Zhimin Liu, Zhihui He, and Yun Wang  »View Author Affiliations


Optics Express, Vol. 21, Issue 8, pp. 9198-9205 (2013)
http://dx.doi.org/10.1364/OE.21.009198


View Full Text Article

Acrobat PDF (2779 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the realization of plasmonic analog of electromagnetically induced transparency (EIT) in a system composing of two stub resonators side-coupled to metal-dielectric-metal (MDM) waveguide. Based on the coupled mode theory (CMT) and Fabry-Perot (FP) model, respectively, the formation and evolution mechanisms of plasmon-induced transparency by direct and indirect couplings are exactly analyzed. For the direct coupling between the two stub resonators, the FWHM and group index of transparent window to the inter-space are more sensitive than to the width of one cut, and the high group index of up to 60 can be achieved. For the indirect coupling, the formation of transparency window is determined by the resonance detuning, but the evolution of transparency is mainly attributed to the change of coupling distance. The consistence between the analytical solution and finite-difference time-domain (FDTD) simulations verifies the feasibility of the plasmon-induced transparency system. It is also interesting to notice that the scheme is easy to be fabricated and may pave the way to highly integrated optical circuits.

© 2013 OSA

1. Introduction

It is noteworthy that controlling light on a small scale is very essential for highly integrated optics. Surface plasmon polaritons (SPPs) propagating along the metal-dielectric interface can be well confined by ultrasmall metal structures and break the diffraction limit [10

10. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008). [CrossRef]

,11

11. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]

]. Among the different plasmonic devices, metal-dielectric-metal (MDM) plasmonic waveguides are of particular interest, because they support modes with deep wavelength scale and an acceptable length for SPPs. Based on the unique feature of MDM waveguides, the plasmonic analogue of EIT observed in nanoscale plamonic resonator systems was theoretically predicted and experimentally demonstrated in recent researches [12

12. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011). [CrossRef]

20

20. Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, and X. G. Luo, “Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators,” Opt. Express 20(22), 24348–24355 (2012). [CrossRef] [PubMed]

]. Veronis et al. introduced systems composing of a periodic array of metal-dielectric-metal (MDM) stub resonators side coupled to MDM waveguide, and showed that there is a trade off between the slowdown factor and the propagation length of the supported optical mode [12

12. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011). [CrossRef]

,13

13. L. Yang, C. G. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35(24), 4184–4186 (2010). [CrossRef] [PubMed]

]. The on-chip plasmonic analogue of EIT was realized by detuned Fabry-Perot (FP) resonators aperture-side-coupled to a MDM waveguide [15

15. Z. H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011). [CrossRef] [PubMed]

]. In [17

17. H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012). [CrossRef]

], Lu et al. demonstrated an analog of EIT and multiple induced-transparency peaks in plasmonic systems consisting of multiple cascaded nanodisk resonators, aperture-side-coupled to MDM bus waveguides. However, very few comprehensive studies have been performed on plasmon-induced transparency in MDM waveguide with two stub resonators.

In this paper, we investigate the EIT-like spectral responses and slow-light effects in plasmonic system composed of two stub resonators side-coupled to MDM bus waveguides. The system is easy to be realized and different from the configuration reported in [15

15. Z. H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011). [CrossRef] [PubMed]

,17

17. H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012). [CrossRef]

,21

21. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010). [CrossRef] [PubMed]

]. In particular, the formation and evolution mechanisms of the transparency response induced by direct coupling and indirect coupling have been accurately analyzed through the CMT and FP model, respectively.

2. Theoretical analysis and discussion of MDM waveguide with one stub resonator

Figure 1(a)
Fig. 1 (a) Blue and green curves represent the real and imaginary parts of the effective index neff of SPPs mode in MDM waveguide with width h = 100 nm, respectively. (b) Transmission spectra for MDM waveguide coupled to one stub, with w equaling to 100 nm and L being 500 nm. In both figures, insets display the corresponding schematic figures.
shows the dispersion curves for TM mode [22

22. E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]

] in MDM waveguide with width h = 100 nm. The blue curve is for the real part of the effective index of SPPs, and the green curve is for the imaginary part. The inset in Fig. 1(a) is MDM waveguide structure with width h. The medium of the slit is assumed to be air (n = 1), and the background material in yellow is silver. The permittivity of silver is characterized by Drude model ε(ω) = 1-ωp2/(ω2 + iωγp), with ωp = 1.38 × 1016 Hz and γp = 2.73 × 1013 Hz. These parameters are obtained by fitting the experimental results [23

23. E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1982).

].

Figure 1(b) shows the transmission spectra for the MDM waveguide with one stub resonator. The inset in Fig. 1(b) displays the schematic of the system. The FDTD method and perfectly matched layer boundary conditions are used in the numerical experiment. From the CMT [24

24. H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991). [CrossRef]

,25

25. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, New Jersey, 1984).

], the transmission of the system supporting a resonant mode of frequency ω0 can be expressed as
T=(ω-ω0)2+(1τ0)2(ω-ω0)2+(1τ0+1τe)2.
(1)
Here ω is the input frequency, 1/τ0 and 1/τe are the decay rate due to the intrinsic loss and the power escaping into the waveguide, respectively. It is obvious that the minimum transmission Tmin at ω = ω0 is determined by 1/τ0 and 1/τe. When silver is replaced by the perfect electric conductor, Tmin = 0. If there are two stub resonators side-coupled to MDM waveguide and the inter-space between them is adjusted gradually, what will happen to the transmission spectra?

3. Plasmon-induced-transparency with two stub resonators

3.1 Plasmon-induced transparency by direct coupling

Based on Eqs. (1) and (4), we investigate the EIT-like transmission characteristics of MDM waveguide coupled to two stub resonators. Figure 3(a)
Fig. 3 (a) Transmission spectra of MDM waveguide coupled to two stub resonators at different inter-spaces d. (b) The FWHM and group index of the transparent window versus d. (c-e) Magnetic field distributions at three wavelengths marked by triangles corresponding to d = 100nm, 50 nm, and 25 nm, respectively. The other parameters are changeless, namely, w = w1 = w2 = 100 nm, L1 = L2 = 500 nm.
represents the transmission spectra for the structure in Fig. 2(a) at different inter-spaces d, while the other parameters are set as w = w1 = w2 = 100 nm, and L1 = L2 = 500 nm. The transmission dips correspond to the resonant frequencies (ω+ and ω-) of the coupled system. When d is greater than 100 nm, the direct coupling between the two identical resonators is weak, and the resonant frequency ω+ is approximately equal to ω-, so the EIT-like responses do not appear. As d decreases from 100 nm, the transparent window presents and becomes increasingly evident, which is due to the increment of coupling coefficient between the two stub resonance modes and is in accordance with the CMT.

The measured full width at half maximum (FWHM) of the transparent window shown in Fig. 3(a) extends from 4 nm to 100 nm as d changes from 95 nm to 25 nm (plotted by blue dots in Fig. 3(b)). The corresponding group index of the transparent window for different inter-spaces d (plotted by red dots in Fig. 3(b)) can be approximately evaluated from the relation ng = λ2/(4tΔλ) [26

26. T. Baba, “Slow light in photonic crystal,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef] [PubMed]

], where t is the propagation length in waveguide and Δλ is the FWHM of the transparent window. Combining Fig. 3(a) and Fig. 3(b), we can see that there is a trade-off between transmission ratio and group index. The largest group index of ~61 associated with a group velocity of νg ≈0.0164c is achieved when d = 95 nm, which is promising for the development of ultra-compact optical buffers. Such a system comprised of MDM waveguide side-coupled to a periodic array of the two direct coupling stub resonators can also be used to obtain slow light [12

12. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011). [CrossRef]

].

To get more insight into the physics of the observed EIT-like transmission, Figs. 3(c)-3(e) show the magnetic field distributions corresponding to three characteristic wavelengths marked by triangles for d = 100 nm, 50 nm and 25 nm, respectively. The magnetic field distributions indicate that the destructive interference of electromagnetic fields from the two resonators results in the EIT-like optical responses, which is similar to what happens in metamaterial-induced transparency. As d = 100 nm in Fig. 3(c), the stub on the right seems to make no difference, but the quality factor at resonant wavelength λ = 540 nm is smaller than that in Fig. 1(b), which is attributed to the increase of intrinsic loss.

In Fig. 4(a)
Fig. 4 (a) Transmission spectra of the structure shown in Fig. 2(a) for different w2, and the other parameters are set as follows: w = w1 = 100 nm, d = 50 nm, and L1 = L2 = 500 nm. (b) The FWHM and group index of the transparent window versus w2. (c) Resonant frequencies (ω+ and ω-) of the system calculated using the CMT (solid curves) and FDTD method (dots).
, we plot the transmission spectra for the system shown in Fig. 2(a), as w = w1 = 100 nm, d = 50 nm, L1 = L2 = 500 nm, and w2 = 60, 80, 100, 120, 160 and 170 nm, respectively. Figure 4(b) shows the FWHM and group index of the transparent window in Fig. 4(a). The FWHM (group index) of the transparent window decreases (increases) when w2 varies from 40 nm to 100 nm, and then increases (decreases) as w2 expands in the range of 100 – 160 nm. Consequently, for a fixed coupling distance in the direct coupling case, decreasing the difference between the two stub resonators gives rise to more pronounced slow-light effect. Comparing Fig. 3(b) with Fig. 4(b), we also find that the FWHM and group index to the inter-space between the two stub resonators are more sensitive than to the width of one cut, which provides an effective guidance for realizing the EIT-like phenomena. Figure 4(c) shows resonant frequencies (ω+ and ω-) of the system versus ω2 using the CMT (solid curves) and FDTD method (dots). ω2 is the resonant frequency of individual stub resonator and the other is ω1 = 3.575 PHz. We adjust ω2 by w2 and have k12 = k21 = 1.4 × 1014 Hz. With the increment of ω2 from 2.8 PHz to 4 PHz, resonant frequencies (ω+ and ω-) of the system exhibit a blue-shift. The resonant frequency difference Δω increases first and then decreases, which gives rise to the variation of transparent window in Fig. 4(a). As mentioned above, the formation and evolution mechanisms of plasmon-induced transparency by direct coupling have been proposed and accurately analyzed by the CMT, which is a powerful tool for the design of EIT-like systems.

3.2 Plasmon-induced transparency by indirect coupling

In this part, we introduce the indirect coupling scheme shown in Fig. 2(a) by referring to [17

17. H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012). [CrossRef]

,21

21. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010). [CrossRef] [PubMed]

]. The parameter d is tunable and large enough that the two stub resonators do not interact with each other directly. All the other parameters of the structure are set as follows: w = w1 = w2 = 100 nm, L1 = 500 nm, L2 = 480 nm. Figure 5(a)
Fig. 5 (a) Transmission spectra of MDM waveguide coupled to two stub resonators at different inter-spaces d with w = w1 = w2 = 100 nm, L1 = 500 nm, L2 = 480 nm. The curve with circles is transmission spectra for the one stub system (shown in Fig. 1(b)) with w = 100 nm, L = 480 nm, and the curve with triangles corresponds to the one stub system with w = 100 nm, L = 500 nm. (b) Transmission spectra for different inter-spaces d at λ = 527 nm. (c) Evolution of the transmission spectra versus δ and λ. (d) The top view of Fig. 5(c).
shows the transmission spectra for different inter-spaces d. The curves with circles and triangles are the transmission spectra of the system with individual stub resonator (shown in Fig. 1(b)) comprising the coupled system. As expected, the transparent band is between the two individual stub resonator resonances. Moreover, the transparent resonance peak exhibits a shift and its symmetry is tunable.

The spacing dependence of the transparent window indicates the indirect coupling system as a two-mirror FP resonator [17

17. H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012). [CrossRef]

, 21

21. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010). [CrossRef] [PubMed]

], in which the waveguide region between the two stub resonators acts as a FP cavity. The transmittance of the indirect coupled system can be given as
T(ω)=|t1(ω)t2(ω)1r1(ω)r2(ω)ei2β(ω)δ|2,
(5)
namely
T(ω)=(|t1(ω)t2(ω)|1|r1(ω)r2(ω)|)211+4(|r1(ω)r2(ω)|1|r1(ω)r2(ω)|)2sin2θ,
(6)
where θ = Arg[r1r2exp(i2βδ)] /2 is one-half of the round trip phase in the FP cavity. β(ω) = ωneff/c is the propagation constant for SPPs between two resonators. tj(ω) = [i(ωjω) + ωj/(2Qo,j)]/[i(ωjω) + ωj/(2Qo,j) + ωj/(2Qe,j)] and rj(ω) = – [ωj/ (2Qe,j)]/[i(ωjω) + ωj/(2Qo,j) + ωj/(2Qe,j)] (j = 1, 2) are frequency-dependent transmission and reflection coefficients of the two mirrors with separation δ, and Qo,j (Qe,j) stands for intrinsic (coupling) quality of the jth stub resonator.

From Fig. 1(a) and Eq. (6), we can obtain that Re(neff) (the real part of the effective index of SPPs) approximately equals 1.254 and the periodicity of transmittance is 210 nm for λ = 527 nm. Using the FDTD simulations, we plot the transmission spectra in Fig. 5(b), in which the transmittance at λ = 527 nm varies periodically and the periodicity is 200 nm approximately. The slight difference in the periodicity between the FP model and FDTD method is caused by the inaccuracy of the propagation constant or the finite mirror size in the structure. The maximum of transmission spectra at λ = 527 nm gradually becomes smaller, which is due to the increase of the intrinsic loss. It is also noteworthy that the peak (dip) transmission at λ = 527 nm corresponds to phase retardation condition βδ = (βδ = (N + 1/2)π), for which the magnetic field distributions (not shown here) are consistent with [21

21. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010). [CrossRef] [PubMed]

] and N is an integer.

In Fig. 5(a), the resonant wavelengths for the two individual stub resonators are λ = 538.4 nm and 518.7 nm, respectively. Qt = λ0λ represents the total quality of the side-coupled stub resonator (1/Qt = 1/Qo + 1/Qe), where λ0 and Δλ are the peak wavelength and the FWHM of the reflection spectrum. The intrinsic quality factor Qo of the sub resonator can be estimated from [17

17. H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012). [CrossRef]

]. So, in this structure, Qo,j (j = 1,2) are about 500. Qt,1 and Qt,2 are about 63 and 61, respectively. Thus, Qe,1 is about 72 and Qe,2 is about 69.5. To further clarify the transmission characteristics, the transmission spectra versus δ and λ are shown in Fig. 5(c). Because of the finite mirror size in the structure, we set approximately δ = (d + 100) nm. It is found that the EIT-like transmittance varies periodically versus δ. For a determined δ, the transmission spectra agree well with that of Fig. 5(a). To exhibit more explicitly the formation and evolution mechanisms of plasmon-induced transparency by indirect coupling, we show in Fig. 5(d) the top view of Fig. 5(c). Dark (light) represents low (high) transmittance. As δ changes (resulting in the change of sin2θ in Eq. (6)), the transparency peak exhibits a shift and the symmetry of which also changes, while the transmission dips corresponding to resonant cavity modes remain unchanged. Consequently, for the case of plasmon-induced transparency by indirect coupling, the formation of transparency window is determined by the resonance detuning and the evolution of the transparency is mainly attributed to the change of coupling distance.

4. Conclusion

In summary, we have numerically and theoretically explored EIT-like spectral responses in plasmonic system composed of two sub resonators side-coupled to MDM waveguide. The results show that both the direct and indirect couplings between the two stub resonators lead to plasmon-induced transparency. For the directly coupled case, the EIT-like spectral response can be manipulated by adjusting the coupling distance and resonance detuning, which can be interpreted by the CMT. Decreasing the difference between the two stub resonators with fixed coupling distance gives rise to more pronounced slow-light effect. Moreover, the FWHM and group index of the transparent window to the inter-space are more sensitive than to the width of one cut, and the high group index of up to 60 can be achieved at visible frequency. For the case of only indirect coupling, the formation of transparency window is determined by the resonance detuning and the evolution of the transparency is mainly attributed to the change of coupling distance, which can be accurately analyzed by the FP model. Both the CMT and FP model agree well with the FDTD simulations. Hence, the plasmonic waveguide system may have potential applications for nanoscale optical switching, plasmonic sensing, and slow-light devices in highly integrated optical circuits.

Acknowledgments

This work was funded by the Fundamental Research Funds for the Central Universities of Central South University under Grant No. 2012zzts007, the Research Fund for the Doctoral Program of Higher Education of China under Grant No. 20100162110068, and the National Natural Science Foundations of China (Grant No. 61275174 and 11164007).

References and links

1.

K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett. 66(20), 2593–2596 (1991). [CrossRef] [PubMed]

2.

Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A 71(6), 062341 (2005). [CrossRef]

3.

S. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett. 82(23), 4611–4614 (1999). [CrossRef]

4.

H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett. 94(7), 073903 (2005). [CrossRef] [PubMed]

5.

L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature 397(6720), 594–598 (1999). [CrossRef]

6.

Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett. 96(12), 123901 (2006). [CrossRef] [PubMed]

7.

X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett. 102(17), 173902 (2009). [CrossRef] [PubMed]

8.

K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett. 98(21), 213904 (2007). [CrossRef] [PubMed]

9.

Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A 75(6), 063833 (2007). [CrossRef]

10.

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61(5), 44–50 (2008). [CrossRef]

11.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]

12.

Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett. 99(14), 143117 (2011). [CrossRef]

13.

L. Yang, C. G. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett. 35(24), 4184–4186 (2010). [CrossRef] [PubMed]

14.

Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer,” J. Opt. Soc. Am. B 28(1), 28–36 (2011). [CrossRef]

15.

Z. H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express 19(4), 3251–3257 (2011). [CrossRef] [PubMed]

16.

G. X. Wang, H. Lu, and X. M. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express 20(19), 20902–20907 (2012). [CrossRef] [PubMed]

17.

H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A 85(5), 053803 (2012). [CrossRef]

18.

H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett. 36(16), 3233–3235 (2011). [CrossRef] [PubMed]

19.

X. J. Piao, S. Yu, S. Koo, K. H. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express 19(11), 10907–10912 (2011). [CrossRef] [PubMed]

20.

Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, and X. G. Luo, “Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators,” Opt. Express 20(22), 24348–24355 (2012). [CrossRef] [PubMed]

21.

R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett. 104(24), 243902 (2010). [CrossRef] [PubMed]

22.

E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev. 182(2), 539–554 (1969). [CrossRef]

23.

E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1982).

24.

H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE 79(10), 1505–1518 (1991). [CrossRef]

25.

H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, New Jersey, 1984).

26.

T. Baba, “Slow light in photonic crystal,” Nat. Photonics 2(8), 465–473 (2008). [CrossRef] [PubMed]

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(230.7370) Optical devices : Waveguides
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Optics at Surfaces

History
Original Manuscript: November 6, 2012
Revised Manuscript: March 15, 2013
Manuscript Accepted: March 26, 2013
Published: April 8, 2013

Citation
Guangtao Cao, Hongjian Li, Shiping Zhan, Haiqing Xu, Zhimin Liu, Zhihui He, and Yun Wang, "Formation and evolution mechanisms of plasmon-induced transparency in MDM waveguide with two stub resonators," Opt. Express 21, 9198-9205 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-8-9198


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. J. Boller, A. Imamolu, and S. E. Harris, “Observation of electromagnetically induced transparency,” Phys. Rev. Lett.66(20), 2593–2596 (1991). [CrossRef] [PubMed]
  2. Y. Zhang, K. Hayasaka, and K. Kasai, “Conditional transfer of quantum correlation in the intensity of twin beams,” Phys. Rev. A71(6), 062341 (2005). [CrossRef]
  3. S. Harris and L. Hau, “Nonlinear optics at low light levels,” Phys. Rev. Lett.82(23), 4611–4614 (1999). [CrossRef]
  4. H. Gersen, T. J. Karle, R. J. Engelen, W. Bogaerts, J. P. Korterik, N. F. van Hulst, T. F. Krauss, and L. Kuipers, “Real-space observation of ultraslow light in photonic crystal waveguides,” Phys. Rev. Lett.94(7), 073903 (2005). [CrossRef] [PubMed]
  5. L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, “Light speed reduction to 17 metres per second in an ultracold atomic gas,” Nature397(6720), 594–598 (1999). [CrossRef]
  6. Q. Xu, S. Sandhu, M. L. Povinelli, J. Shakya, S. Fan, and M. Lipson, “Experimental realization of an on-chip all-optical analogue to electromagnetically induced transparency,” Phys. Rev. Lett.96(12), 123901 (2006). [CrossRef] [PubMed]
  7. X. Yang, M. Yu, D. L. Kwong, and C. W. Wong, “All-optical analog to electromagnetically induced transparency in multiple coupled photonic crystal cavities,” Phys. Rev. Lett.102(17), 173902 (2009). [CrossRef] [PubMed]
  8. K. Totsuka, N. Kobayashi, and M. Tomita, “Slow light in coupled-resonator-induced transparency,” Phys. Rev. Lett.98(21), 213904 (2007). [CrossRef] [PubMed]
  9. Y. F. Xiao, X. B. Zou, W. Jiang, Y. L. Chen, and G. C. Guo, “Analog to multiple electromagnetically induced transparency in all-optical drop-filter systems,” Phys. Rev. A75(6), 063833 (2007). [CrossRef]
  10. T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today61(5), 44–50 (2008). [CrossRef]
  11. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010). [CrossRef]
  12. Y. Huang, C. Min, and G. Veronis, “Subwavelength slow-light waveguides based on a plasmonic analogue of electromagnetically induced transparency,” Appl. Phys. Lett.99(14), 143117 (2011). [CrossRef]
  13. L. Yang, C. G. Min, and G. Veronis, “Guided subwavelength slow-light mode supported by a plasmonic waveguide system,” Opt. Lett.35(24), 4184–4186 (2010). [CrossRef] [PubMed]
  14. Y. Zhang, S. Darmawan, L. Y. M. Tobing, T. Mei, and D. H. Zhang, “Coupled resonator-induced transparency in ring-bus-ring Mach-Zehnder interferometer,” J. Opt. Soc. Am. B28(1), 28–36 (2011). [CrossRef]
  15. Z. H. Han and S. I. Bozhevolnyi, “Plasmon-induced transparency with detuned ultracompact Fabry-Perot resonators in integrated plasmonic devices,” Opt. Express19(4), 3251–3257 (2011). [CrossRef] [PubMed]
  16. G. X. Wang, H. Lu, and X. M. Liu, “Dispersionless slow light in MIM waveguide based on a plasmonic analogue of electromagnetically induced transparency,” Opt. Express20(19), 20902–20907 (2012). [CrossRef] [PubMed]
  17. H. Lu, X. M. Liu, and D. Mao, “Plasmonic analog of electromagnetically induced transparency in multi-nanoresonator-coupled waveguide systems,” Phys. Rev. A85(5), 053803 (2012). [CrossRef]
  18. H. Lu, X. M. Liu, D. Mao, Y. K. Gong, and G. X. Wang, “Induced transparency in nanoscale plasmonic resonator systems,” Opt. Lett.36(16), 3233–3235 (2011). [CrossRef] [PubMed]
  19. X. J. Piao, S. Yu, S. Koo, K. H. Lee, and N. Park, “Fano-type spectral asymmetry and its control for plasmonic metal-insulator-metal stub structures,” Opt. Express19(11), 10907–10912 (2011). [CrossRef] [PubMed]
  20. Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, and X. G. Luo, “Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators,” Opt. Express20(22), 24348–24355 (2012). [CrossRef] [PubMed]
  21. R. D. Kekatpure, E. S. Barnard, W. Cai, and M. L. Brongersma, “Phase-coupled plasmon-induced transparency,” Phys. Rev. Lett.104(24), 243902 (2010). [CrossRef] [PubMed]
  22. E. N. Economou, “Surface Plasmons in Thin Films,” Phys. Rev.182(2), 539–554 (1969). [CrossRef]
  23. E. D. Palik, Handbook of Optical Constants in Solids (Academic, 1982).
  24. H. A. Haus and W. P. Huang, “Coupled-mode theory,” Proc. IEEE79(10), 1505–1518 (1991). [CrossRef]
  25. H. A. Haus, Waves and fields in optoelectronics (Prentice-Hall, New Jersey, 1984).
  26. T. Baba, “Slow light in photonic crystal,” Nat. Photonics2(8), 465–473 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited