OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 10969–10977
« Show journal navigation

Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide

N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St.J. Russell  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 10969-10977 (2013)
http://dx.doi.org/10.1364/OE.21.010969


View Full Text Article

Acrobat PDF (1769 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Efficient generation of a broad-band mid-infrared supercontinuum spectrum is reported in an arsenic trisulphide waveguide embedded in silica. A chalcogenide “nano-spike”, designed to transform the incident light adiabatically into the fundamental mode of a 2-mm-long uniform section 1 µm in diameter, is used to achieve high launch efficiencies. The nano-spike is fully encapsulated in a fused silica cladding, protecting it from the environment. Nano-spikes provide a convenient means of launching light into sub-wavelength scale waveguides. Ultrashort (65 fs, repetition rate 100 MHz) pulses at wavelength 2 µm, delivered from a Tm-doped fiber laser, are launched with an efficiency ~12% into the sub-wavelength chalcogenide waveguide. Soliton fission and dispersive wave generation along the uniform section result in spectral broadening out to almost 4 µm for launched energies of only 18 pJ. The spectrum generated will have immediate uses in metrology and infrared spectroscopy.

© 2013 OSA

1. Introduction

Supercontinuum (SC) light is useful in a large number of technical and scientific applications including spectroscopy [1

1. J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. St. J. Russell, “Photochemistry in photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010). [PubMed]

,2

2. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008). [CrossRef]

], nonlinear microscopy [3

3. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007). [CrossRef] [PubMed]

,4

4. H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14(7), 2798–2804 (2006). [CrossRef] [PubMed]

], optical metrology [5

5. C. H. Li, A. G. Glenday, A. J. Benedick, G. Q. Chang, L. J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm-1,” Opt. Express 18(12), 13239–13249 (2010). [CrossRef] [PubMed]

], frequency comb generation [6

6. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002). [CrossRef] [PubMed]

] or optical coherence tomography [7

7. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001). [CrossRef] [PubMed]

9

9. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28(3), 182–184 (2003). [CrossRef] [PubMed]

]. It can be efficiently generated in a variety of different optical fibers pumped by both continuous wave and pulsed lasers [10

10. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express 16(8), 5954–5962 (2008). [CrossRef] [PubMed]

14

14. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]

]. SC generation relies on the interplay of nonlinear effects such as self-phase modulation, four-wave mixing, soliton dynamics and Raman scattering, and to be efficient it requires an optical waveguide with suitably designed group velocity dispersion (GVD), including a zero dispersion wavelength (ZDW) close to the pump wavelength. Solid-core photonic crystal fiber (PCF) is particularly interesting because it allows the ZDW to be adjusted over a wide spectral range [15

15. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]

,16

16. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

]. PCF is most usually fabricated from fused silica glass, a material with low material attenuation in the visible and near infrared (IR) that is well suited to the fiber drawing process.

A major drawback of silica fibers is strong attenuation at vacuum wavelengths longer than λ = 2 µm, which limits SC generation to the near-IR [17

17. Heraeus Datasheet for Suprasil glass.

]. Generating SC light in the mid-IR therefore requires new materials, especially for the core. Chalcogenide glasses are interesting candidates, combining as they do nonlinear refractive indices that are ~200 times greater than fused silica, high refractive indices and a transparency window that can extend out beyond λ = 10 µm. A number of different waveguide structures based on chalcogenide glasses have been reported in literature, including step-index fibers [18

18. J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008). [CrossRef]

,19

19. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012). [CrossRef]

], fiber tapers [20

20. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. B. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011). [CrossRef] [PubMed]

,21

21. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20(22), 24218–24225 (2012). [CrossRef] [PubMed]

] and microstructured fibers [22

22. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010). [CrossRef] [PubMed]

].

In this paper we report efficient mid-IR SC-generation at extremely low pump pulse energies (< 20 pJ) in a hybrid step-index waveguide consisting of a cylindrical chalcogenide core embedded in a silica fiber capillary (Fig. 1(a)
Fig. 1 (a) Schematic of the nano-spike chalcogenide-silica step-index waveguide. Section A shows the nano-spike used for efficient incoupling. The supercontinuum is generated in the constant-diameter part (section B). (b) Side images, taken with an optical microscope, of the waveguide used in the experiments. The core diameter increases from 0 to 1 µm along the 300 µm long taper transition.
). At the input end the chalcogenide core is inversely tapered down to diameters below 100 nm, forming a 300 µm long “nano-spike”, labeled section A in Fig. 1(a) (a similar device has previously been reported in the silicon-on-insulator system [23

23. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]

]). Adiabatic mode conversion along this spike increases the in-coupling efficiency of the 2 µm laser light into the sub-wavelength core by a factor of ~60. The core diameter in the 2-mm-long untapered section (labeled B in Fig. 1(a)) is kept constant at 1 µm, this being matched to the GVD requirements of the nonlinear processes. Upon launching ultrashort pulses from a Tm-doped fiber laser (65 fs pulses centered at λ ~2 µm) into the chalcogenide core, an octave-spanning SC, out to 4 µm, is obtained for input pulse energies as low as 18 pJ. Numerical simulations based on the generalized nonlinear Schrödinger equation agree well with the experimental results.

2. Fiber design

Up-tapering the core diameter at the input end is an option for improving the launch efficiency, but it has the major disadvantage (especially when the core-cladding index step is high) that the core becomes highly multimode (MM) and strong inter-modal coupling occurs in the taper. As a result the nonlinear broadening is highly irreproducible and extremely sensitive to external perturbations.

3. Fabrication

The samples were fabricated by adapting the previously reported pressure-assisted melt filling technique, allowing the use of two materials that cannot be drawn together in a fiber pulling tower [24

24. F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000). [CrossRef]

,29

29. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011). [CrossRef] [PubMed]

]. Instead of a furnace-based pressure cell, we used the spliced-fiber pressure-filling technique originally developed for producing gold-filled photonic crystal fibers [30

30. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011). [CrossRef] [PubMed]

]. A chalcogenide rod made of purified As2S3 (Tg = 198°C), with length 5 mm and diameter ~120 µm, was inserted into a silica capillary (inner diameter 150 µm, outer diameter 200 µm). The As2S3 purification procedure included melting arsenic and sulfur together with tellurium chlorides that act as a hydrogen getter [31

31. D. Lezal, J. Pedlikova, J. Gurovic, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics-Silikaty 40, 55–59 (1996).

]), followed by distillation of the chalcogenide melt, giving rise to a strong decrease of the O-H and S-H absorption bands located at 2.9 µm and 4.0 µm. The absorption at 4.0 µm was reduced from more than 100 dB/m (before purification) to 10 dB/m (after purification), corresponding to an impurity level of only 4 ppm [32

32. M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–349 (2001).

].

4. Optical set-up

Light from a Tm-doped fiber laser (λ = 2 µm, pulse duration 65 fs, repetition rate 100 MHz, pulse energy 3 nJ, average power 300 mW [34

34. J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, “Optically Referenced Tm-Fiber-Laser Frequency Comb,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AT5A.3.

]) was launched into the nano-spike using an IR lens of focal length 4 mm (Fig. 5(a)
Fig. 5 (a) Schematic diagram of the SC set-up. Pulses from a Tm-doped fiber laser were coupled into the nano-spike using an IR lens. The transmitted light was recorded using an FTIR, after blocking any undesired cladding light using iris diaphragm. (b) Experimental SC spectra taken at different pulse energies (12% coupling efficiency, blue: 5.0 pJ, green: 7.5 pJ, orange: 10.5 pJ, red: 18 pJ). The purple curve represents the laser spectrum. The lower right-hand image shows the measured near-field profile of the mode at the output end of the waveguide.
). The incoupling was optimized by longitudinally moving the focus spot along the axis of the spike and searching for the location of maximum transmission, giving a maximum coupling efficiency of 12%. The output spectra were recorded using a Fourier transform infrared spectrometer (FTIR). Excitation of the fundamental mode was confirmed by projecting the output beam on to an IR mode profiler (output near field profile shown in the lower right-hand image of Fig. 5(b)).

5. Experimental results

If an untapered core is used, the very low launch efficiency (0.2%) strongly limits the spectral broadening.

6. Simulations

To simulate the generated output spectrum, we solve the unidirectional nonlinear field propagation equation [35

35. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010). [CrossRef]

]:
A(z,τ)z=DA(z,τ)i(γ(ω0)+iγ1τ)×(A(z,τ)R(t')|A(z,τ)|2dt')
(1)
using the split-step Fourier method. This equation describes the evolution of the pulse envelope during propagation along the nonlinear waveguide. The pulse envelope is A(z,τ), τ is the time in a reference frame moving at group velocity vg (τ = tz/vg) and t is the laboratory time. The dispersion and nonlinearity of the core mode are included via the operator D and the parameter γ(ω0) = γ0 + γ1(ω − ω0) with γ0 = 7.2 W−1m−1 and γ1 = 7.68 × 10−15 s.W−1m−1. We used a Raman response function with period 15.5 fs and coherence lifetime 230.5 fs [36

36. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009). [CrossRef] [PubMed]

,37

37. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16(22), 18524–18534 (2008). [CrossRef] [PubMed]

].

The simulations show that the pulse, with parameters resembling those of a higher-order soliton, initially experiences self-compression, which causes broadening of the spectrum around the pump frequency. As a result of higher-order perturbations, the compressed soliton undergoes fission at a propagation distance of ~0.7 mm from the point of optimum incoupling (the blue dot in Fig. 3). At this point, dispersive waves are generated at both short and long wavelengths (~800 and ~3500 nm) in the regions of normal dispersion (see Fig. 2(a)). The pump wavelength itself is also shifted slightly towards longer wavelengths due to the Raman effect.

Simulations based on numerical solutions of Eq. (1) show that maximum spectral broadening is achieved after 1 mm of propagation, in good agreement with the experimental results – longer samples did not yield broader spectra. As a result the sample length was restricted to ~2 mm in all the experiments.

The simulated spectrum (Fig. 6(a)
Fig. 6 Spectrum of the ultrashort optical pulse after propagating along the chalcogenide-silica waveguide (sample length 1.7 mm, including spike). (a) Numerical simulations. (b) Experimental results (parameters given in the text). In both diagrams the grey curve represents the input spectrum.
) agrees fairly well with the experimental results (Fig. 6(b)) except on the short wavelength side. We attribute this discrepancy to wavelength-dependent coupling of the output light into the spectrometer is (caused, e.g., by chromatic aberrations in the lenses). The simulations also show that the spike itself has no influence on the spectral properties of the output light, all the nonlinear effects occurring entirely inside the constant-diameter part of the structure (section A in Fig. 1(b)).

7. Conclusions

Acknowledgment

This work was partly funded by the German Science Foundation (DFG) via grants WO1220/4-2 and SCHM2655/1-2.

References and links

1.

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. St. J. Russell, “Photochemistry in photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010). [PubMed]

2.

C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B 92(3), 367–378 (2008). [CrossRef]

3.

J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc. 227(3), 203–215 (2007). [CrossRef] [PubMed]

4.

H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express 14(7), 2798–2804 (2006). [CrossRef] [PubMed]

5.

C. H. Li, A. G. Glenday, A. J. Benedick, G. Q. Chang, L. J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm-1,” Opt. Express 18(12), 13239–13249 (2010). [CrossRef] [PubMed]

6.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002). [CrossRef] [PubMed]

7.

I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett. 26(9), 608–610 (2001). [CrossRef] [PubMed]

8.

G. Humbert, W. J. Wadsworth, S. Leon-Saval, J. C. Knight, T. Birks, P. St J Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express 14(4), 1596–1603 (2006). [CrossRef] [PubMed]

9.

Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett. 28(3), 182–184 (2003). [CrossRef] [PubMed]

10.

B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express 16(8), 5954–5962 (2008). [CrossRef] [PubMed]

11.

B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express 18(24), 24729–24734 (2010). [CrossRef] [PubMed]

12.

W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express 12(2), 299–309 (2004). [CrossRef] [PubMed]

13.

A. Rulkov, M. Vyatkin, S. Popov, J. Taylor, and V. Gapontsev, “High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,” Opt. Express 13(2), 377–381 (2005). [CrossRef] [PubMed]

14.

J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett. 25(1), 25–27 (2000). [CrossRef] [PubMed]

15.

P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol. 24(12), 4729–4749 (2006). [CrossRef]

16.

J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78(4), 1135–1184 (2006). [CrossRef]

17.

Heraeus Datasheet for Suprasil glass.

18.

J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull. 43(4), 976–982 (2008). [CrossRef]

19.

R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol. 18(5), 345–348 (2012). [CrossRef]

20.

D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. B. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett. 36(7), 1122–1124 (2011). [CrossRef] [PubMed]

21.

A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express 20(22), 24218–24225 (2012). [CrossRef] [PubMed]

22.

J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express 18(25), 26647–26654 (2010). [CrossRef] [PubMed]

23.

V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett. 28(15), 1302–1304 (2003). [CrossRef] [PubMed]

24.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274(1-3), 232–237 (2000). [CrossRef]

25.

N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express 19(21), 21003–21010 (2011). [CrossRef] [PubMed]

26.

S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A 83, 023808 (2011). [CrossRef]

27.

M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol. 7(8), 1139–1152 (1989). [CrossRef]

28.

M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express 12(13), 2880–2887 (2004). [CrossRef] [PubMed]

29.

N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett. 36(13), 2432–2434 (2011). [CrossRef] [PubMed]

30.

H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express 19(13), 12180–12189 (2011). [CrossRef] [PubMed]

31.

D. Lezal, J. Pedlikova, J. Gurovic, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics-Silikaty 40, 55–59 (1996).

32.

M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater. 3, 341–349 (2001).

33.

N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids 356(35-36), 1829–1836 (2010). [CrossRef]

34.

J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, “Optically Referenced Tm-Fiber-Laser Frequency Comb,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AT5A.3.

35.

P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A 81(1), 013819 (2010). [CrossRef]

36.

C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt. 48(29), 5467–5474 (2009). [CrossRef] [PubMed]

37.

A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express 16(22), 18524–18534 (2008). [CrossRef] [PubMed]

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2390) Fiber optics and optical communications : Fiber optics, infrared
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(060.7140) Fiber optics and optical communications : Ultrafast processes in fibers
(320.6629) Ultrafast optics : Supercontinuum generation

ToC Category:
Ultrafast Optics

History
Original Manuscript: February 11, 2013
Revised Manuscript: April 3, 2013
Manuscript Accepted: April 8, 2013
Published: April 26, 2013

Citation
N. Granzow, M. A. Schmidt, W. Chang, L. Wang, Q. Coulombier, J. Troles, P. Toupin, I. Hartl, K. F. Lee, M. E. Fermann, L. Wondraczek, and P. St.J. Russell, "Mid-infrared supercontinuum generation in As2S3-silica “nano-spike” step-index waveguide," Opt. Express 21, 10969-10977 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-10969


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. St. J. Russell, “Photochemistry in photonic Crystal Fiber Nanoreactors,” Chemistry16(19), 5607–5612 (2010). [PubMed]
  2. C. F. Kaminski, R. S. Watt, A. D. Elder, J. H. Frank, and J. Hult, “Supercontinuum radiation for applications in chemical sensing and microscopy,” Appl. Phys. B92(3), 367–378 (2008). [CrossRef]
  3. J. H. Frank, A. D. Elder, J. Swartling, A. R. Venkitaraman, A. D. Jeyasekharan, and C. F. Kaminski, “A white light confocal microscope for spectrally resolved multidimensional imaging,” J. Microsc.227(3), 203–215 (2007). [CrossRef] [PubMed]
  4. H. Kano and H. O. Hamaguchi, “In-vivo multi-nonlinear optical imaging of a living cell using a supercontinuum light source generated from a photonic crystal fiber,” Opt. Express14(7), 2798–2804 (2006). [CrossRef] [PubMed]
  5. C. H. Li, A. G. Glenday, A. J. Benedick, G. Q. Chang, L. J. Chen, C. Cramer, P. Fendel, G. Furesz, F. X. Kärtner, S. Korzennik, D. F. Phillips, D. Sasselov, A. Szentgyorgyi, and R. L. Walsworth, “In-situ determination of astro-comb calibrator lines to better than 10 cm-1,” Opt. Express18(12), 13239–13249 (2010). [CrossRef] [PubMed]
  6. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature416(6877), 233–237 (2002). [CrossRef] [PubMed]
  7. I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber,” Opt. Lett.26(9), 608–610 (2001). [CrossRef] [PubMed]
  8. G. Humbert, W. J. Wadsworth, S. Leon-Saval, J. C. Knight, T. Birks, P. St J Russell, M. Lederer, D. Kopf, K. Wiesauer, E. Breuer, and D. Stifter, “Supercontinuum generation system for optical coherence tomography based on tapered photonic crystal fibre,” Opt. Express14(4), 1596–1603 (2006). [CrossRef] [PubMed]
  9. Y. Wang, Y. Zhao, J. S. Nelson, Z. Chen, and R. S. Windeler, “Ultrahigh-resolution optical coherence tomography by broadband continuum generation from a photonic crystal fiber,” Opt. Lett.28(3), 182–184 (2003). [CrossRef] [PubMed]
  10. B. A. Cumberland, J. C. Travers, S. V. Popov, and J. R. Taylor, “29 W High power CW supercontinuum source,” Opt. Express16(8), 5954–5962 (2008). [CrossRef] [PubMed]
  11. B. H. Chapman, J. C. Travers, S. V. Popov, A. Mussot, and A. Kudlinski, “Long wavelength extension of CW-pumped supercontinuum through soliton-dispersive wave interactions,” Opt. Express18(24), 24729–24734 (2010). [CrossRef] [PubMed]
  12. W. J. Wadsworth, N. Joly, J. C. Knight, T. A. Birks, F. Biancalana, and P. St. J. Russell, “Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres,” Opt. Express12(2), 299–309 (2004). [CrossRef] [PubMed]
  13. A. Rulkov, M. Vyatkin, S. Popov, J. Taylor, and V. Gapontsev, “High brightness picosecond all-fiber generation in 525-1800nm range with picosecond Yb pumping,” Opt. Express13(2), 377–381 (2005). [CrossRef] [PubMed]
  14. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,” Opt. Lett.25(1), 25–27 (2000). [CrossRef] [PubMed]
  15. P. St. J. Russell, “Photonic-crystal fibers,” J. Lightwave Technol.24(12), 4729–4749 (2006). [CrossRef]
  16. J. M. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys.78(4), 1135–1184 (2006). [CrossRef]
  17. Heraeus Datasheet for Suprasil glass.
  18. J. Troles, Y. Niu, C. Duverger-Arfuso, F. Smektala, L. Brilland, V. Nazabal, V. Moizan, F. Desevedavy, and P. Houizot, “Synthesis and characterization of chalcogenide glasses from the system Ga-Ge-Sb-S and preparation of a single-mode fiber at 1.55 μm,” Mater. Res. Bull.43(4), 976–982 (2008). [CrossRef]
  19. R. Gattass, L. B. Shaw, V. Q. Nguyen, P. C. Pureza, I. D. Aggarwal, and J. S. Sanghera, “All-fiber chalcogenide-based mid-infrared supercontinuum source,” Opt. Fiber Technol.18(5), 345–348 (2012). [CrossRef]
  20. D. D. Hudson, S. A. Dekker, E. C. Mägi, A. C. Judge, S. D. Jackson, E. B. Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Octave spanning supercontinuum in an As₂S₃ taper using ultralow pump pulse energy,” Opt. Lett.36(7), 1122–1124 (2011). [CrossRef] [PubMed]
  21. A. Marandi, C. W. Rudy, V. G. Plotnichenko, E. M. Dianov, K. L. Vodopyanov, and R. L. Byer, “Mid-infrared supercontinuum generation in tapered chalcogenide fiber for producing octave-spanning frequency comb around 3 μm,” Opt. Express20(22), 24218–24225 (2012). [CrossRef] [PubMed]
  22. J. Troles, Q. Coulombier, G. Canat, M. Duhant, W. Renard, P. Toupin, L. Calvez, G. Renversez, F. Smektala, M. El Amraoui, J. L. Adam, T. Chartier, D. Mechin, and L. Brilland, “Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm,” Opt. Express18(25), 26647–26654 (2010). [CrossRef] [PubMed]
  23. V. R. Almeida, R. R. Panepucci, and M. Lipson, “Nanotaper for compact mode conversion,” Opt. Lett.28(15), 1302–1304 (2003). [CrossRef] [PubMed]
  24. F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids274(1-3), 232–237 (2000). [CrossRef]
  25. N. Granzow, S. P. Stark, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Supercontinuum generation in chalcogenide-silica step-index fibers,” Opt. Express19(21), 21003–21010 (2011). [CrossRef] [PubMed]
  26. S. P. Stark, F. Biancalana, A. Podlipensky, and P. St. J. Russell, “Nonlinear wavelength conversion in photonic crystal fibers with three zero-dispersion points,” Phys. Rev. A83, 023808 (2011). [CrossRef]
  27. M. Artiglia, G. Coppa, P. Di Vita, M. Potenza, and A. Sharma, “Mode field diameter measurements in single-mode optical fibers,” J. Lightwave Technol.7(8), 1139–1152 (1989). [CrossRef]
  28. M. A. Foster, K. D. Moll, and A. L. Gaeta, “Optimal waveguide dimensions for nonlinear interactions,” Opt. Express12(13), 2880–2887 (2004). [CrossRef] [PubMed]
  29. N. Granzow, P. Uebel, M. A. Schmidt, A. S. Tverjanovich, L. Wondraczek, and P. St. J. Russell, “Bandgap guidance in hybrid chalcogenide-silica photonic crystal fibers,” Opt. Lett.36(13), 2432–2434 (2011). [CrossRef] [PubMed]
  30. H. W. Lee, M. A. Schmidt, R. F. Russell, N. Y. Joly, H. K. Tyagi, P. Uebel, and P. St. J. Russell, “Pressure-assisted melt-filling and optical characterization of Au nano-wires in microstructured fibers,” Opt. Express19(13), 12180–12189 (2011). [CrossRef] [PubMed]
  31. D. Lezal, J. Pedlikova, J. Gurovic, and R. Vogt, “The preparation of chalcogenide glasses in chlorine reactive atmosphere,” Ceramics-Silikaty40, 55–59 (1996).
  32. M. F. Churbanov, I. V. Scripachev, G. E. Snopatin, V. S. Shiryaev, and V. G. Plotnichenko, “High-purity glasses based on arsenic chalcogenides,” J. Optoelectron. Adv. Mater.3, 341–349 (2001).
  33. N. Da, L. Wondraczek, M. A. Schmidt, N. Granzow, and P. St. J. Russell, “High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices,” J. Non-Cryst. Solids356(35-36), 1829–1836 (2010). [CrossRef]
  34. J. Bethge, J. Jiang, C. Mohr, M. Fermann, and I. Hartl, “Optically Referenced Tm-Fiber-Laser Frequency Comb,” in Lasers, Sources, and Related Photonic Devices, OSA Technical Digest (CD) (Optical Society of America, 2012), paper AT5A.3.
  35. P. Kinsler, “Optical pulse propagation with minimal approximations,” Phys. Rev. A81(1), 013819 (2010). [CrossRef]
  36. C. Xiong, E. Magi, F. Luan, A. Tuniz, S. Dekker, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and B. J. Eggleton, “Characterization of picosecond pulse nonlinear propagation in chalcogenide As2S3 fiber,” Appl. Opt.48(29), 5467–5474 (2009). [CrossRef] [PubMed]
  37. A. Tuniz, G. Brawley, D. J. Moss, and B. J. Eggleton, “Two-photon absorption effects on Raman gain in single mode As2Se3 chalcogenide glass fiber,” Opt. Express16(22), 18524–18534 (2008). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited