OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 21, Iss. 9 — May. 6, 2013
  • pp: 11162–11170
« Show journal navigation

Integrated autocorrelator based on superconducting nanowires

Döndü Sahin, Alessandro Gaggero, Thang Ba Hoang, Giulia Frucci, Francesco Mattioli, Roberto Leoni, Johannes Beetz, Matthias Lermer, Martin Kamp, Sven Höfling, and Andrea Fiore  »View Author Affiliations


Optics Express, Vol. 21, Issue 9, pp. 11162-11170 (2013)
http://dx.doi.org/10.1364/OE.21.011162


View Full Text Article

Acrobat PDF (2105 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate an integrated autocorrelator based on two superconducting single-photon detectors patterned on top of a GaAs ridge waveguide. This device enables the on-chip measurement of the second-order intensity correlation function g(2)(τ). A polarization-independent device quantum efficiency in the 1% range is reported, with a timing jitter of 88 ps at 1300 nm. g(2)(τ) measurements of continuous-wave and pulsed laser excitations are demonstrated with no measurable crosstalk within our measurement accuracy.

© 2013 OSA

1. Introduction

For advancing quantum photonics, the integration of optical components, such as single photon sources [1

1. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007). [CrossRef] [PubMed]

4

4. A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012). [CrossRef]

], passive circuit elements [5

5. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008). [CrossRef] [PubMed]

] and single photon detectors [6

6. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011). [CrossRef]

10

10. C. Schuck, W. H. P. Pernice, and H. X. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102(5), 051101 (2013). [CrossRef]

], within a quantum photonic integrated circuit (QPIC) is required in order to scale the system up to few tens of photons, which would be for example required to perform quantum simulations [11

11. A. A. Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012). [CrossRef]

]. The measurement of the second-order correlation function g(2)(τ) and of the photon number is a key functionality for such a QPIC, allowing for example the characterization of single- and entangled-photon states [12

12. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007). [CrossRef]

]. The second-order autocorrelation function is usually measured in free space or fiber-optics with a Hanbury-Brown and Twiss interferometer [13

13. R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature 178(4541), 1046–1048 (1956). [CrossRef]

], using a 50:50 beamsplitter and two distinct detectors on the two output arms. That allows overcoming the dead-time limitation of single-photon detectors. An alternative but equivalent approach is to illuminate two or more detectors with the optical beam under test, as demonstrated in free-space optics using superconducting nanowire single photon detectors [14

14. E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans.on Appl. Supercond. 17(2), 279–284 (2007).

].

In this work, we apply a similar concept in an integrated platform and demonstrate an intensity autocorrelator based on two superconducting nanowires sensing the evanescent field of the same waveguide mode. This enables the measurement of the g(2)(τ) with a very compact integrated device and represents the first step towards integrated photon-number-resolving detectors [15

15. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecom wavelength,” Nat. Photonics 2(5), 302–306 (2008). [CrossRef]

,16

16. S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012). [CrossRef]

]. We report the polarization-independent response of the integrated nanowires and a detailed study of their mutual coupling, showing no measurable static and dynamic crosstalk.

2. Concept, design and fabrication

Figure 1(a)
Fig. 1 (a) Schematics of the integrated autocorrelators with two, electrically-separated single-photon detectors on top of GaAs ridge waveguide and (b) False-color scanning electron microscope image of two-element waveguide detectors.
(sketch) shows the schematics of the integrated autocorrelators on a GaAs (0.35 µm)/Al0.75Ga0.25As (1.5 μm) waveguide heterostructure. There are two pairs of equidistant NbN nanowires on top of the waveguide, each with a width of 100 nm, a length of 50 μm and a spacing of 150 nm. Each pair of nanowires is separately connected to a bias and amplification circuit. The two pairs therefore constitute two independent superconducting single-photon detectors. The detectors exploit the hotspot mechanism for photon detection [17

17. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001). [CrossRef]

]. A single absorbed infrared photon breaks a Cooper pair which, through a subsequent relaxation process, creates a non-equilibrium population of quasi-particles. The resulting perturbation can produce a resistive cross-section in the wire, which diverts the bias current to a parallel load resistor, producing a voltage pulse.

3. Performance of waveguide autocorrelators

The experiments on waveguide autocorrelators are performed in a continuous flow cryogenic probe station with a base temperature of 2.1 K on the sample holder. A lensed fiber with a numerical aperture NA = 0.33 and corresponding spot size of 2.5 ± 0.5 μm is used to couple the light into the waveguide by the end-fire coupling method. The electrical connection to each nanowire is provided by two rf μ-probes, mounted on piezo towers. Electrical contacts are interfaced to room temperature electronics with 50Ω matched feedthrough. The signal is led through a bias tee and amplified either by 60 dB for each of the channels before being sent to the pulse counter or by 45 dB before being sent to the oscilloscope or the time-correlated single photon counting (TCSPC) module for intensity correlation measurements.

The two detectors show very similar behavior in terms of their current-voltage (IV) characteristics. As depicted in Fig. 2
Fig. 2 Current-voltage (IV) curve of the detectors (D1, D2: see Fig. 1) on the same waveguide.
, both detectors have a critical current Ic = 23 μA at the measurement base temperature. Critical current density Jc is ranging between 3.4 - 3.9MA/cm^2 for 50 μm long two-nanowire meanders.

Under illumination, photoresponse pulses with a 1/e decay time of τ1/e = 1.5 ns are measured which is approximately in agreement with the calculated value τ1/e = Lkin/RLoad = 1.8 ns [21

21. D. Sahin, A. Gaggero, G. Frucci, S. Jahanmirinejad, J. P. Sprengers, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide superconducting single-photon autocorrelators for quantum photonic applications,” Proc. SPIE 8635, 86351B, 86351B-6 (2013). [CrossRef]

], based on the kinetic inductance per square reported in Ref [22

22. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009). [CrossRef]

]. The difference is assigned to the different film thicknesses which is thicker for our detectors as compared to the Ref [22

22. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009). [CrossRef]

].

4. Crosstalk analysis and second-order intensity correlation measurement

Several tests are performed in order to investigate the possible crosstalk between two adjacent detectors on a single ridge waveguide. A first series of tests is performed in static conditions, to determine whether the bias condition of one detector has an influence on the electro-optical response of the other. Static coupling would mainly result from the thermal or magnetic interaction (intrinsic) as well as the coupling of two detectors due to the shared ground (extrinsic). We studied the electrical and optical response of one detector as a function of the bias of the adjacent detector. Figure 4(a)
Fig. 4 (a) IV curve of the detector D1 while D2 is unbiased. (b) IV characteristic of the detector D2 at different bias conditions of D1. (c) IV curve of D2, zoomed around Ic, each curve corresponds to the bias points indicated with a square of the same color in Fig. 4(a). (d) Fluctuations in Ic of D2 while D1 is biased at several different bias conditions. The Ic is independent of the bias voltage of D1 within the error bars.
shows the IV characteristic of D1 (see Fig. 3) while D2 is unbiased. Figure 4(b) and Fig. 4(c) show the IV characteristics of D2 measured with D1 biased at the points indicated with the open squares in Fig. 4(a). In Fig. 4(b), all the curves aresuperposed while in the blow-up of Fig. 4(c) only small fluctuations (~0.10 μA) in the critical current are observed and reported in Fig. 4(d) as a function of the bias voltage of D1. It can be seen that even when the neighboring detector D1 becomes resistive, where it dissipates the Joule heating to the GaAs lattice, no change of the Ic of D2 is observed within the uncertainty (0.2%) due to stability of the experiment (see Fig. 4(d)). The same behavior is observed for the measurements by sweeping the bias voltage of D2 while measuring the IV for D1. Therefore, no static coupling between the detectors is evidenced.

Similarly, considering the fact that the dark count rate (DCR) is very sensitive to any change, the DCR was measured for the detector D1 at several bias conditions by sweeping the bias of D2 in the superconducting and unstable region (green dots and black stars in the inset of Fig. 5
Fig. 5 The dark count rate of D1 as a function of the bias current of D2. Even when the critical current of D2 is overcome (shown by light pink, light blue and dark yellow stars folded on the original curve), the count rate of D1 does not change significantly. Inset: The IV curve of D2 where green dots show the D2 bias points in the superconducting region for which the dotted data points in the main panel are taken and the black stars show the bias points in the unstable region (colored stars in the main panel).
that shows the IV curve of D2 when amplifiers are connected). If switching of D2 resulted in any false counts on D1, the dark count rate of D1 would change when D2 is biased in the unstable region. Figure 5 shows the DCR of D1, biased at constant current Ib = 0.95-0.99Ic while the bias of D2 is swept. There is no measurable variation of the DCR with the bias of the other detector. That confirms that there is no measurable static coupling between two integrated WSPDs.

We then studied dynamic crosstalk, i.e. a temporal variation of the detection probability of one detector due to the firing of the other detector. To this aim, we measured the intensity correlation function g(2)(τ) of both CW and pulsed laser coupled to the waveguide. As a coherent beam has a constant g(2)(τ), any variation observed at small delays would indicate a spurious increase or decrease of the detection probability upon firing of the adjacent detector. The expected time range for crosstalk is within a few ns delay because the relevant timescales are the time for the formation and the decay of the hotspot (tens of ps) [25

25. K. S. Ilin, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752–2754 (2000). [CrossRef]

,26

26. Z. Zhou, G. Frucci, F. Mattioli, A. Gaggero, R. Leoni, S. Jahanmirinejad, T. B. Hoang, and A. Fiore, “Ultrasensitive N-photon interferometric autocorrelator,” Phys. Rev. Lett. 110(13), 133605 (2013). [CrossRef] [PubMed]

], the recovery time of the detector (~5 ns) [6

6. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011). [CrossRef]

], the electromagnetic wave travelling time between the nanowires and along the waveguide (<1 ps) as well as the propagation time of phonons across the entire detector length and between the adjacent pairs (up to a few ps).

The coincidence counts between the two detectors are measured by sending their outputs to the inputs of a correlation card (PicoHarp 300). The zero delay is calibrated in a subsequent experiment by measuring the zero-crossing of a single detector, using the same delay line. In Fig. 6
Fig. 6 Measured intensity correlation histograms for a 1300 nm CW laser with 77 pW excitation power. The detectors are biased at 99% (green line) and 97% (blue line) of their critical current. The black lines show the averaging of the data over 1 ns.
, the coincidence counts are shown as a function of the delay time between the start and the stop channels for a CW light with an excitation power of 77 pW at 1300 nm at Ib = 0.97Ic (blue line) and Ib = 0.99Ic (green line). The change in the bias current modifies the number of coincidences due to the varying efficiency of the detectors (see Fig. 3). In order to improve the signal to noise ratio and to clearly observe the coincidences around zero delay, the data is averaged over a 1 ns temporal window (black lines). Even when the bias current of each detector is brought very close to Ic, no trace of crosstalk has been observed in the vicinity of zero delay.

Finally, we can determine the timing resolution (jitter) from the second-order intensity correlation measurements. A total jitter of 125 ps is measured, defined as the full-width at half-maximum (FWHM) of the Gaussian distribution at zero delay, for all bias currents between 0.94Ic and 0.99Ic. The jitter is the convolution of all the jitters in the measurement set-up. As the jitter of the laser and the correlation card are negligible, we only consider two detectors with an equal timing jitter (amplifiers and the cabling are not excluded) [27

27. A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-photon detection system for quantum optics applications,” IEEE J. Sel. Top. Quantum Electron. 13(4), 944–951 (2007). [CrossRef]

]. A jitter of 88 ps (FWHM) is obtained for each detector.

5. Conclusion

In conclusion, the first waveguide autocorrelators have been fabricated and measured with no crosstalk in both static and dynamic regimes within our measurement accuracy, which makes them promising candidates for on-chip autocorrelators. That allows successfully performing on-chip second-order intensity correlation measurements. As a proof of principle, the g(2)(τ) of CW and pulsed light sources is measured with total temporal resolution of 125 ps (FWHM). Moreover, the detectors are shown to be polarization independent.

These waveguide autocorrelators are also the first step towards integrated photon number resolving (PNR) detectors which could be realized by connecting the different wires together in a parallel [15

15. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecom wavelength,” Nat. Photonics 2(5), 302–306 (2008). [CrossRef]

] or series [16

16. S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012). [CrossRef]

] configuration. The absence of crosstalk is an essential feature for such PNR detectors whose fidelity would otherwise be affected.

Acknowledgments

This work was financially supported by the Dutch Technology Foundation STW, applied science division of NWO, the Technology Program of the Ministry of Economic Affairs, the European Commission through FP7 QUANTIP (Contract No. 244026) and Q-ESSENCE (Contact No. 248095). Part of the nanofabrication was carried out in the NanoLab@TU/e cleanroom facility.

References and links

1.

D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express 15(9), 5550–5558 (2007). [CrossRef] [PubMed]

2.

A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett. 99(26), 261108 (2011). [CrossRef]

3.

T. B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Höfling, and A. Fiore, “Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths,” Opt. Express 20(19), 21758–21765 (2012). [CrossRef] [PubMed]

4.

A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X 2(1), 011014 (2012). [CrossRef]

5.

A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science 320(5876), 646–649 (2008). [CrossRef] [PubMed]

6.

J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett. 99(18), 181110 (2011). [CrossRef]

7.

T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. L. Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A 84(6), 060301 (2011). [CrossRef]

8.

W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun 3, 1325 (2012). [CrossRef] [PubMed]

9.

G. Reithmaier, S. Lichmannecker, T. Reichert, P. Hasch, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” arxiv:1302.3807 (2013).

10.

C. Schuck, W. H. P. Pernice, and H. X. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett. 102(5), 051101 (2013). [CrossRef]

11.

A. A. Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys. 8(4), 285–291 (2012). [CrossRef]

12.

A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics 1(4), 215–223 (2007). [CrossRef]

13.

R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature 178(4541), 1046–1048 (1956). [CrossRef]

14.

E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans.on Appl. Supercond. 17(2), 279–284 (2007).

15.

A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecom wavelength,” Nat. Photonics 2(5), 302–306 (2008). [CrossRef]

16.

S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett. 101(7), 072602 (2012). [CrossRef]

17.

G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett. 79(6), 705–707 (2001). [CrossRef]

18.

V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express 16(14), 10750–10761 (2008). [CrossRef] [PubMed]

19.

A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett. 97(15), 151108 (2010). [CrossRef]

20.

F. Marsili, “Single-photon and photon-number-resolving detectors based on superconducting nanowires,” PhD dissertation, École Polytechnique Fédérale De Lausanne, Chap. 2.

21.

D. Sahin, A. Gaggero, G. Frucci, S. Jahanmirinejad, J. P. Sprengers, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide superconducting single-photon autocorrelators for quantum photonic applications,” Proc. SPIE 8635, 86351B, 86351B-6 (2013). [CrossRef]

22.

F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys. 11(4), 045022 (2009). [CrossRef]

23.

F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-Photon Detectors Based on Ultranarrow Superconducting Nanowires,” Nano Lett. 11(5), 2048–2053 (2011). [CrossRef] [PubMed]

24.

T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler,” Opt. Lett. 37(14), 2982–2984 (2012). [CrossRef] [PubMed]

25.

K. S. Ilin, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett. 76(19), 2752–2754 (2000). [CrossRef]

26.

Z. Zhou, G. Frucci, F. Mattioli, A. Gaggero, R. Leoni, S. Jahanmirinejad, T. B. Hoang, and A. Fiore, “Ultrasensitive N-photon interferometric autocorrelator,” Phys. Rev. Lett. 110(13), 133605 (2013). [CrossRef] [PubMed]

27.

A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-photon detection system for quantum optics applications,” IEEE J. Sel. Top. Quantum Electron. 13(4), 944–951 (2007). [CrossRef]

OCIS Codes
(130.3120) Integrated optics : Integrated optics devices
(270.5570) Quantum optics : Quantum detectors

ToC Category:
Integrated Optics

History
Original Manuscript: February 15, 2013
Revised Manuscript: April 19, 2013
Manuscript Accepted: April 22, 2013
Published: April 30, 2013

Citation
Döndü Sahin, Alessandro Gaggero, Thang Ba Hoang, Giulia Frucci, Francesco Mattioli, Roberto Leoni, Johannes Beetz, Matthias Lermer, Martin Kamp, Sven Höfling, and Andrea Fiore, "Integrated autocorrelator based on superconducting nanowires," Opt. Express 21, 11162-11170 (2013)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-21-9-11162


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vucković, “Generation and transfer of single photons on a photonic crystal chip,” Opt. Express15(9), 5550–5558 (2007). [CrossRef] [PubMed]
  2. A. Schwagmann, S. Kalliakos, I. Farrer, J. P. Griffiths, G. A. C. Jones, D. A. Ritchie, and A. J. Shields, “On-chip photon emission from an integrated semiconductor quantum dot into a photonic crystal waveguide,” Appl. Phys. Lett.99(26), 261108 (2011). [CrossRef]
  3. T. B. Hoang, J. Beetz, M. Lermer, L. Midolo, M. Kamp, S. Höfling, and A. Fiore, “Widely tunable, efficient on-chip single photon sources at telecommunication wavelengths,” Opt. Express20(19), 21758–21765 (2012). [CrossRef] [PubMed]
  4. A. Laucht, S. Pütz, T. Günthner, N. Hauke, R. Saive, S. Frédérick, M. Bichler, M.-C. Amann, A. W. Holleitner, M. Kaniber, and J. J. Finley, “A waveguide-coupled on-chip single-photon source,” Phys. Rev. X2(1), 011014 (2012). [CrossRef]
  5. A. Politi, M. J. Cryan, J. G. Rarity, S. Yu, and J. L. O’Brien, “Silica-on-silicon waveguide quantum circuits,” Science320(5876), 646–649 (2008). [CrossRef] [PubMed]
  6. J. P. Sprengers, A. Gaggero, D. Sahin, S. Jahanmirinejad, G. Frucci, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, R. Sanjines, and A. Fiore, “Waveguide superconducting single-photon detectors for integrated quantum photonic circuits,” Appl. Phys. Lett.99(18), 181110 (2011). [CrossRef]
  7. T. Gerrits, N. Thomas-Peter, J. C. Gates, A. E. Lita, B. J. Metcalf, B. Calkins, N. A. Tomlin, A. E. Fox, A. L. Linares, J. B. Spring, N. K. Langford, R. P. Mirin, P. G. R. Smith, I. A. Walmsley, and S. W. Nam, “On-chip, photon-number-resolving, telecommunication-band detectors for scalable photonic information processing,” Phys. Rev. A84(6), 060301 (2011). [CrossRef]
  8. W. H. P. Pernice, C. Schuck, O. Minaeva, M. Li, G. N. Goltsman, A. V. Sergienko, and H. X. Tang, “High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits,” Nat Commun3, 1325 (2012). [CrossRef] [PubMed]
  9. G. Reithmaier, S. Lichmannecker, T. Reichert, P. Hasch, M. Bichler, R. Gross, and J. J. Finley, “On-chip time resolved detection of quantum dot emission using integrated superconducting single photon detectors,” arxiv:1302.3807 (2013).
  10. C. Schuck, W. H. P. Pernice, and H. X. Tang, “NbTiN superconducting nanowire detectors for visible and telecom wavelengths single photon counting on Si3N4 photonic circuits,” Appl. Phys. Lett.102(5), 051101 (2013). [CrossRef]
  11. A. A. Guzik and P. Walther, “Photonic quantum simulators,” Nat. Phys.8(4), 285–291 (2012). [CrossRef]
  12. A. J. Shields, “Semiconductor quantum light sources,” Nat. Photonics1(4), 215–223 (2007). [CrossRef]
  13. R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on Sirius,” Nature178(4541), 1046–1048 (1956). [CrossRef]
  14. E. A. Dauler, B. S. Robinson, A. J. Kerman, J. K. W. Yang, K. M. Rosfjord, V. Anant, B. Voronov, G. Gol’tsman, and K. K. Berggren, “Multi-element superconducting nanowire single-photon detector,” IEEE Trans.on Appl. Supercond.17(2), 279–284 (2007).
  15. A. Divochiy, F. Marsili, D. Bitauld, A. Gaggero, R. Leoni, F. Mattioli, A. Korneev, V. Seleznev, N. Kaurova, O. Minaeva, G. Gol'tsman, K. G. Lagoudakis, M. Benkhaoul, F. Lévy, and A. Fiore, “Superconducting nanowire photon-number-resolving detector at telecom wavelength,” Nat. Photonics2(5), 302–306 (2008). [CrossRef]
  16. S. Jahanmirinejad, G. Frucci, F. Mattioli, D. Sahin, A. Gaggero, R. Leoni, and A. Fiore, “Photon-number resolving detector based on a series array of superconducting nanowires,” Appl. Phys. Lett.101(7), 072602 (2012). [CrossRef]
  17. G. N. Gol’tsman, O. Okunev, G. Chulkova, A. Lipatov, A. Semenov, K. Smirnov, B. Voronov, A. Dzardanov, C. Williams, and R. Sobolewski, “Picosecond superconducting single-photon optical detector,” Appl. Phys. Lett.79(6), 705–707 (2001). [CrossRef]
  18. V. Anant, A. J. Kerman, E. A. Dauler, J. K. W. Yang, K. M. Rosfjord, and K. K. Berggren, “Optical properties of superconducting nanowire single-photon detectors,” Opt. Express16(14), 10750–10761 (2008). [CrossRef] [PubMed]
  19. A. Gaggero, S. Jahanmiri Nejad, F. Marsili, F. Mattioli, R. Leoni, D. Bitauld, D. Sahin, G. J. Hamhuis, R. Notzel, R. Sanjines, and A. Fiore, “Nanowire superconducting single-photon detectors on GaAs for integrated quantum photonic applications,” Appl. Phys. Lett.97(15), 151108 (2010). [CrossRef]
  20. F. Marsili, “Single-photon and photon-number-resolving detectors based on superconducting nanowires,” PhD dissertation, École Polytechnique Fédérale De Lausanne, Chap. 2.
  21. D. Sahin, A. Gaggero, G. Frucci, S. Jahanmirinejad, J. P. Sprengers, F. Mattioli, R. Leoni, J. Beetz, M. Lermer, M. Kamp, S. Höfling, and A. Fiore, “Waveguide superconducting single-photon autocorrelators for quantum photonic applications,” Proc. SPIE8635, 86351B, 86351B-6 (2013). [CrossRef]
  22. F. Marsili, D. Bitauld, A. Gaggero, S. Jahanmirinejad, R. Leoni, F. Mattioli, and A. Fiore, “Physics and application of photon number resolving detectors based on superconducting parallel nanowires,” New J. Phys.11(4), 045022 (2009). [CrossRef]
  23. F. Marsili, F. Najafi, E. Dauler, F. Bellei, X. Hu, M. Csete, R. J. Molnar, and K. K. Berggren, “Single-Photon Detectors Based on Ultranarrow Superconducting Nanowires,” Nano Lett.11(5), 2048–2053 (2011). [CrossRef] [PubMed]
  24. T. Yamashita, S. Miki, H. Terai, K. Makise, and Z. Wang, “Crosstalk-free operation of multielement superconducting nanowire single-photon detector array integrated with single-flux-quantum circuit in a 0.1 W Gifford-McMahon cryocooler,” Opt. Lett.37(14), 2982–2984 (2012). [CrossRef] [PubMed]
  25. K. S. Ilin, M. Lindgren, M. Currie, A. D. Semenov, G. N. Gol’tsman, R. Sobolewski, S. I. Cherednichenko, and E. M. Gershenzon, “Picosecond hot-electron energy relaxation in NbN superconducting photodetectors,” Appl. Phys. Lett.76(19), 2752–2754 (2000). [CrossRef]
  26. Z. Zhou, G. Frucci, F. Mattioli, A. Gaggero, R. Leoni, S. Jahanmirinejad, T. B. Hoang, and A. Fiore, “Ultrasensitive N-photon interferometric autocorrelator,” Phys. Rev. Lett.110(13), 133605 (2013). [CrossRef] [PubMed]
  27. A. Korneev, Y. Vachtomin, O. Minaeva, A. Divochiy, K. Smirnov, O. Okunev, G. Gol’tsman, C. Zinoni, N. Chauvin, L. Balet, F. Marsili, D. Bitauld, B. Alloing, L. Li, A. Fiore, L. Lunghi, A. Gerardino, M. Halder, C. Jorel, and H. Zbinden, “Single-photon detection system for quantum optics applications,” IEEE J. Sel. Top. Quantum Electron.13(4), 944–951 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited