## All-optical OFDM demultiplexing by spectral magnification and band-pass filtering |

Optics Express, Vol. 22, Issue 1, pp. 136-144 (2014)

http://dx.doi.org/10.1364/OE.22.000136

Acrobat PDF (1839 KB)

### Abstract

We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spectral magnification.

© 2013 Optical Society of America

## 1. Introduction

1. S. Chandrasekhar and Xiang Liu, “OFDM based superchannel transmission technology,” J. Lightwave Technol. **30**(24), 3816–3823 (2012). [CrossRef]

6. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express **16**(2), 841–859 (2008). [CrossRef] [PubMed]

7. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics **5**(6), 364–371 (2011). [CrossRef]

8. L. B. Du, J. Schroeder, J. Carpenter, B. Eggleton, and A. J. Lowery, “Flexible All-Optical OFDM using WSSs,” Proc. OFC 2013, PDP5B.9 (2013). [CrossRef]

9. M. E. Marhic, “Discrete Fourier transforms by single-mode star networks,” Opt. Lett. **12**(1), 63–65 (1987). [CrossRef] [PubMed]

10. D. Yang and S. Kumar, “Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT,” Opt. Express **17**(20), 17214–17226 (2009). [CrossRef] [PubMed]

11. R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space–time duality to ultrahigh-speed optical signal processing,” Advances in Optics and Photonics **5**(3), 274–317 (2013). [CrossRef]

## 2. Principle of spectral magnification for OFDM reception

12. M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. **16**(4), 1059–1061 (2004). [CrossRef]

13. E. Palushani, H. C. Hansen Mulvad, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Top. Quantum Electron. **18**(2), 681–688 (2012). [CrossRef]

14. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express **17**(7), 5691–5697 (2009). [CrossRef] [PubMed]

14. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express **17**(7), 5691–5697 (2009). [CrossRef] [PubMed]

16. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. **30**(8), 1951–1963 (1994). [CrossRef]

_{2}/C

_{1}. In Fig. 3, the input OFDM signal is sent through a phase modulator, imposing a chirp rate of C

_{1}followed by dispersion D

_{1}. This results in a Fourier transformation in the focal plane, where the OFDM signal is converted into a serial signal with short optical sinc-like pulses in the time domain (Fig. 3 lowest middle). This signal is now sent through the second time lens, consisting of dispersion D

_{2}and phase modulation C

_{2}. This now yields the magnified OFDM spectrum, and correspondingly narrower waveforms of each symbol in the time domain (lowest right).

## 3. Experimental demonstration

13. E. Palushani, H. C. Hansen Mulvad, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Top. Quantum Electron. **18**(2), 681–688 (2012). [CrossRef]

## 5. Discussion and further work

## 6. Conclusion

## Acknowledgments

## References and links

1. | S. Chandrasekhar and Xiang Liu, “OFDM based superchannel transmission technology,” J. Lightwave Technol. |

2. | A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-Guard-Interval Coherent Optical OFDM for 100-Gb/s Long-Haul WDM Transmission,” J. Lightwave Technol. |

3. | H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” Proc. OFC 2002, paper ThD1. [CrossRef] |

4. | K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160Gbit/s signal reception,” Electron. Lett. |

5. | A. J. Lowery, “Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers,” Opt. Express |

6. | W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express |

7. | D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics |

8. | L. B. Du, J. Schroeder, J. Carpenter, B. Eggleton, and A. J. Lowery, “Flexible All-Optical OFDM using WSSs,” Proc. OFC 2013, PDP5B.9 (2013). [CrossRef] |

9. | M. E. Marhic, “Discrete Fourier transforms by single-mode star networks,” Opt. Lett. |

10. | D. Yang and S. Kumar, “Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT,” Opt. Express |

11. | R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space–time duality to ultrahigh-speed optical signal processing,” Advances in Optics and Photonics |

12. | M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. |

13. | E. Palushani, H. C. Hansen Mulvad, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Top. Quantum Electron. |

14. | Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express |

15. | E. Palushani, H. C. Hansen Mulvad, M. Galili, F. D. Ros, H. Hu, P. Jeppesen, and L. K. Oxenløwe, Spectral compression of a DWDM grid using optical time-lenses,” Proc. CLEO-PR & OECC/PS 2013, ThO2–1 (2013). |

16. | B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. |

17. | L. B. Du and A. J. Lowery, “The validity of “Odd and Even” channels for testing all-optical OFDM and Nyquist WDM long-haul fiber systems,” Opt. Express |

18. | http://www.ntt-electronics.com/en/products/photonics/awg_mul_d.html. |

19. | |

20. | D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express |

**OCIS Codes**

(060.2330) Fiber optics and optical communications : Fiber optics communications

(060.4230) Fiber optics and optical communications : Multiplexing

(070.1170) Fourier optics and signal processing : Analog optical signal processing

(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing

**ToC Category:**

Subsystems for Optical Networks and Datacomms

**History**

Original Manuscript: October 14, 2013

Revised Manuscript: December 6, 2013

Manuscript Accepted: December 13, 2013

Published: December 23, 2013

**Virtual Issues**

European Conference and Exhibition on Optical Communication (2013) *Optics Express*

**Citation**

E. Palushani, H. C. Hansen Mulvad, D. Kong, P. Guan, M. Galili, and L.K. Oxenløwe, "All-optical OFDM demultiplexing by spectral magnification and band-pass filtering," Opt. Express **22**, 136-144 (2014)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-1-136

Sort: Year | Journal | Reset

### References

- S. Chandrasekhar, Xiang Liu, “OFDM based superchannel transmission technology,” J. Lightwave Technol. 30(24), 3816–3823 (2012). [CrossRef]
- A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, Y. Takatori, “No-Guard-Interval Coherent Optical OFDM for 100-Gb/s Long-Haul WDM Transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009). [CrossRef]
- H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” Proc. OFC 2002, paper ThD1. [CrossRef]
- K. Takiguchi, M. Oguma, H. Takahashi, A. Mori, “Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160Gbit/s signal reception,” Electron. Lett. 46(8), 575–576 (2010). [CrossRef]
- A. J. Lowery, “Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers,” Opt. Express 18(13), 14129–14143 (2010). [CrossRef] [PubMed]
- W. Shieh, H. Bao, Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008). [CrossRef] [PubMed]
- D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]
- L. B. Du, J. Schroeder, J. Carpenter, B. Eggleton, and A. J. Lowery, “Flexible All-Optical OFDM using WSSs,” Proc. OFC 2013, PDP5B.9 (2013). [CrossRef]
- M. E. Marhic, “Discrete Fourier transforms by single-mode star networks,” Opt. Lett. 12(1), 63–65 (1987). [CrossRef] [PubMed]
- D. Yang, S. Kumar, “Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT,” Opt. Express 17(20), 17214–17226 (2009). [CrossRef] [PubMed]
- R. Salem, M. A. Foster, A. L. Gaeta, “Application of space–time duality to ultrahigh-speed optical signal processing,” Advances in Optics and Photonics 5(3), 274–317 (2013). [CrossRef]
- M. Nakazawa, T. Hirooka, F. Futami, S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004). [CrossRef]
- E. Palushani, H. C. Hansen Mulvad, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012). [CrossRef]
- Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009). [CrossRef] [PubMed]
- E. Palushani, H. C. Hansen Mulvad, M. Galili, F. D. Ros, H. Hu, P. Jeppesen, and L. K. Oxenløwe, Spectral compression of a DWDM grid using optical time-lenses,” Proc. CLEO-PR & OECC/PS 2013, ThO2–1 (2013).
- B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994). [CrossRef]
- L. B. Du, A. J. Lowery, “The validity of “Odd and Even” channels for testing all-optical OFDM and Nyquist WDM long-haul fiber systems,” Opt. Express 20(26), B445–B451 (2012). [CrossRef] [PubMed]
- http://www.ntt-electronics.com/en/products/photonics/awg_mul_d.html .
- http://www.kylia.com/dwdmuxd.html .
- D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.