OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 1 — Jan. 13, 2014
  • pp: 136–144
« Show journal navigation

All-optical OFDM demultiplexing by spectral magnification and band-pass filtering

E. Palushani, H. C. Hansen Mulvad, D. Kong, P. Guan, M. Galili, and L.K. Oxenløwe  »View Author Affiliations


Optics Express, Vol. 22, Issue 1, pp. 136-144 (2014)
http://dx.doi.org/10.1364/OE.22.000136


View Full Text Article

Acrobat PDF (1839 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a simple OFDM receiver allowing for the use of standard WDM receivers to receive spectrally advanced OFDM signals. We propose to spectrally magnify the optical-OFDM super-channels using a spectral telescope consisting of two time-lenses, which enables reduced inter-carrier-interference in subcarrier detection by simple band-pass filtering. A demonstration on an emulated 100 Gbit/s DPSK optical-OFDM channel shows improved sensitivities after 4-times spectral magnification.

© 2013 Optical Society of America

1. Introduction

Optical orthogonal frequency division multiplexing (OFDM) is an attractive format for transmitting data with very high spectral efficiency and high dispersion tolerance [1

1. S. Chandrasekhar and Xiang Liu, “OFDM based superchannel transmission technology,” J. Lightwave Technol. 30(24), 3816–3823 (2012). [CrossRef]

6

6. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008). [CrossRef] [PubMed]

]. In all-optical OFDM (AO-OFDM), the subcarrier multiplexing and demultiplexing is performed in the optical domain, allowing the generation of OFDM super-channels with Tbit/s capacity [7

7. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]

,8

8. L. B. Du, J. Schroeder, J. Carpenter, B. Eggleton, and A. J. Lowery, “Flexible All-Optical OFDM using WSSs,” Proc. OFC 2013, PDP5B.9 (2013). [CrossRef]

]. Demultiplexing of the subcarriers can be achieved by discrete optical Fast-Fourier Transformation (O-FFT) (or optical discrete Fourier transformation (O-DFT)). The DFT may be performed by passive filtering, using delay-interferometers, as suggested by M. Marhic [9

9. M. E. Marhic, “Discrete Fourier transforms by single-mode star networks,” Opt. Lett. 12(1), 63–65 (1987). [CrossRef] [PubMed]

]. However, the DFT requires phase-stabilisation of the optical paths in the delay-interferometers and each subcarrier subsequently requires a sampling gate to avoid detrimental inter-carrier-interference (ICI). Hence, the complexity and power consumption of the O-DFT based OFDM demultiplexer will increase with the number of subcarriers. This is in stark contrast to the well known standard DWDM receivers, mainly consisting of passive filters. The scope of this paper is to enable the reception of spectrally advanced OFDM data signals using simple standard WDM receivers by first converting the OFDM signal into a WDM-like signal compatible with a WDM receiver, see Fig. 1.
Fig. 1 Motivation: Replace optical DFT and active gates for each subcarrier with a single OFDM-to-DWDM-like converter followed by a standard passive WDM receiver, e.g. an arrayed waveguide grating (AWG).
In [10

10. D. Yang and S. Kumar, “Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT,” Opt. Express 17(20), 17214–17226 (2009). [CrossRef] [PubMed]

], it was suggested to use time lenses to perform Fourier transformations to both generate and receive and AO-OFDM signal. This proposal was based on time lenses consisting of dispersive elements and an electro-optical phase modulator acting on a frame of OFDM data, i.e. operating on a finite extent OFDM data signal limited by the finite time aperture of the phase modulation. As described in [11

11. R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space–time duality to ultrahigh-speed optical signal processing,” Advances in Optics and Photonics 5(3), 274–317 (2013). [CrossRef]

], it is difficult to get a strong phase modulation using electro-optic phase modulators, and in particular with a time aperture stretching over several ns, and furthermore, the dispersive elements involved before the phase modulation stage, may broaden the data pulses beyond the time aperture required. Thus, the reliability of this AO-OFDM generation and detection scheme (D-K-D) has not yet been experimentally verified.

In this paper, we propose and experimentally demonstrate all-optical OFDM demultiplexing based on spectral magnification in a spectral telescope arrangement consisting of two time-lenses and subsequently followed by a narrow optical band-pass filtering (BPF) of each sub-carrier. The spectral magnification leads to significantly reduced ICI after the BPF, thus allowing for direct detection of all subcarriers, without the need for sampling gates. Hence, full demultiplexing of an OFDM super-channel can be achieved using a single active unit. To demonstrate the principle, we use four-wave mixing (FWM) based time-lenses and demonstrate 4x spectral magnification of an emulated 100 Gbit/s DPSK OFDM super-channel with 10 subcarriers. Error-free performance and improved subcarrier sensitivities are obtained after magnification.

2. Principle of spectral magnification for OFDM reception

Fig. 2 Principle of OFDM spectral magnification using two time-lenses, followed by optical band-pass filtering for subcarrier detection. In this figure, a magnification of 2 is sketched.
Time-lenses are based on parabolic phase modulation and dispersion, and can be used to perform frequency-to-time [12

12. M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004). [CrossRef]

] and time-to-frequency [13

13. E. Palushani, H. C. Hansen Mulvad, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012). [CrossRef]

] conversion of an optical waveform. A combination of time-lenses can be employed for spectral magnification [14

14. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009). [CrossRef] [PubMed]

] or compression [15

15. E. Palushani, H. C. Hansen Mulvad, M. Galili, F. D. Ros, H. Hu, P. Jeppesen, and L. K. Oxenløwe, Spectral compression of a DWDM grid using optical time-lenses,” Proc. CLEO-PR & OECC/PS 2013, ThO2–1 (2013).

]. The magnification principle is sketched in Fig. 2 for an input OFDM waveform. Time-lens 1 converts the OFDM spectrum to the time-domain, and time-lens 2 converts back to the spectral domain. The magnification factor is determined by the ratio of the two employed parabolic chirp rates [14

14. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009). [CrossRef] [PubMed]

]. The magnified spectrum results in reduced ICI when using BPFs to extract the subcarriers as sketched in Fig. 2. Since the spectral magnification process is carried out in a coherent manner, the signal will be transform limited, and thus have shorter waveforms than the time slot. Therefore, when filtering using a narrower filter than the magnified OFDM subcarrier width, namely corresponding to the data rate, the waveform will broaden, but only to fill out the timeslot. This means that the bit symbols will not overlap in time and will not introduce inter-symbol-interference (ISI).

Fig. 3 Simulations of the principle of OFDM spectral magnification using two time-lenses. Top: Equivalent spatial lens telescope system compared to temporal lens system consisting of two phase modulators and two dispersive elements, yielding spectral magnification. Bottom graphs: Spectral and temporal (lowest) shapes at various points through the system as obtained by simulations. Left: Original OFDM signal input to the system. Middle: After the first time lens, corresponding to the focal plane, essentially yielding a parallel-to-serial conversion, i.e. short serial pulses. Right: After the second time lens, where the OFDM spectrum is now restored, but with a 4 times magnification. The temporal symbols are equally narrower.
Figure 3 shows simulation results of the basic principle. The simulation is using parameters very close to what is obtainable in the experiment described below. However in the case here, only 5 subcarriers are considered, in order to better see the effect of the time lenses on individual pulses. Each subcarrier is running at 10 Gbaud with 12.5 GHz sinc spectra, 12.5 GHz spacing, and with DBPSK data modulation. Figure 3(top) shows the equivalent spatial telescopic arrangement, with a magnification factor given by the ratio of the focal lengths of the two lenses used, corresponding to the ratio of the spatial parabolic phase modulation from the two lenses. Similarly, the magnification factor for the time lenses is given by the ratio of the phase modulation imposed by the phase modulators, i.e. the chirp rate [16

16. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994). [CrossRef]

]. Referring to Fig. 3, the magnification becomes: M = –C2/C1. In Fig. 3, the input OFDM signal is sent through a phase modulator, imposing a chirp rate of C1 followed by dispersion D1. This results in a Fourier transformation in the focal plane, where the OFDM signal is converted into a serial signal with short optical sinc-like pulses in the time domain (Fig. 3 lowest middle). This signal is now sent through the second time lens, consisting of dispersion D2 and phase modulation C2. This now yields the magnified OFDM spectrum, and correspondingly narrower waveforms of each symbol in the time domain (lowest right).

3. Experimental demonstration

To verify the proposed principle, we perform spectral magnification x4 on an emulated 100 Gbit/s OFDM super-channel consisting of ten 10 Gbit/s DPSK subcarriers with 12.5 GHz spacing. The parabolic phase-modulation for the time-lenses is achieved by FWM between the OFDM signal and synchronised, linearly chirped pump pulses [13

13. E. Palushani, H. C. Hansen Mulvad, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012). [CrossRef]

,15

15. E. Palushani, H. C. Hansen Mulvad, M. Galili, F. D. Ros, H. Hu, P. Jeppesen, and L. K. Oxenløwe, Spectral compression of a DWDM grid using optical time-lenses,” Proc. CLEO-PR & OECC/PS 2013, ThO2–1 (2013).

].

The experimental set-up is shown in Fig. 5.
Fig. 5 Experimental setup for x4 spectral magnification and detection of a 100 Gbit/s OFDM superchannel.
The output of a 10 GHz Erbium-glass oscillator pulse generating laser source (ERGO-PGL) at 1557 nm is spectrally broadened by self-phase modulation in a dispersion-flattened highly nonlinear fibre (DF-HNLF). The supercontinuum (SC) thus generated is filtered at 1550 nm using a 5 nm optical bandpass filter (BPF), and the resulting signal is encoded by differential phase-shift keying with a 231-1 PRBS. The resulting white spectrum can be sinc-filtered to obtain OFDM subcarriers [8

8. L. B. Du, J. Schroeder, J. Carpenter, B. Eggleton, and A. J. Lowery, “Flexible All-Optical OFDM using WSSs,” Proc. OFC 2013, PDP5B.9 (2013). [CrossRef]

]. To obtain a signal for pump generation, the SC is BPF-filtered around 1563 nm. Both aforementioned signals are recombined and sent to two wavelength selective switches WSS1 and WSS2 (Finisar Waveshaper 4000S) for pulse shaping. The OFDM signal is emulated by separately generating even and odd subcarriers, each consisting of five 12.5 GHz sinc functions with 25 GHz spacing. The sign is reversed between neighbouring sinc subcarriers (for both even and odd), in order to overcome the limited WSS resolution of ~10 GHz and thus obtain the highest possible contrast ratio in the generated sinc spectra. The even OFDM subcarriers and the pump signal for the first time-lens (pump1) are generated in WSS1, and the odd OFDM subcarriers and the pump signal for the second time-lens (pump2) are generated in WSS2. Pump1 and pump2 are chirped using 2 km and 0.5 km SMF, respectively, resulting in a x4 spectral magnification. Note that this way of generating the pumps from the same source as the data signal is not a requirement for this scheme, but merely done to save on lasers in the experiment. In practice, the data transmitter and the magnifier will be separate, and this is fine for the principle. The even and odd subcarriers are de-correlated using a 1 km dispersion shifted fibre (DSF), bit-wise synchronised and recombined in the same polarisation using a polarising beam splitter (PBS). To reduce the number of active nonlinear devices, the FWM processes for the two time-lenses are achieved in a single HNLF using a counter-propagation scheme, where in- and outgoing signals are separated using circulators. The HNLF has a length of 500 m, zero-dispersion wavelength 1561 nm and dispersion slope 0.017 ps/nm2km, and nonlinear coefficient ~10 W−1km−1.

The HNLF output spectrum resulting from the FWM between pump1 and the OFDM signal is shown in Fig. 6(a).
Fig. 6 Optical spectra after the first (a) and second (b) time-lens FWM process in the HNLF.
The idler signal at 1576 nm is filtered out using a BPF, and propagated through a 113 m dispersion-compensating fibre (DCF). The signal is then combined with pump2 and coupled into the HNLF for the second FWM process. The resulting spectrum is shown in Fig. 6(b). The generated idler is the output OFDM spectrum, magnified by a factor 4 compared to the input.
Fig. 7 Optical spectrum of the OFDM signal, (a) before, and (b) after the spectral magnification (x4). The even and odd subcarriers are shown for clarity.
Figures 7(a) and 7(b) show the original and magnified OFDM spectrum for the even and odd subcarriers, respectively, revealing a good resemblance. The subcarriers are individually filtered out using an optical tunable filter (Santec OTF-350), with a Gaussian profile of 0.12 nm full-width at half maximum (FWHM). The bit-error rate (BER) performance is measured in a 10 Gbit/s pre-amplified DPSK receiver with a 10 GHz delay interferometer (DLI) and balanced photo-detection. For reference, the subcarriers of the original OFDM signal are filtered out using the OTF tuned to the optimum 0.08 nm FWHM (B2B). The resulting 10 Gbit/s DPSK BER curves are plotted in Figs. 8(a)and 8(b), and the corresponding sensitivities (Prec at BER = 10E-9) are plotted in Fig. 9(left).
Fig. 8 BER performance of the filtered 10 Gbit/s DPSK subcarriers. (a) B2B case. (b) After 4x spectral magnification. Received power is measured after the sub-carrier filtering, just before the pre-amplified receiver, see Fig. 5.
Fig. 9 BER power sensitivities of all subcarriers b2b and magnified (left) and corresponding spectrum (right), shown as odd/even carriers separately to enable visibility of individual channels. The two impaired carriers are clearly identified as the two outermost carriers, which are suffering from some spectral distortion and broadening of their neighbour carriers, resulting in more inter-carrier crosstalk.
All subcarriers are successfully measured to have BER performance better than 10E-9. Surprisingly, even in the B2B case BER<10E-9 is obtained. This, however, partly originates in the sign reversal we were forced to employ between every other carrier in both the even and odd subcarriers to achieve a high enough contrast of the sinc spectra. Note also that the utilization of even/odd subcarriers strongly underestimates the cross-talk compared to an OFDM signal with fully de-correlated subcarriers [17

17. L. B. Du and A. J. Lowery, “The validity of “Odd and Even” channels for testing all-optical OFDM and Nyquist WDM long-haul fiber systems,” Opt. Express 20(26), B445–B451 (2012). [CrossRef] [PubMed]

]. However, even for this situation, the spectral magnification leads to an improvement in sensitivity from 0.9 to 4.1 dB for all subcarriers except for the two outermost subcarriers (ID −4 and + 5). The penalties for ID −4 and + 5 is attributed to increased cross-talk from the neighbour subcarriers, due to some spectral distortion introduced by the time-lenses as indicated by the arrows in Fig. 9(right). Improved performance is expected with better optimized pump signals and larger FWM bandwidth.

5. Discussion and further work

In the above experiment, the tuneable filter used to receive the magnified OFDM signal has a Gaussian shape and a 0.12 nm FWHM. The carriers are magnified to be 50 GHz apart. The idea is that these magnified carriers could be detected by a standard WDM receiver, such as an arrayed waveguide grating (AWG). The best fit for this system would be a 12.5 GHz channel spacing AWG, where only every fourth channel is used. These are commercially available today with e.g. 48-128 channels [18,19], of which 12-32 outputs could be used to receive 12-32 OFDM carriers after spectral magnification.

6. Conclusion

We have proposed a new scheme for AO-OFDM demultiplexing based on spectral magnification with time-lenses, enabling significantly reduced ICI after simple optical band-pass filtering. The experimental proof-of-principle demonstration confirms that improved BER performance is obtainable after spectral magnification. This scheme allows for the use of standard DWDM receivers to detect spectrally advanced OFDM signals.

Acknowledgments

We would like to acknowledge the Danish Research Council project Terabit Optical Regenerator (TOR) and the European Research Council (ERC) SOCRATES project. OFS Fitel Denmark ApS is acknowledged for kindly providing the highly nonlinear fibres.

References and links

1.

S. Chandrasekhar and Xiang Liu, “OFDM based superchannel transmission technology,” J. Lightwave Technol. 30(24), 3816–3823 (2012). [CrossRef]

2.

A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, and Y. Takatori, “No-Guard-Interval Coherent Optical OFDM for 100-Gb/s Long-Haul WDM Transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009). [CrossRef]

3.

H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” Proc. OFC 2002, paper ThD1. [CrossRef]

4.

K. Takiguchi, M. Oguma, H. Takahashi, and A. Mori, “Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160Gbit/s signal reception,” Electron. Lett. 46(8), 575–576 (2010). [CrossRef]

5.

A. J. Lowery, “Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers,” Opt. Express 18(13), 14129–14143 (2010). [CrossRef] [PubMed]

6.

W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008). [CrossRef] [PubMed]

7.

D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, and J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]

8.

L. B. Du, J. Schroeder, J. Carpenter, B. Eggleton, and A. J. Lowery, “Flexible All-Optical OFDM using WSSs,” Proc. OFC 2013, PDP5B.9 (2013). [CrossRef]

9.

M. E. Marhic, “Discrete Fourier transforms by single-mode star networks,” Opt. Lett. 12(1), 63–65 (1987). [CrossRef] [PubMed]

10.

D. Yang and S. Kumar, “Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT,” Opt. Express 17(20), 17214–17226 (2009). [CrossRef] [PubMed]

11.

R. Salem, M. A. Foster, and A. L. Gaeta, “Application of space–time duality to ultrahigh-speed optical signal processing,” Advances in Optics and Photonics 5(3), 274–317 (2013). [CrossRef]

12.

M. Nakazawa, T. Hirooka, F. Futami, and S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004). [CrossRef]

13.

E. Palushani, H. C. Hansen Mulvad, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, and P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012). [CrossRef]

14.

Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, and A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009). [CrossRef] [PubMed]

15.

E. Palushani, H. C. Hansen Mulvad, M. Galili, F. D. Ros, H. Hu, P. Jeppesen, and L. K. Oxenløwe, Spectral compression of a DWDM grid using optical time-lenses,” Proc. CLEO-PR & OECC/PS 2013, ThO2–1 (2013).

16.

B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994). [CrossRef]

17.

L. B. Du and A. J. Lowery, “The validity of “Odd and Even” channels for testing all-optical OFDM and Nyquist WDM long-haul fiber systems,” Opt. Express 20(26), B445–B451 (2012). [CrossRef] [PubMed]

18.

http://www.ntt-electronics.com/en/products/photonics/awg_mul_d.html.

19.

http://www.kylia.com/dwdmuxd.html.

20.

D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, and J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010). [CrossRef] [PubMed]

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4230) Fiber optics and optical communications : Multiplexing
(070.1170) Fourier optics and signal processing : Analog optical signal processing
(070.4340) Fourier optics and signal processing : Nonlinear optical signal processing

ToC Category:
Subsystems for Optical Networks and Datacomms

History
Original Manuscript: October 14, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 13, 2013
Published: December 23, 2013

Virtual Issues
European Conference and Exhibition on Optical Communication (2013) Optics Express

Citation
E. Palushani, H. C. Hansen Mulvad, D. Kong, P. Guan, M. Galili, and L.K. Oxenløwe, "All-optical OFDM demultiplexing by spectral magnification and band-pass filtering," Opt. Express 22, 136-144 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-1-136


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Chandrasekhar, Xiang Liu, “OFDM based superchannel transmission technology,” J. Lightwave Technol. 30(24), 3816–3823 (2012). [CrossRef]
  2. A. Sano, E. Yamada, H. Masuda, E. Yamazaki, T. Kobayashi, E. Yoshida, Y. Miyamoto, R. Kudo, K. Ishihara, Y. Takatori, “No-Guard-Interval Coherent Optical OFDM for 100-Gb/s Long-Haul WDM Transmission,” J. Lightwave Technol. 27(16), 3705–3713 (2009). [CrossRef]
  3. H. Sanjoh, E. Yamada, and Y. Yoshikuni, “Optical orthogonal frequency division multiplexing using frequency/time domain filtering for high spectral efficiency up to 1 bit/s/Hz,” Proc. OFC 2002, paper ThD1. [CrossRef]
  4. K. Takiguchi, M. Oguma, H. Takahashi, A. Mori, “Integrated-optic eight-channel OFDM demultiplexer and its demonstration with 160Gbit/s signal reception,” Electron. Lett. 46(8), 575–576 (2010). [CrossRef]
  5. A. J. Lowery, “Design of arrayed-waveguide grating routers for use as optical OFDM demultiplexers,” Opt. Express 18(13), 14129–14143 (2010). [CrossRef] [PubMed]
  6. W. Shieh, H. Bao, Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express 16(2), 841–859 (2008). [CrossRef] [PubMed]
  7. D. Hillerkuss, R. Schmogrow, T. Schellinger, M. Jordan, M. Winter, G. Huber, T. Vallaitis, R. Bonk, P. Kleinow, F. Frey, M. Roeger, S. Koenig, A. Ludwig, A. Marculescu, J. Li, M. Hoh, M. Dreschmann, J. Meyer, S. B. Ezra, N. Narkiss, B. Nebendahl, F. Parmigiani, P. Petropoulos, B. Resan, A. Oehler, K. Weingarten, T. Ellermeyer, J. Lutz, M. Moeller, M. Huebner, J. Becker, C. Koos, W. Freude, J. Leuthold, “26 Tbit s-1 line-rate super-channel transmission utilizing all-optical fast Fourier transform processing,” Nat. Photonics 5(6), 364–371 (2011). [CrossRef]
  8. L. B. Du, J. Schroeder, J. Carpenter, B. Eggleton, and A. J. Lowery, “Flexible All-Optical OFDM using WSSs,” Proc. OFC 2013, PDP5B.9 (2013). [CrossRef]
  9. M. E. Marhic, “Discrete Fourier transforms by single-mode star networks,” Opt. Lett. 12(1), 63–65 (1987). [CrossRef] [PubMed]
  10. D. Yang, S. Kumar, “Realization of optical OFDM using time lenses and its comparison with optical OFDM using FFT,” Opt. Express 17(20), 17214–17226 (2009). [CrossRef] [PubMed]
  11. R. Salem, M. A. Foster, A. L. Gaeta, “Application of space–time duality to ultrahigh-speed optical signal processing,” Advances in Optics and Photonics 5(3), 274–317 (2013). [CrossRef]
  12. M. Nakazawa, T. Hirooka, F. Futami, S. Watanabe, “Ideal distortion-free transmission using optical Fourier transformation and Fourier transform-limited optical pulses,” IEEE Photon. Technol. Lett. 16(4), 1059–1061 (2004). [CrossRef]
  13. E. Palushani, H. C. Hansen Mulvad, M. Galili, H. Hu, L. K. Oxenløwe, A. T. Clausen, P. Jeppesen, “OTDM-to-WDM conversion based on time-to-frequency mapping by time-domain optical Fourier transformation,” IEEE J. Sel. Top. Quantum Electron. 18(2), 681–688 (2012). [CrossRef]
  14. Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “High-resolution spectroscopy using a frequency magnifier,” Opt. Express 17(7), 5691–5697 (2009). [CrossRef] [PubMed]
  15. E. Palushani, H. C. Hansen Mulvad, M. Galili, F. D. Ros, H. Hu, P. Jeppesen, and L. K. Oxenløwe, Spectral compression of a DWDM grid using optical time-lenses,” Proc. CLEO-PR & OECC/PS 2013, ThO2–1 (2013).
  16. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994). [CrossRef]
  17. L. B. Du, A. J. Lowery, “The validity of “Odd and Even” channels for testing all-optical OFDM and Nyquist WDM long-haul fiber systems,” Opt. Express 20(26), B445–B451 (2012). [CrossRef] [PubMed]
  18. http://www.ntt-electronics.com/en/products/photonics/awg_mul_d.html .
  19. http://www.kylia.com/dwdmuxd.html .
  20. D. Hillerkuss, M. Winter, M. Teschke, A. Marculescu, J. Li, G. Sigurdsson, K. Worms, S. Ben Ezra, N. Narkiss, W. Freude, J. Leuthold, “Simple all-optical FFT scheme enabling Tbit/s real-time signal processing,” Opt. Express 18(9), 9324–9340 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited