OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 12817–12822
« Show journal navigation

A 23-watt single-frequency vertical-external-cavity surface-emitting laser

Fan Zhang, Bernd Heinen, Matthias Wichmann, Christoph Möller, Bernardette Kunert, Arash Rahimi-Iman, Wolfgang Stolz, and Martin Koch  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 12817-12822 (2014)
http://dx.doi.org/10.1364/OE.22.012817


View Full Text Article

Acrobat PDF (2566 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a single-frequency semiconductor disk laser which generates 23.6 W output power in continuous wave operation, at a wavelength of 1013 nm. The high output power is a result of optimizing the chip design, thermal management and the cavity configuration. By applying passive stabilization techniques, the free-running linewidth is measured to be 407 kHz for a sampling time of 1 ms, while undercutting 100 kHz in the microsecond domain.

© 2014 Optical Society of America

1. Introduction

In recent years, single-frequency vertical-external-cavity surface-emitting lasers (VECSELs) have been intensively investigated owing to their potential to combine a high output power [1

1. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012). [CrossRef]

,2

2. T. Leinonen, S. Ranta, M. Tavast, R. Epstein, G. Fetzer, N. Sandalphon, N. Van Lieu, and M. Guina, “High power (23W) vertical external cavity surface emitting laser emitting at 1180 nm,” Proc. SPIE 8606, 860604 (2013). [CrossRef]

], a narrow linewidth [3

3. A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “Optical noise of stabilized high-power single frequency optically pumped semiconductor laser,” Opt. Lett. 39(6), 1573–1576 (2014). [CrossRef] [PubMed]

6

6. S. Kaspar, M. Rattunde, T. Topper, B. Rosener, C. Manz, K. Kohler, and J. Wagner, “Linewidth narrowing and power scaling of single-frequency 2.X µm GaSb-based semiconductor disk lasers,” IEEE J. Quantum Electron. 49(3), 314–324 (2013). [CrossRef]

] and a large frequency-tunability [6

6. S. Kaspar, M. Rattunde, T. Topper, B. Rosener, C. Manz, K. Kohler, and J. Wagner, “Linewidth narrowing and power scaling of single-frequency 2.X µm GaSb-based semiconductor disk lasers,” IEEE J. Quantum Electron. 49(3), 314–324 (2013). [CrossRef]

] in one device. Such lasers, also called semiconductor disk lasers (SDLs), are available for a broad spectral range between the ultraviolet [7

7. Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, “Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator,” Opt. Lett. 33(15), 1705–1707 (2008). [CrossRef] [PubMed]

] and the mid-infrared [8

8. M. Rahim, A. Khiar, F. Felder, M. Fill, H. Zogg, and M. W. Sigrist, “5-μm vertical external-cavity surface-emitting laser (VECSEL) for spectroscopic applications,” Appl. Phys. B 100(2), 261–264 (2010). [CrossRef]

] and are versatile systems that attract the attention from a wide range of application areas, such as spectroscopy [9

9. W. J. Alford, G. J. Fetzer, R. J. Epstein, N. Sandalphon, S. Van Lieu, M. Ranta, T. Tavast, Leinonen, and M. Guina, “Optically pumped semiconductor lasers for precision spectroscopic applications,” IEEE J. Quantum Electron. 49(8), 719–727 (2013). [CrossRef]

], metrology [10

10. B. Cocquelin, G. Lucas-Leclin, P. Georges, I. Sagnes, and A. Garnache, “Design of a low-threshold VECSEL emitting at 852 nm for Cesium atomic clocks,” Opt. Quantum Electron. 40(2–4), 167–173 (2008). [CrossRef]

], optical free-space telecommunication and laser cooling [11

11. S. Ranta, M. Tavast, T. Leinonen, R. Epstein, and M. Guina, “Narrow linewidth 1118/559 nm VECSEL based on strain compensated GaInAs/GaAs quantum-wells for laser cooling of Mg-ions,” Opt. Mater. Express 2(8), 1011–1019 (2012). [CrossRef]

].

The other advantage of VECSELs arises from the combination of a semiconductor laser chip with an external cavity, in which intra-cavity elements can be easily employed to access diverse operating conditions. For instance, birefringent filters (BRFs) inside the cavity can enforce single-frequency continuous wave (CW) operation with excellent beam quality [12

12. K. Gardner, R. Abram, and E. Riis, “A birefringent etalon as single-mode selector in a laser cavity,” Opt. Express 12(11), 2365–2370 (2004). [CrossRef] [PubMed]

], while the use of an intra-cavity etalon can promote a stable two-color emission [13

13. A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100(4), 041114 (2012). [CrossRef]

, 14

14. M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, and M. Koch, “Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers,” Opt. Express 21(26), 31940–31950 (2013). [CrossRef] [PubMed]

], which can be utilized for the generation of CW THz-radiation via frequency conversion in a nonlinear crystal [15

15. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010). [CrossRef] [PubMed]

]. Employing saturable absorber mirrors VECSELs can be driven in a mode-locked regime [16

16. M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL),” Opt. Express 21(21), 24904–24911 (2013). [CrossRef] [PubMed]

,17

17. K. G. Wilcox, F. Rutz, R. Wilk, H. D. Foreman, J. S. Roberts, J. Sigmund, H. L. Hartnagel, M. Koch, and A. C. Tropper, “Terahertz imaging system based on LT-GaAsSb antenna driven by all-semiconductor femtosecond source,” Electron. Lett. 42(20), 1159–1160 (2006). [CrossRef]

] with peak powers as high as 4.3 kW [18

18. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013). [CrossRef] [PubMed]

]. It is worth noting, that nowadays mode-locking even without the use of saturable absorbers is observed for such lasers [19

19. L. Kornaszewski, G. Maker, G. P. A. Malcolm, M. Butkus, E. U. Rafailov, and C. J. Hamilton, “SESAM-free mode-locked semiconductor disk laser,” Laser Photon. Rev. 6(6), L20–L23 (2012). [CrossRef]

23

23. M. Gaafar, C. Möller, M. Wichmann, B. Heinen, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, “Harmonic self-mode-locking of an optically pumped semiconductor disc laser,” Electron. Lett. 50(7), 542–543 (2014). [CrossRef]

].

A thorough thermal management allows for considerably high output powers up to 106 W in transverse and longitudinal multimode operation [1

1. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012). [CrossRef]

]. Besides high output powers, however, numerous applications require a high degree of coherence and stability of the light source. Thus, frequency noise reduction, thermal stability and cavity optimization become significantly important in order to improve the performance of single-frequency VECSELs beyond current limitations. Such passive stabilization techniques serve as the foundation for high-power lasers with a narrow linewidth, prior to employing active stabilization schemes [3

3. A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “Optical noise of stabilized high-power single frequency optically pumped semiconductor laser,” Opt. Lett. 39(6), 1573–1576 (2014). [CrossRef] [PubMed]

,6

6. S. Kaspar, M. Rattunde, T. Topper, B. Rosener, C. Manz, K. Kohler, and J. Wagner, “Linewidth narrowing and power scaling of single-frequency 2.X µm GaSb-based semiconductor disk lasers,” IEEE J. Quantum Electron. 49(3), 314–324 (2013). [CrossRef]

,24

24. M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11(12), 1551–1553 (1999). [CrossRef]

].

In this work, we demonstrate a narrow-linewidth single-frequency VECSEL emitting at 1013 nm, with an output power of 23.6 W. To our knowledge, it represents the highest output power for single frequency VECSELs reported so far. Passive stabilization techniques and an optimized VECSEL design are employed in order to demonstrate a sub-100-kHz free-running linewidth in the microsecond domain and a linewidth of 407 kHz for a sampling time of 1 ms, both at 23.6 W. Moreover, we point out the main contributors to frequency noise that limit the long-time stability of our high-power single-frequency VECSEL.

2. VECSEL chip design and setups

3. Experimental results

A heat sink temperature of 16 °C allows for single-frequency operation, which is achieved at a fundamental transverse mode and a single longitudinal mode, up to a maximum output power of 23.6 W (Fig. 2).
Fig. 2 Output power as function of net input power.
To maintain single-frequency operation at high powers, a careful tuning of the BRF is required. However, this tuning causes variations in the resulting output power. The linear fitting of the single-frequency output power, shown as the dashed line in Fig. 2, yields a slope efficiency of 44% and a laser threshold at about 15 W net input power. Neglecting the 30%-high reflection loss of the pump beam at the air-chip interface, a total optical-to-optical efficiency of 33% is achieved for an output power of 23.6 W at 71.2 W net input power.

Single-frequency operation is confirmed via a self-made high-resolution confocal scanning Fabry-Perot interferometer (SFPI) which reveals a free spectral range (FSR) of 500 MHz [Fig. 3(a)].
Fig. 3 (a) Scanning Fabry-Perot interferometer spectrum at an output power of 23 W. The free spectral range (FSR) amounts to 500 MHz. Inset: multiple-longitudinal-mode spectrum at a net pump power of 73 W. (b) Output beam profile captured by a CCD camera representing TEM00 mode operation. The intensity distributions of the horizontal and vertical cross-sections through the center of the spot are shown on top and right, respectively.
The slightly asymmetrical shape of peaks in the SPFI spectra is due to misalignment and the difference between rise- and fall-time of the current amplifier employed in the SPFI. At an output power of 20 W, single-frequency operation which lasted for more than one minute without mode hopping was observed. As the net input power is increased above 70 W, the VECSEL starts to experience thermal roll-over [26

26. B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012). [CrossRef]

]. If the chip is pumped stronger, side-peaks will arise and single-frequency operation will turn into multiple-longitudinal-mode operation, which is indicated by black squares in Fig. 2. The corresponding SFPI spectrum is shown in the inset of [Fig. 3(a)]. To demonstrate the fundamental-transverse-mode profile, a CCD camera image is recorded under single-frequency operation and is presented in [Fig. 3(b)], with Gaussian cross-sections in both dimensions.

4. Conclusion

To summarize, we presented a high-power single-frequency VECSEL operating at an emission wavelength of 1013 nm with a maximum output power of 23.6 W. The linewidth of the emission is determined to be in the sub-100-kHz range for short sampling times of 100µs, while a linewidth of 407 kHz is obtained at a sampling time of 1 ms. The study of the linewidth as function of the sampling time reveals that the stability of the free-running VECSEL is mainly limited by low frequency noise, which could be compensated by active-stabilization techniques in future studies [24

24. M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11(12), 1551–1553 (1999). [CrossRef]

]. With the help of improved thermal management techniques, we have the reason to believe that it is possible to push the single-frequency output power above 30 W.

Acknowledgment

The authors acknowledge financial support from the German Science Foundation (DFG: GRK 1782, DFG: SFB 1083).

References and links

1.

B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, and W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012). [CrossRef]

2.

T. Leinonen, S. Ranta, M. Tavast, R. Epstein, G. Fetzer, N. Sandalphon, N. Van Lieu, and M. Guina, “High power (23W) vertical external cavity surface emitting laser emitting at 1180 nm,” Proc. SPIE 8606, 860604 (2013). [CrossRef]

3.

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “Optical noise of stabilized high-power single frequency optically pumped semiconductor laser,” Opt. Lett. 39(6), 1573–1576 (2014). [CrossRef] [PubMed]

4.

A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, and W. Stolz, “15 W single frequency optically pumped semiconductor laser with sub-megahertz linewidth,” IEEE Photon. Technol. Lett. 26(2), 131–133 (2014). [CrossRef]

5.

A. Rantamaki, A. Chamorovskiy, J. Lyytikainen, and O. Okhotnikov, “4.6-W single frequency semiconductor disk laser with <75 kHz linewidth,” IEEE Photon. Technol. Lett. 24(16), 1378–1380 (2012). [CrossRef]

6.

S. Kaspar, M. Rattunde, T. Topper, B. Rosener, C. Manz, K. Kohler, and J. Wagner, “Linewidth narrowing and power scaling of single-frequency 2.X µm GaSb-based semiconductor disk lasers,” IEEE J. Quantum Electron. 49(3), 314–324 (2013). [CrossRef]

7.

Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, and T. Sasaki, “Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator,” Opt. Lett. 33(15), 1705–1707 (2008). [CrossRef] [PubMed]

8.

M. Rahim, A. Khiar, F. Felder, M. Fill, H. Zogg, and M. W. Sigrist, “5-μm vertical external-cavity surface-emitting laser (VECSEL) for spectroscopic applications,” Appl. Phys. B 100(2), 261–264 (2010). [CrossRef]

9.

W. J. Alford, G. J. Fetzer, R. J. Epstein, N. Sandalphon, S. Van Lieu, M. Ranta, T. Tavast, Leinonen, and M. Guina, “Optically pumped semiconductor lasers for precision spectroscopic applications,” IEEE J. Quantum Electron. 49(8), 719–727 (2013). [CrossRef]

10.

B. Cocquelin, G. Lucas-Leclin, P. Georges, I. Sagnes, and A. Garnache, “Design of a low-threshold VECSEL emitting at 852 nm for Cesium atomic clocks,” Opt. Quantum Electron. 40(2–4), 167–173 (2008). [CrossRef]

11.

S. Ranta, M. Tavast, T. Leinonen, R. Epstein, and M. Guina, “Narrow linewidth 1118/559 nm VECSEL based on strain compensated GaInAs/GaAs quantum-wells for laser cooling of Mg-ions,” Opt. Mater. Express 2(8), 1011–1019 (2012). [CrossRef]

12.

K. Gardner, R. Abram, and E. Riis, “A birefringent etalon as single-mode selector in a laser cavity,” Opt. Express 12(11), 2365–2370 (2004). [CrossRef] [PubMed]

13.

A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, and M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100(4), 041114 (2012). [CrossRef]

14.

M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, and M. Koch, “Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers,” Opt. Express 21(26), 31940–31950 (2013). [CrossRef] [PubMed]

15.

M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, and S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010). [CrossRef] [PubMed]

16.

M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, and U. Keller, “Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL),” Opt. Express 21(21), 24904–24911 (2013). [CrossRef] [PubMed]

17.

K. G. Wilcox, F. Rutz, R. Wilk, H. D. Foreman, J. S. Roberts, J. Sigmund, H. L. Hartnagel, M. Koch, and A. C. Tropper, “Terahertz imaging system based on LT-GaAsSb antenna driven by all-semiconductor femtosecond source,” Electron. Lett. 42(20), 1159–1160 (2006). [CrossRef]

18.

K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, and W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013). [CrossRef] [PubMed]

19.

L. Kornaszewski, G. Maker, G. P. A. Malcolm, M. Butkus, E. U. Rafailov, and C. J. Hamilton, “SESAM-free mode-locked semiconductor disk laser,” Laser Photon. Rev. 6(6), L20–L23 (2012). [CrossRef]

20.

A. R. Albrecht, Y. Wang, M. Ghasemkhani, D. V. Seletskiy, J. G. Cederberg, and M. Sheik-Bahae, “Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surface-emitting lasers,” Opt. Express 21(23), 28801–28808 (2013). [CrossRef] [PubMed]

21.

K. G. Wilcox and A. C. Tropper, “Comment on SESAM-free mode-locked semiconductor disk laser,” Laser Photon. Rev. 7(3), 422–423 (2013). [CrossRef]

22.

J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, and S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22(6), 6422–6427 (2014). [CrossRef] [PubMed]

23.

M. Gaafar, C. Möller, M. Wichmann, B. Heinen, B. Kunert, A. Rahimi-Iman, W. Stolz, and M. Koch, “Harmonic self-mode-locking of an optically pumped semiconductor disc laser,” Electron. Lett. 50(7), 542–543 (2014). [CrossRef]

24.

M. A. Holm, D. Burns, A. I. Ferguson, and M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11(12), 1551–1553 (1999). [CrossRef]

25.

L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, and S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 88(2), 021105 (2006). [CrossRef]

26.

B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, and W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012). [CrossRef]

27.

F. Riehle, Frequency Standards: Basics and Applications, (Wiley-VCH, 2005), Chap. 2.

28.

A. Garnache, A. Ouvrard, and D. Romanini, “Single-frequency operation of external-cavity VCSELs: non-linear multimode temporal dynamics and quantum limit,” Opt. Express 15(15), 9403–9417 (2007). [CrossRef] [PubMed]

OCIS Codes
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers
(140.7270) Lasers and laser optics : Vertical emitting lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: March 27, 2014
Revised Manuscript: May 8, 2014
Manuscript Accepted: May 13, 2014
Published: May 19, 2014

Citation
Fan Zhang, Bernd Heinen, Matthias Wichmann, Christoph Möller, Bernardette Kunert, Arash Rahimi-Iman, Wolfgang Stolz, and Martin Koch, "A 23-watt single-frequency vertical-external-cavity surface-emitting laser," Opt. Express 22, 12817-12822 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-12817


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Heinen, T.-L. Wang, M. Sparenberg, A. Weber, B. Kunert, J. Hader, S. W. Koch, J. V. Moloney, M. Koch, W. Stolz, “106 W continuous-wave output power from vertical-external-cavity surface-emitting laser,” Electron. Lett. 48(9), 516–517 (2012). [CrossRef]
  2. T. Leinonen, S. Ranta, M. Tavast, R. Epstein, G. Fetzer, N. Sandalphon, N. Van Lieu, M. Guina, “High power (23W) vertical external cavity surface emitting laser emitting at 1180 nm,” Proc. SPIE 8606, 860604 (2013). [CrossRef]
  3. A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz, “Optical noise of stabilized high-power single frequency optically pumped semiconductor laser,” Opt. Lett. 39(6), 1573–1576 (2014). [CrossRef] [PubMed]
  4. A. Laurain, C. Mart, J. Hader, J. V. Moloney, B. Kunert, W. Stolz, “15 W single frequency optically pumped semiconductor laser with sub-megahertz linewidth,” IEEE Photon. Technol. Lett. 26(2), 131–133 (2014). [CrossRef]
  5. A. Rantamaki, A. Chamorovskiy, J. Lyytikainen, O. Okhotnikov, “4.6-W single frequency semiconductor disk laser with <75 kHz linewidth,” IEEE Photon. Technol. Lett. 24(16), 1378–1380 (2012). [CrossRef]
  6. S. Kaspar, M. Rattunde, T. Topper, B. Rosener, C. Manz, K. Kohler, J. Wagner, “Linewidth narrowing and power scaling of single-frequency 2.X µm GaSb-based semiconductor disk lasers,” IEEE J. Quantum Electron. 49(3), 314–324 (2013). [CrossRef]
  7. Y. Kaneda, J. M. Yarborough, L. Li, N. Peyghambarian, L. Fan, C. Hessenius, M. Fallahi, J. Hader, J. V. Moloney, Y. Honda, M. Nishioka, Y. Shimizu, K. Miyazono, H. Shimatani, M. Yoshimura, Y. Mori, Y. Kitaoka, T. Sasaki, “Continuous-wave all-solid-state 244 nm deep-ultraviolet laser source by fourth-harmonic generation of an optically pumped semiconductor laser using CsLiB6O10 in an external resonator,” Opt. Lett. 33(15), 1705–1707 (2008). [CrossRef] [PubMed]
  8. M. Rahim, A. Khiar, F. Felder, M. Fill, H. Zogg, M. W. Sigrist, “5-μm vertical external-cavity surface-emitting laser (VECSEL) for spectroscopic applications,” Appl. Phys. B 100(2), 261–264 (2010). [CrossRef]
  9. W. J. Alford, G. J. Fetzer, R. J. Epstein, N. Sandalphon, S. Van Lieu, M. Ranta, T. Tavast, Leinonen, M. Guina, “Optically pumped semiconductor lasers for precision spectroscopic applications,” IEEE J. Quantum Electron. 49(8), 719–727 (2013). [CrossRef]
  10. B. Cocquelin, G. Lucas-Leclin, P. Georges, I. Sagnes, A. Garnache, “Design of a low-threshold VECSEL emitting at 852 nm for Cesium atomic clocks,” Opt. Quantum Electron. 40(2–4), 167–173 (2008). [CrossRef]
  11. S. Ranta, M. Tavast, T. Leinonen, R. Epstein, M. Guina, “Narrow linewidth 1118/559 nm VECSEL based on strain compensated GaInAs/GaAs quantum-wells for laser cooling of Mg-ions,” Opt. Mater. Express 2(8), 1011–1019 (2012). [CrossRef]
  12. K. Gardner, R. Abram, E. Riis, “A birefringent etalon as single-mode selector in a laser cavity,” Opt. Express 12(11), 2365–2370 (2004). [CrossRef] [PubMed]
  13. A. Chernikov, M. Wichmann, M. K. Shakfa, M. Scheller, J. V. Moloney, S. W. Koch, M. Koch, “Time-dynamics of the two-color emission from vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 100(4), 041114 (2012). [CrossRef]
  14. M. Wichmann, M. K. Shakfa, F. Zhang, B. Heinen, M. Scheller, A. Rahimi-Iman, W. Stolz, J. V. Moloney, S. W. Koch, M. Koch, “Evolution of multi-mode operation in vertical-external-cavity surface-emitting lasers,” Opt. Express 21(26), 31940–31950 (2013). [CrossRef] [PubMed]
  15. M. Scheller, J. M. Yarborough, J. V. Moloney, M. Fallahi, M. Koch, S. W. Koch, “Room temperature continuous wave milliwatt terahertz source,” Opt. Express 18(26), 27112–27117 (2010). [CrossRef] [PubMed]
  16. M. Mangold, V. J. Wittwer, C. A. Zaugg, S. M. Link, M. Golling, B. W. Tilma, U. Keller, “Femtosecond pulses from a modelocked integrated external-cavity surface emitting laser (MIXSEL),” Opt. Express 21(21), 24904–24911 (2013). [CrossRef] [PubMed]
  17. K. G. Wilcox, F. Rutz, R. Wilk, H. D. Foreman, J. S. Roberts, J. Sigmund, H. L. Hartnagel, M. Koch, A. C. Tropper, “Terahertz imaging system based on LT-GaAsSb antenna driven by all-semiconductor femtosecond source,” Electron. Lett. 42(20), 1159–1160 (2006). [CrossRef]
  18. K. G. Wilcox, A. C. Tropper, H. E. Beere, D. A. Ritchie, B. Kunert, B. Heinen, W. Stolz, “4.35 kW peak power femtosecond pulse mode-locked VECSEL for supercontinuum generation,” Opt. Express 21(2), 1599–1605 (2013). [CrossRef] [PubMed]
  19. L. Kornaszewski, G. Maker, G. P. A. Malcolm, M. Butkus, E. U. Rafailov, C. J. Hamilton, “SESAM-free mode-locked semiconductor disk laser,” Laser Photon. Rev. 6(6), L20–L23 (2012). [CrossRef]
  20. A. R. Albrecht, Y. Wang, M. Ghasemkhani, D. V. Seletskiy, J. G. Cederberg, M. Sheik-Bahae, “Exploring ultrafast negative Kerr effect for mode-locking vertical external-cavity surface-emitting lasers,” Opt. Express 21(23), 28801–28808 (2013). [CrossRef] [PubMed]
  21. K. G. Wilcox, A. C. Tropper, “Comment on SESAM-free mode-locked semiconductor disk laser,” Laser Photon. Rev. 7(3), 422–423 (2013). [CrossRef]
  22. J. V. Moloney, I. Kilen, A. Bäumner, M. Scheller, S. W. Koch, “Nonequilibrium and thermal effects in mode-locked VECSELs,” Opt. Express 22(6), 6422–6427 (2014). [CrossRef] [PubMed]
  23. M. Gaafar, C. Möller, M. Wichmann, B. Heinen, B. Kunert, A. Rahimi-Iman, W. Stolz, M. Koch, “Harmonic self-mode-locking of an optically pumped semiconductor disc laser,” Electron. Lett. 50(7), 542–543 (2014). [CrossRef]
  24. M. A. Holm, D. Burns, A. I. Ferguson, M. D. Dawson, “Actively stabilized single-frequency vertical-external-cavity AlGaAs laser,” IEEE Photon. Technol. Lett. 11(12), 1551–1553 (1999). [CrossRef]
  25. L. Fan, M. Fallahi, J. T. Murray, R. Bedford, Y. Kaneda, A. R. Zakharian, J. Hader, J. V. Moloney, W. Stolz, S. W. Koch, “Tunable high-power high-brightness linearly polarized vertical-external-cavity surface-emitting lasers,” Appl. Phys. Lett. 88(2), 021105 (2006). [CrossRef]
  26. B. Heinen, F. Zhang, M. Sparenberg, B. Kunert, M. Koch, W. Stolz, “On the measurement of the thermal resistance of vertical-external-cavity surface-emitting lasers (VECSELs),” IEEE J. Quantum Electron. 48(7), 934–940 (2012). [CrossRef]
  27. F. Riehle, Frequency Standards: Basics and Applications, (Wiley-VCH, 2005), Chap. 2.
  28. A. Garnache, A. Ouvrard, D. Romanini, “Single-frequency operation of external-cavity VCSELs: non-linear multimode temporal dynamics and quantum limit,” Opt. Express 15(15), 9403–9417 (2007). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited