OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 11 — Jun. 2, 2014
  • pp: 13773–13783
« Show journal navigation

Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems

Cheng Jiang, Yuanshun Cui, and Ka-Di Zhu  »View Author Affiliations


Optics Express, Vol. 22, Issue 11, pp. 13773-13783 (2014)
http://dx.doi.org/10.1364/OE.22.013773


View Full Text Article

Acrobat PDF (1114 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Nanomechanical resonators provide an unparalleled mass sensitivity sufficient to detect single biomolecules, viruses and nanoparticles. In this work we propose a scheme for mass sensing based on the hybrid opto-electromechanical system, where a mechanical resonator is coupled to an optical cavity and a microwave cavity simultaneously. When the two cavities are driven by two pump fields with proper frequencies and powers, a weak probe field is used to scan across the optical cavity resonance frequency. The mass of a single baculovirus landing onto the surface of the mechanical resonator can be measured by tracking the resonance frequency shift in the probe transmission spectrum before and after the deposition. We also propose a nonlinear mass sensor based on the measurement of the four-wave mixing (FWM) spectrum, which can be used to weigh a single 20-nm-diameter gold nanoparticle with sub-femtogram resolution.

© 2014 Optical Society of America

1. Introduction

Cavity optomechanics, where the mechanical resonator is coupled to the electromagnetic cavity via radiation pressure force, is drawing considerable research interest in recent years [22

22. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef] [PubMed]

24

24. M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012). [CrossRef]

]. The optical response of optomechanical systems is modified due to the mechanical interactions, leading to effects such as normal mode splitting [25

25. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724–727 (2009). [CrossRef]

] and optomechanically induced transparency [26

26. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef] [PubMed]

28

28. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011). [CrossRef]

]. Likewise, the optomechanical interaction allows for the readout of the mechanical motion with high sensitivity [29

29. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006). [CrossRef] [PubMed]

, 30

30. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009). [CrossRef]

], quantum ground state cooling of the mechanical resonators [31

31. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011). [CrossRef]

, 32

32. J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011). [CrossRef]

], and quantum coherent coupling between light and mechanical resonator [33

33. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012). [CrossRef]

,34

34. T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013). [CrossRef]

]. More recently, Addrews et al. have successfully coupled a micromechanical resonator to both a microwave cavity and an optical cavity [35

35. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014). [CrossRef]

], which consists of a hybrid opto-electromechanical system [36

36. C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys. Conf. Ser. 264, 012025 (2011). [CrossRef]

38

38. K. N. Qu and G. S. Agarwal, “Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems,” Phys. Rev. A 87, 031802(R) (2013). [CrossRef]

]. The vibration of the resonator formed by a silicon nitride (Si3N4) membrane with low dissipation changes the resonance frequencies of both the optical and microwave cavities. When the cavities are driven by two pump fields with suitable frequencies and powers, respectively, and a weak probe field scans across the optical cavity resonance frequency, the resonance frequency of of the membrane can be obtained from the probe transmission spectrum. Consequently, the accreted mass deposited on the membrane can be weighed easily according to the frequency shift. The extremely narrow linewidth of the membrane [35

35. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014). [CrossRef]

] makes it a high-resolution mass sensor. Similar to the mass sensing demonstrated by Liu et al. [17

17. F. Liu and M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors 13, 146–147 (2013). [CrossRef]

, 18

18. F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21, 19555–19567 (2013). [CrossRef] [PubMed]

], the mass sensor proposed here is also based on monitoring the frequency shift of the mechanical resonator. However, only one laser provides the optical power both for actuation and high resolution monitoring of the mechanical resonant frequency in Liu’s experiment. In the hybrid opto-electromechanical system we consider here, two pump fields are used to drive the two cavities and one weak probe field is applied to track the resonance frequency of the oscillating mechanical mode by detecting the probe transmission spectrum. Such a pump-probe technique has been widely used in optomechanical experiments [26

26. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef] [PubMed]

28

28. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011). [CrossRef]

, 35

35. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014). [CrossRef]

].

2. Model and theory

Fig. 1 Schematic diagram of the hybrid opto-electromechanical system. A mechanical resonator c couples to both an optical cavity modes a and a microwave cavity mode b denoted by the equivalent inductance L and equivalent capacitance C. The optical cavity is driven by a strong pump beam Eo in the simultaneous presence of a weak probe beam Ep while the microwave cavity is only driven by a pump beam Ee.

We can see from Eq. (21) that the output field contains two input components (Ωo and Ωp) and one generated four-wave mixing (FWM) component at the frequency 2Ωo − Ωp. FWM is a third-order nonlinear process [42

42. R. W. Boyd, Nonlinear Optics (Academic, 2008).

], where two pump photons at the frequency Ωo are converted, due to the optomechanical intercation between photons and phonons, into one idler and one probe photon at the frequencies Ωidler and Ωp, respectively, in accordance with energy conversation: Ωidler = 2Ωo − Ωp. This process has been experimentally observed in an ultrahigh-Q toroid microcavity [44

44. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]

] and theoretically investigated in a single-mode optomechanical system [45

45. S. Huang and G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010). [CrossRef]

]. Based on the current experimental conditions, FWM can be observed in the hybrid opto-electromechanical systems. The transmission of the probe beam, defined by the ratio of the output and input field amplitudes at the probe frequency [26

26. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef] [PubMed]

], is then given by
t(Ωp)=Epκo,exta+Ep=1[κo,extκo+iΔoiδ1f(δ)igo2noκo,ext(κo+iΔoiδ)2].
(22)
Likewise, the FWM intensity in terms of the probe field can be defined as
FWM=|κo,extaEp|2=|1f(δ)*(κo+iΔo)2igo2κo,ext2Eo2(κo+iδ)2+iΔo2|2.
(23)
In the following, we would propose a scheme for mass sensing based on the measurement of the probe transmission and FWM spectrum, where the resonance frequency of the membrane can be determined. The particles depositing onto the surface of the membrane will result in the resonant frequency shift. The relationship between the frequency shift Δω with the deposited mass Δm is given by [3

3. K. L. Ekinci, Y. T. Tang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004). [CrossRef]

]
Δm=2meffωmΔω=1Δω,
(24)
where = (−2meff/ωm)−1 is defined as the mass responsivity.

3. Results and discussion

For illustration of our numerical results, we choose the experimentally realizable hybrid opto-electromechanical system. The parameters used in the simulation are [31

31. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011). [CrossRef]

, 35

35. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014). [CrossRef]

]: ωo = 2π × 282 THz, ωe = 2π × 7.1 GHz, κo = 2π × 1.65 MHz, κe = 2π × 1.6 MHz, κo,ext = 0.76κo, κe,ext = 0.11κe, go = 2π × 27 Hz, ge = 2π × 2.7 Hz, ωm = 2π × 5.6 MHz, γm = 2π × 4 Hz, and the effective mass of the resonator is approximately meff = 45 pg. We take baculovirus and gold nanoparticle (the density of Au is ρAu =19300 kg/m3) as deposition sample, respectively. It should be noted that the hybrid system has to operate under cryogenic temperature to keep the superconducting circuitry working.

Mass sensing is based on detecting the frequency shift of the mechanical resonator before and after the adsorption of the accreted mass. Firstly, we would present a scheme for measuring the resonance frequency of the mechanical resonator based on this hybrid opto-electromechanical system. Figure 2(a) plots the transmission spectrum of the probe field as a function of the probe-cavity detuning Δp with Δo = Δe = 0 and Po = Pe = 0.01 μW. It can be seen clearly from this figure that there is a broad transmission dip when the probe field is resonant with the optical cavity, which corresponds to the cavity absorption. Furthermore, two sharp sideband peaks, representing the resonant amplification and absorption of the mechanical mode, locate exactly at Δp = ±ωm. The spectral width of the sideband peaks is the mechanical damping rate γm/2π = 4 Hz, which can be seen clearly from the enlarged image in Fig. 2(b). This extremely narrow spectral linewidth is beneficial in resolving the frequency shifts due to accreted mass. Therefore, Fig. 2 provides us an convenient method to measure the resonance frequency of the mechanical resonator. The measurement process can be illustrated as follows. (1) We apply a strong optical pump field and a strong microwave pump field to the respective cavity, and fix the pump fields at the resonance of the cavity frequencies (Δo = Δe = 0); (2) we then apply another weak probe field to the optical cavity, and scan the probe frequency across the cavity frequency. By detecting the probe transmission spectrum, one can easily obtain the resonance frequency of the mechanical resonator. The physical mechanism for this phenomenon can be understood as a result of the radiation pressure force oscillating at the beat frequency δ between the optical pump and probe fields. If δ is close to the resonance frequency ωm, the mechanical resonator starts to oscillate coherently. The induced motion leads to a mechanical sideband on the pump field that can interfere with the probe field and hence modifies the probe transmission spectrum.

Fig. 2 (a) The probe transmission |t|2 as a function of the probe-cavity detuning Δp with Δo = Δe = 0 and Po = Pe = 0.01 μW, where two sideband peaks locate exactly at Δp = ±ωm. (b) The enlarged sideband peaks in (a), and the spectral width is the mechanical damping rate γm/2π. The other parameters used are ωo = 2π × 282 THz, ωe = 2π × 7.1 GHz, κo = 2π × 1.65 MHz, κe = 2π × 1.6 MHz, κo,ext = 0.76κo, κe,ext = 0.11κe, go = 2π × 27 Hz, ge = 2π × 2.7 Hz, ωm = 2π × 5.6 MHz, and γm = 2π × 4 Hz.

After the resonance frequency of the mechanical resonator is determined via the probe transmission spectrum, we can subsequently measure the frequency shift caused by an object landing on the resonator. The frequency shift depends on the mass and position of the deposited object, so trapping an object at a known position would allow its mass to be determined directly. We assume for simplicity that the relationship between the accreted mass and the frequency shift satisfies Eq. (24) [7

7. J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012). [CrossRef]

]. If a single baculovirus lands onto the surface of the mechanical resonator, the total mass of the resonator would be increased, resulting in reduction of the resonance frequency. Figure 3 plots the probe transmission spectrum as a function of the probe-cavity detuning Δp before (solid curve) and after (dashed curve) the adsorption of a single baculovirus in the vicinity of the mechanical resonance frequency. We can see that the resonance frequency shift Δω = −2π × 93 Hz can be resolved in the transmission spectrum due to the increased mass of the resonator. Based on the resonance frequency shift and using Eq. (24), we found the added mass to be 1.5 fg (1 fg = 10−15 g), about the mass of a single baculovirus [46

46. B. Ilic, Y. Yang, and H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett. 85, 2604–2606 (2004). [CrossRef]

]. Therefore, the hybrid opto-electromechanical system studied here could be used to weigh the mass of a single virus. Though the principle of mass sensing we propose is simple and feasible, it remains challenging to realize such a mass sensor in experiments. For example, the baculovirus and the mechanical resonator have to be dealt with by some specific process before the adsorption of the baculovirus [46

46. B. Ilic, Y. Yang, and H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett. 85, 2604–2606 (2004). [CrossRef]

]. In addition, mass responsivity is an important parameter to evaluate the performance of the mechanical resonator for mass sensing. The inset of Fig. 3 shows the direct linear relationship between the resonance frequency shifts and the number of the baculovirus landing on the mechanical resonator. Such a linear relationship has been verified by various experiments [6

6. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006). [CrossRef] [PubMed]

, 8

8. A. Gupta, D. Akin, and R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett. 84, 1976–1978 (2004). [CrossRef]

]. The negative slope of the line gives the mass responsivity of the resonator. Both smaller mass and higher resonance frequency of the resonator are crucial in obtaining higher mass responsivity. Sun and Zheng et al. have recently designed and experimentally demonstrated femtogram L3-nanobeam optomechanical cavities by embedding a doubly clamped nanomechanical double-beam resonator with mass as small as 25 fg in a finely tuned two-dimensional (2D) photonic crystal (PC) slab, where optical transduction of the fundamental flexural mode around 1 GHz was demonstrated [47

47. X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012). [CrossRef] [PubMed]

49

49. J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012). [CrossRef] [PubMed]

]. They also pointed out that such femtogram-mass, high-mechanical resonance frequency structures could be used as ultrasensitive sensors of mass, force and displacement.

Fig. 3 The simulation results of the probe transmission |t|2 versus the probe-cavity detuning Δp before and after adsorption of a single baculovirus on the mechanical resonator. The frequency shift of Δω/2π = 93 Hz can be easily resolved in the spectrum. Here, we have used the left peak in Fig. 2(b) to demonstrate the validity of our proposed mass sensing scheme. The inset plots the frequency shift as a function of the number of the virus adsorbed on the resonator. Other parameters are the same as in figure 2.

Furthermore, the hybrid opto-electromechanical system can be employed as a nonlinear mass sensor based on the third-order nonlinear optical effect. Figure 4 plots the FWM spectrum as a function of the probe-cavity detuning with Δo = Δe = 0 before and after a binding event of a gold nanoparticle of 20 nanometers in diameter. Similarly, a narrow peak appears at Δp = ωm due to the quantum interference effect, which can be used to measure the resonance frequency of the mechanical resonator. After the adsorption of a single nanoparticle, there is a frequency shift Δω = −2π × 5 Hz and the red dashed peak locates at ωm + Δω. According to Eq. (24), we can obtain the mass of the single 20-nm-diameter nanoparticle: Δm=2meffωmΔω=80.4ag (1 ag =10−18 g), which is close to the mass calculated by the density and volume of the gold nanoparticle. Compared with the traditional mass spectrometry, the nonlinear mass sensor based on the four-wave mixing effect has some obvious advantages. First, the particles needn’t to be ionized like traditional mass spectrometer [50

50. A. Boisen, “Nanoelectromechanical systems: Mass spec goes nanomechanical,” Nature Nanotech. 4, 404–405 (2009). [CrossRef]

], and their masses can be measured from the FWM spectrum conveniently. Second, the simultaneous presence of the pump and probe beams generates a beat wave to drive the mechanical resonator. Therefore, resonators with both high and low resonance frequency are suited for this mass sensing scheme. Third, the use of nonlinear optical spectrum may offer better performance over the linear optical spectrum in the presence of detection noise [51

51. Z. Yie, M. A. Zielke, C. B. Burgner, and K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011). [CrossRef]

].

Fig. 4 Nonlinear probe transmission spectrum (FWM) as a function of the probe-cavity detuning Δp before and after a binding event of a single 20-nm-diameter gold nanoparticle. The other parameters used are ωo = 2π × 282 THz, ωe = 2π × 7.1 GHz, κo = 2π × 1.65 MHz, κe = 2π × 1.6 MHz, κo,ext = 0.76κo, κe,ext = 0.11κe, go = 2π × 27 Hz, ge = 2π × 2.7 Hz, ωm = 2π × 5.6 MHz, γm = 2π × 4 Hz, Δo = Δe = 0, and Po = Pe = 0.01 μW.

Finally, it should be pointed out that we do not take into account the noise processes in our theoretical simulations. Actually, there are various noise sources which impose the ultimate mass sensitivity limits for the resonator, such as thermomechanical noise generated by the internal loss mechanisms in the resonator, adsorption-desorption noise from residual gas molecules [3

3. K. L. Ekinci, Y. T. Tang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004). [CrossRef]

, 52

52. A. N. Cleland and M. L. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys. 92, 2758–2769 (2002). [CrossRef]

], and detection noise in the readout circuitry [51

51. Z. Yie, M. A. Zielke, C. B. Burgner, and K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011). [CrossRef]

]. In the hybrid opto-electromechanical system we study here, the thermal noise of the mechanical motion is the dominant noise source. If the experiment could be done at the dilution refrigerator temperature of 40 millikelvin, the thermal noise would be greatly eliminated. In addition, added vibrational noise can be reduced by using mechanical resonators with higher quality factors [35

35. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014). [CrossRef]

].

4. Conclusion

In conclusion, we have theoretically demonstrated that the hybrid opto-electromechanical system, consisted of an optical cavity and a microwave cavity coupled to a common mechanical resonator, can be employed as an ultrasensitive mass sensor. Due to the quantum interference between the mechanical mode and the beat of the two optical fields, the resonance frequency of the mechanical resonator can be determined from the probe transmission spectrum as well as the FWM spectrum. Therefore, the mass of the accreted particles such as single viruses and gold nanoparticles landing onto the resonator can be obtained according to the relationship between the added mass and the corresponding frequency shifts. The scheme proposed here could be achievable in current experiments.

Acknowledgments

The authors gratefully acknowledge support from National Natural Science Foundation of China (Grant Nos. 11304110 and 11274230), Jiangsu Natural Science Foundation (Grant No. BK20130413), and Natural Science Foundation of the Jiangsu Higher Education Institutions of China (Grant No. 13KJB140002).

References and links

1.

K. C. Schwab and M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005). [CrossRef]

2.

J. L. Arlett, E. B. Myers, and M.L. Roukes, “Comparative advantages of mechanical biosensors,” Nature Nanotech. 6, 203–215 (2011). [CrossRef]

3.

K. L. Ekinci, Y. T. Tang, and M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004). [CrossRef]

4.

N. V. Lavrik and P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003). [CrossRef]

5.

B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, and P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004). [CrossRef]

6.

Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, and M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006). [CrossRef] [PubMed]

7.

J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, and A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012). [CrossRef]

8.

A. Gupta, D. Akin, and R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett. 84, 1976–1978 (2004). [CrossRef]

9.

M. Li, H. X. Tang, and M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotech. 2, 114–120 (2007). [CrossRef]

10.

X. L. Feng, R. He, P. D. Yang, and M. L. Roukes, “Very high frequency silicon nanowire electromechanical resonators,” Nano Lett. 7, 1953–1959 (2007). [CrossRef]

11.

A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, and M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotech. 4, 445–450 (2009). [CrossRef]

12.

E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, and J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010). [CrossRef]

13.

T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, and S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007). [CrossRef]

14.

S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, and S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014). [CrossRef]

15.

B. Lassagne, D. Garcia-Sanchez, A. Aguasca, and A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8, 3735–3738 (2008). [CrossRef] [PubMed]

16.

K. Jensen, K. Kim, and A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotech. 3, 533–537 (2008). [CrossRef]

17.

F. Liu and M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors 13, 146–147 (2013). [CrossRef]

18.

F. Liu, S. Alaie, Z. C. Leseman, and M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21, 19555–19567 (2013). [CrossRef] [PubMed]

19.

L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, and Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013). [CrossRef] [PubMed]

20.

J.-J. Li and K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012). [CrossRef]

21.

J.-J. Li and K.-D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013). [CrossRef]

22.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef] [PubMed]

23.

F. Marquardt and S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009). [CrossRef]

24.

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012). [CrossRef]

25.

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724–727 (2009). [CrossRef]

26.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef] [PubMed]

27.

A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011). [CrossRef]

28.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011). [CrossRef]

29.

O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, and L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006). [CrossRef] [PubMed]

30.

J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, and K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009). [CrossRef]

31.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011). [CrossRef]

32.

J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011). [CrossRef]

33.

E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, and T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012). [CrossRef]

34.

T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, and K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013). [CrossRef]

35.

R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, and K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014). [CrossRef]

36.

C. A. Regal and K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys. Conf. Ser. 264, 012025 (2011). [CrossRef]

37.

X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, and F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3, 2943 (2013). [CrossRef] [PubMed]

38.

K. N. Qu and G. S. Agarwal, “Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems,” Phys. Rev. A 87, 031802(R) (2013). [CrossRef]

39.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008). [CrossRef]

40.

C. Genes, D. Vitali, P. Tombesi, S. Gigan, and M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008). [CrossRef]

41.

H. Xiong, L.-G. Si, A.-S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012). [CrossRef]

42.

R. W. Boyd, Nonlinear Optics (Academic, 2008).

43.

C. W. Gardiner and P. Zoller, Quantum Noise (Springer) (2004).

44.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]

45.

S. Huang and G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010). [CrossRef]

46.

B. Ilic, Y. Yang, and H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett. 85, 2604–2606 (2004). [CrossRef]

47.

X. Sun, J. Zheng, M. Poot, C. W. Wong, and H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012). [CrossRef] [PubMed]

48.

J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, and C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).

49.

J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, and C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012). [CrossRef] [PubMed]

50.

A. Boisen, “Nanoelectromechanical systems: Mass spec goes nanomechanical,” Nature Nanotech. 4, 404–405 (2009). [CrossRef]

51.

Z. Yie, M. A. Zielke, C. B. Burgner, and K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011). [CrossRef]

52.

A. N. Cleland and M. L. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys. 92, 2758–2769 (2002). [CrossRef]

OCIS Codes
(130.6010) Integrated optics : Sensors
(230.4910) Optical devices : Oscillators
(300.6370) Spectroscopy : Spectroscopy, microwave
(140.3945) Lasers and laser optics : Microcavities

ToC Category:
Sensors

History
Original Manuscript: March 3, 2014
Revised Manuscript: April 27, 2014
Manuscript Accepted: May 17, 2014
Published: May 30, 2014

Citation
Cheng Jiang, Yuanshun Cui, and Ka-Di Zhu, "Ultrasensitive nanomechanical mass sensor using hybrid opto-electromechanical systems," Opt. Express 22, 13773-13783 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-11-13773


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. C. Schwab, M. L. Roukes, “Putting mechanics into quantum mechanics,” Phys. Today 58, 36–42 (2005). [CrossRef]
  2. J. L. Arlett, E. B. Myers, M.L. Roukes, “Comparative advantages of mechanical biosensors,” Nature Nanotech. 6, 203–215 (2011). [CrossRef]
  3. K. L. Ekinci, Y. T. Tang, M. L. Roukes, “Ultimate limits to inertial mass sensing based upon nanoelectromechanical systems,” J. Appl. Phys. 95, 2682–2689 (2004). [CrossRef]
  4. N. V. Lavrik, P. G. Datskos, “Femtogram mass detection using photothermally actuated nanomechanical resonators,” Appl. Phys. Lett. 82, 2697–2699 (2003). [CrossRef]
  5. B. Ilic, H. G. Craighead, S. Krylov, W. Senaratne, C. Ober, P. Neuzil, “Attogram detection using nanoelectromechanical oscillators,” J. Appl. Phys. 95, 3694–3703 (2004). [CrossRef]
  6. Y. T. Yang, C. Callegari, X. L. Feng, K. L. Ekinci, M. L. Roukes, “Zeptogram-scale nanomechanical mass sensing,” Nano Lett. 6, 583–586 (2006). [CrossRef] [PubMed]
  7. J. Chaste, A. Eichler, J. Moser, G. Ceballos, R. Rurali, A. Bachtold, “A nanomechanical mass sensor with yoctogram resolution,” Nature Nanotech. 7, 301–304 (2012). [CrossRef]
  8. A. Gupta, D. Akin, R. Bashir, “Single virus particle mass detection using microresonators with nanoscale thickness,” Appl. Phys. Lett. 84, 1976–1978 (2004). [CrossRef]
  9. M. Li, H. X. Tang, M. L. Roukes, “Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications,” Nature Nanotech. 2, 114–120 (2007). [CrossRef]
  10. X. L. Feng, R. He, P. D. Yang, M. L. Roukes, “Very high frequency silicon nanowire electromechanical resonators,” Nano Lett. 7, 1953–1959 (2007). [CrossRef]
  11. A. K. Naik, M. S. Hanay, W. K. Hiebert, X. L. Feng, M. L. Roukes, “Towards single-molecule nanomechanical mass spectrometry,” Nature Nanotech. 4, 445–450 (2009). [CrossRef]
  12. E. Gil-Santos, D. Ramos, J. Martínez, M. Fernández-Regúlez, R. García, Á. S. Paulo, M. Calleja, J. Tamayo, “Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires,” Nature Nanotech. 5, 641–645 (2010). [CrossRef]
  13. T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlson, J. S. Foster, K. Babcock, S. R. Manalis, “Weighing of biomolecules, single cells and single nanoparticles in fluid,” Nature (London) 446, 1066–1069 (2007). [CrossRef]
  14. S. Olcuma, N. Cermak, S. C. Wasserman, K. S. Christine, H. Atsumi, K. R. Payer, W. Shen, J. Lee, A. M. Belcher, S. N. Bhati, S. R. Manalis, “Weighing nanoparticles in solution at the attogram scale,” Proc. Natl. Acd. Sci. U.S.A. 111, 1310–1315 (2014). [CrossRef]
  15. B. Lassagne, D. Garcia-Sanchez, A. Aguasca, A. Bachtold, “Ultrasensitive mass sensing with a nanotube electromechanical resonator,” Nano Lett. 8, 3735–3738 (2008). [CrossRef] [PubMed]
  16. K. Jensen, K. Kim, A. Zettl, “An atomic-resolution nanomechanical mass sensor,” Nature Nanotech. 3, 533–537 (2008). [CrossRef]
  17. F. Liu, M. Hossein-Zadeh, “Mass sensing with optomechanical oscillation,” IEEE Sensors 13, 146–147 (2013). [CrossRef]
  18. F. Liu, S. Alaie, Z. C. Leseman, M. Hossein-Zadeh, “Sub-pg mass sensing and measurement with an optomechanical oscillator,” Opt. Express 21, 19555–19567 (2013). [CrossRef] [PubMed]
  19. L. Shao, X.-F. Jiang, X.-C. Yu, B.-B. Li, W. R. Clements, F. Vollmer, W. Wang, Y.-F. Xiao, Q. Gong, “Detection of single nanoparticles and lentiviruses using microcavity resonance broadening,” Adv. Mater. 25(39), 5616–5620 (2013). [CrossRef] [PubMed]
  20. J.-J. Li, K.-D. Zhu, “Nonlinear optical mass sensor with an optomechanical microresonator,” Appl. Phys. Lett. 101, 141905 (2012). [CrossRef]
  21. J.-J. Li, K.-D. Zhu, “All-optical mass sensing with coupled mechanical resonator systems,” Phys. Rep. 525, 223–254 (2013). [CrossRef]
  22. T. J. Kippenberg, K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008). [CrossRef] [PubMed]
  23. F. Marquardt, S. M. Girvin, “Optomechanics,” Physics 2, 40 (2009). [CrossRef]
  24. M. Aspelmeyer, P. Meystre, K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012). [CrossRef]
  25. S. Gröblacher, K. Hammerer, M. R. Vanner, M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature (London) 460, 724–727 (2009). [CrossRef]
  26. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, T. J. Kippenberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010). [CrossRef] [PubMed]
  27. A. H. Safavi-Naeini, T. P. Mayer Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature (London) 472, 69–73 (2011). [CrossRef]
  28. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature (London) 471, 204–208 (2011). [CrossRef]
  29. O. Arcizet, P.-F. Cohadon, T. Briant, M. Pinard, A. Heidmann, J.-M. Mackowski, C. Michel, L. Pinard, O. Francais, L. Rousseau, “High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor,” Phys. Rev. Lett. 97, 133601 (2006). [CrossRef] [PubMed]
  30. J. D. Teufel, T. Donner, M. A. Castellanos-Beltran, J. W. Harlow, K. W. Lehnert, “Nanomechanical motion measured with an imprecision below that at the standard quantum limit,” Nature Nanotech. 4, 820–823 (2009). [CrossRef]
  31. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature (London) 475, 359–363 (2011). [CrossRef]
  32. J. Chan, T. P. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature (London) 478, 89–92 (2011). [CrossRef]
  33. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T. J. Kippenberg, “Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode,” Nature (London) 482, 63–67 (2012). [CrossRef]
  34. T. A. Palomaki, J. W. Harlow, J. D. Teufel, R. W. Simmonds, K. W. Lehnert, “Coherent state transfer between itinerant microwave fields and a mechanical oscillator,” Nature (London) 495, 210–214 (2013). [CrossRef]
  35. R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W. Simmonds, C. A. Regal, K. W. Lehnert, “Bidirectional and efficient conversion between microwave and optical light,” Nature Phys. 10, 321–326 (2014). [CrossRef]
  36. C. A. Regal, K. W. Lehnert, “From cavity electromechanics to cavity optomechanics,” J. Phys. Conf. Ser. 264, 012025 (2011). [CrossRef]
  37. X.-Y. Lü, W.-M. Zhang, S. Ashhab, Y. Wu, F. Nori, “Quantum-criticality-induced strong Kerr nonlinearities in optomechanical systems,” Sci. Rep. 3, 2943 (2013). [CrossRef] [PubMed]
  38. K. N. Qu, G. S. Agarwal, “Phonon-mediated electromagnetically induced absorption in hybrid opto-electromechanical systems,” Phys. Rev. A 87, 031802(R) (2013). [CrossRef]
  39. J. D. Thompson, B. M. Zwickl, A. M. Jayich, Florian Marquardt, S. M. Girvin, J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature (London) 452, 72–75 (2008). [CrossRef]
  40. C. Genes, D. Vitali, P. Tombesi, S. Gigan, M. Aspelmeyer, “Ground-state cooling of a micromechanical oscillator: Comparing cold damping and cavity-assisted cooling schemes,” Phys. Rev. A 77, 033804 (2008). [CrossRef]
  41. H. Xiong, L.-G. Si, A.-S. Zheng, X. X. Yang, Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012). [CrossRef]
  42. R. W. Boyd, Nonlinear Optics (Academic, 2008).
  43. C. W. Gardiner, P. Zoller, Quantum Noise (Springer) (2004).
  44. T. J. Kippenberg, S. M. Spillane, K. J. Vahala, “Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity,” Phys. Rev. Lett. 93, 083904 (2004). [CrossRef] [PubMed]
  45. S. Huang, G. S. Agarwal, “Normal-mode splitting and antibunching in Stokes and anti-Stokes processes in cavity optomechanics: Radiation-pressure-induced four-wave-mixing cavity optomechanics,” Phys. Rev. A 81, 033830 (2010). [CrossRef]
  46. B. Ilic, Y. Yang, H. G. Craighead, “Virus detection using nanoelectromechanical devices,” Appl. Phys. Lett. 85, 2604–2606 (2004). [CrossRef]
  47. X. Sun, J. Zheng, M. Poot, C. W. Wong, H. X. Tang, “Femtogram doubly clamped nanomechanical resonators embedded in a high-Q two-dimensional photonic crystal nanocavity,” Nano Lett. 12, 2299 (2012). [CrossRef] [PubMed]
  48. J. Zheng, X. Sun, M. Poot, Y. Li, A. Dadgar, H. X. Tang, C. W. Wong, “Dispersive coupling and optimization of femtogram L3-nanobeam optomechanical cavities,” Frontiers in Optics (2012).
  49. J. Zheng, X. Sun, Y. Li, M. Poot, A. Dadgar, N. N. Shi, W. H. P. Pernice, H. X. Tang, C. W. Wong, “Femtogram dispersive L3-nanobeam optomechanical cavities: design and experimental comparison,” Opt. Express 20, 26486–26498 (2012). [CrossRef] [PubMed]
  50. A. Boisen, “Nanoelectromechanical systems: Mass spec goes nanomechanical,” Nature Nanotech. 4, 404–405 (2009). [CrossRef]
  51. Z. Yie, M. A. Zielke, C. B. Burgner, K. L. Turner, “Comparison of parametric and linear mass detection in the presence of detection noise,” J. Micromech. Microeng. 21, 025027 (2011). [CrossRef]
  52. A. N. Cleland, M. L. Roukes, “Noise processes in nanomechanical resonators,” J. Appl. Phys. 92, 2758–2769 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited