OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18159–18167
« Show journal navigation

Speckle optical tweezers: micromanipulation with random light fields

Giorgio Volpe, Lisa Kurz, Agnese Callegari, Giovanni Volpe, and Sylvain Gigan  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18159-18167 (2014)
http://dx.doi.org/10.1364/OE.22.018159


View Full Text Article

Acrobat PDF (1895 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Current optical manipulation techniques rely on carefully engineered setups and samples. Although similar conditions are routinely met in research laboratories, it is still a challenge to manipulate microparticles when the environment is not well controlled and known a priori, since optical imperfections and scattering limit the applicability of this technique to real-life situations, such as in biomedical or microfluidic applications. Nonetheless, scattering of coherent light by disordered structures gives rise to speckles, random diffraction patterns with well-defined statistical properties. Here, we experimentally demonstrate how speckle fields can become a versatile tool to efficiently perform fundamental optical manipulation tasks such as trapping, guiding and sorting. We anticipate that the simplicity of these “speckle optical tweezers” will greatly broaden the perspectives of optical manipulation for real-life applications.

© 2014 Optical Society of America

1. Introduction

Since their introduction in the 1970s [1

1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]

,2

2. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971). [CrossRef]

], optical tweezers have been widely applied to non-invasively manipulate micro- and nano-objects, such as cells, organelles and macromolecules [3

3. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]

5

5. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013). [CrossRef] [PubMed]

]. They have, therefore, gained increasing importance as tools in microbiology and biophysics both for fundamental studies [6

6. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987). [CrossRef] [PubMed]

] and for more advanced applications such as optical sorting and optical delivery [3

3. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]

,7

7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003). [CrossRef] [PubMed]

,8

8. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008). [CrossRef] [PubMed]

]. In particular, the development of techniques based on reconfigurable spatially extended patterns of light, such as multiple traps [3

3. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]

,9

9. E. R. Dufresne and D. G. Grier, “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998). [CrossRef]

12

12. K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104(2), 028302 (2010). [CrossRef] [PubMed]

] or periodic potentials [13

13. I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006). [CrossRef]

17

17. M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012). [CrossRef]

], offers the promise of high throughput optical methods to be applied both in static and moving fluids. Also, particles’ delivery, trapping and manipulation over extended areas was demonstrated near a surface employing the evanescent fields associated, for example, to surface plasmons [18

18. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]

] or to optical waveguides [19

19. R. W. Applegate Jr, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006). [CrossRef] [PubMed]

].

Here, for the first time to our knowledge, we experimentally demonstrate a novel technique for the collective manipulation of micrometer-sized particles in microfluidic flows based on extended static and time-varying speckle light fields. Just relying on the statistical interaction between the particles and the underlying optical potential, these speckle optical tweezers allow us to perform important optical manipulation tasks such as sieving, guiding and sorting within a microfluidic channel.

2. Experimental setup and methods

The speckle optical tweezers setup is schematically depicted in Fig. 1(a)
Fig. 1 Speckle optical tweezers setup. (a) Schematic of the speckle optical tweezers setup. A laser beam (λ = 532 nm) and incoherent light from an LED (λ = 625 nm) are coupled into a multimode optical fiber (105-µm core, NA = 0.22) making use of a dichroic mirror (DM) and a lens (L1). The fiber delivers the light to a microfluidic channel (S) where aqueous dispersions of particles are flowed by a syringe pusher. The fiber output is mounted on a two-axis mechanical stage, which guarantees the possibility of translating the speckle vertically and perpendicularly to the flow. The particles’ trajectories are tracked by digital video microscopy using the image projected by a microscope objective (20X, NA = 0.5) and a tube lens (L2) onto a color CMOS camera. (b) A typical speckle pattern for optical manipulation as observed on the camera and (c) its normalized spatial autocorrelation function, which permits us to characterize the average speckle grain size as the FHWM of the autocorrelation along the axes (solid lines).
. Aqueous dispersions of colloidal spheres are driven by a syringe pump with adjustable infusion flow rate (Harvard Apparatus Pump 11 Elite) through a microfluidic channel. The speckle light pattern for their optical manipulation (Fig. 1(b)) is generated by coupling a laser beam (Coherent Verdi, maximum power 5W, λ = 532 nm) into a multimode optical fiber (core diameter 105 µm, NA = 0.22). The random appearance of speckle light patterns is the result of the interference of a large number of optical waves with random phases, corresponding to different eigenmodes of the fiber. More generally, speckle patterns can be generated by different processes: scattering of a laser on a rough surface, multiple scattering in an optically complex medium, or, like in this work, mode-mixing in a multimode fiber [34

34. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012). [CrossRef]

]. The method chosen in this work provides some practical advantages over other methods, namely the generation of homogeneous speckle fields over controllable areas, flexibility and portability in the implementation of the device, as well as higher transmission efficiency. In our setup, the fiber output is brought in close proximity of the upper wall of the microfluidic channel by a micrometric two-axis mechanical stage that also guarantees the possibility of translating the speckle in the direction perpendicular to the fluid flow. Optical scattering forces push the particles in the direction of light propagation towards the lower wall of the microfluidic channel, so that they effectively confine the particles in a quasi two-dimensional space [1

1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]

]. The particles are then tracked by digital video microscopy [35

35. J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996). [CrossRef]

] on a color CMOS camera. The incoherent illumination for the tracking is provided by a LED at λ = 625 nm coupled into the same fiber using a dichroic mirror. Figure 1(c) shows the normalized spatial autocorrelation function of a typical speckle pattern interacting with the particles (Fig. 1(b)), whose full width half maximum (FWHM = 2.10 ± 0.24 µm) provides an estimation of the average speckle grain size, as defined by the diffraction process that generates the speckle pattern itself [20

20. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976). [CrossRef]

,36

36. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Co. Publishers, Greenwood Village, 2007).

].

3. Results and discussion

To gain further insight on the underlying physics, we calculated the force field acting on a silica particle moving in a simulated speckle pattern (Fig. 2(d)). For the calculation of the optical forces, as the particle size is significantly larger than the light wavelength, we used a ray optics approach [38

38. A. Callegari, M. Mijalkov, A. B. Gököz, and G. Volpe, “Computational toolbox for optical tweezers in geometrical optics,” arXiv:1402.5439 (2014).

] and, for the simulation of the particle motion, we employed Brownian dynamics simulation [39

39. G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013). [CrossRef]

]. The details of the simulated trajectories (Figs. 2(e)-2(g)) of silica particles moving in speckle fields of the same average intensity as in Figs. 2(a)-2(c) show very good agreement with the experimental data. In general, the motion of a Brownian particle in a static speckle field is the result of random thermal forces and deterministic optical forces [29

29. G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014). [CrossRef] [PubMed]

]. Optical gradient forces are the dominant deterministic forces acting on dielectric particles whose size is comparable or smaller than the average speckle grain, and they attract particles with high-refractive index towards the intensity maxima of the optical field [29

29. G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014). [CrossRef] [PubMed]

,40

40. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000). [CrossRef]

]. As a particle moves in the speckle field, the optical force acting on it changes both in magnitude and direction with a characteristic time scale that in first approximation is inversely proportional to the average speckle intensity [29

29. G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014). [CrossRef] [PubMed]

].

Since the optical forces exerted on a particle depend on the particle’s physical parameters, e.g., size, refractive index and shape [40

40. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000). [CrossRef]

], a static speckle pattern can be employed to realize a speckle sieve in the presence of flow (Fig. 3
Fig. 3 Sieving in a microfluidic flow by a static speckle field. (a-f) Time-lapse snapshots of the flow of two classes of particles with similar diameter D ≈2 µm but different refractive index in a microfluidic speckle sieve (flow speed Vf = 3.01 ± 0.12 µm/s): silica (brighter particles, D = 2.06 ± 0.05 µm and np = 1.42) and melamine (darker particles, D = 2.05 ± 0.04 µm and np = 1.68). The arrow in (a) indicates the direction of the flow. A static speckle pattern (on from (b), <I> = 5.77 µW/µm2), traps the particles with higher refractive index (blue circles) while it lets the particles with lower refractive index (green circles) go away with the flow. (g-h) Comparison of the average particle speed <Vp> in the speckle sieve (g) for particles of similar diameter (D ≈2 µm) but different refractive index (green squares, np = 1.42, and blue circles, np = 1.68), and (h) for particles of similar refractive index (np = 1.42), but different diameter (green squares, D = 2.06 ± 0.05 µm, and red triangles, D = 4.99 ± 0.22 µm), as a function of the average speckle intensity and of the fluid flow (Vf = 3.01 ± 0.12 µm/s, Vf = 4.58 ± 0.26 µm/s and Vf = 6.20 ± 0.68 µm/s). The shaded areas represent one standard deviation around the average values.
). In Figs. 3(a)-3(f), as an aqueous dispersion containing two kinds of particles of similar diameter, i.e., D ≈2 µm, but different refractive index (silica, D = 2.06 ± 0.05 µm and np = 1.42, and melamine, D = 2.05 ± 0.04 µm and np = 1.68) flows from left to right at Vf = 3.01 ± 0.12 µm/s, a static speckle pattern efficiently holds back the particles with higher refractive index (melamine) while the ones with lower refractive index (silica) go through almost unaffected (Figs. 3(a)-3(f)). These qualitative considerations can be made more precise by calculating the average particle speed <Vp> in the microfluidic speckle sieve. As shown in Fig. 3(g), when the laser is off, the particles are flowing at the speed of the surrounding medium because of the fluid laminar flow [41

41. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Springer, New York, 1983).

]. As the speckle intensity increases, <Vp> converges to zero: for a given class of particles, this convergence happens for higher speckle intensities when the fluid flows faster; accordingly, for a given fluid flow, the higher the particle refractive index is, the lower is the requirement on the speckle intensity, thus allowing one to sieve particles with different physical characteristics, as in Figs. 3(a)-3(f). Figure 3(h) shows that similar conclusions hold when the selection parameter is the particle size rather than its refractive index. Interestingly, the physical characteristics of the particle that are held back can be dynamically adjusted by changing the intensity of the speckle pattern.

Time-varying speckle patterns are also very versatile tools to control the motion of Brownian particles, thus setting the stage to perform optical manipulation tasks such as guiding particles in a particular direction, despite the randomness of the illumination [29

29. G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014). [CrossRef] [PubMed]

]. In Figs. 4(a)
Fig. 4 Guiding by a ratcheting speckle. (a-c) Time-lapse snapshots of the motion of a melamine particle (blue circles) and a silica particle (green circles) with similar diameter D ≈2 µm in a ratcheting speckle in the absence of flow (<I> = 7.85 µW/µm2). The shift of the speckle, which is visible in the background, is induced by dragging the fiber with a mechanical stage first (from (a) to (b)) slowly in the direction of the arrow shown in (a) and then (from (b) to (c)) fast back. (d) Speckle pattern shift as tracked on a speckle grain and (e) particle displacements as a function of time in the direction parallel to the speckle pattern shift (solid blue and green lines) and in the orthogonal direction (dashed blue and green lines), respectively for the melamine and the silica particle. The speckle pattern repeatedly shifts first slowly in the positive direction and then fast to the initial position in 5.6 s cycles. The dashed lines delimit the time of absence of motion due to the motor backlash.
-4(c), the speckle pattern shifts first slowly in the direction indicated by the white arrow, which exerts a strong adiabatic drag on a melamine particle, and then fast back to the initial position with little effect on the position of the particle since the movement is too fast for the particle to follow. Due to the much lower optical forces, the position of a nearby silica particle with similar size remains almost unchanged during the whole time.

In the presence of a flow, we can capitalize on the guiding capability of speckle patterns in order to perform optical sorting and fractionation [7

7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003). [CrossRef] [PubMed]

,11

11. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32(9), 1144–1146 (2007). [CrossRef] [PubMed]

,12

12. K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104(2), 028302 (2010). [CrossRef] [PubMed]

]. In a configuration similar to the one for the speckle sieve, a shifting speckle can be used to realize a speckle sorter, where a force perpendicular to the flow is selectively exerted on different classes of particles, so that each kind is deflected at a different angle (Fig. 5
Fig. 5 Sorting in a microfluidic flow by a ratcheting speckle field. (a-g) Angular distribution of two classes of particles with similar diameter (D ≈2 µm) but different refractive index (np = 1.42, green areas, and np = 1.68, blue areas) in a microfluidic speckle sorter for increasing flow speeds Vf (Vf = 3.01 ± 0.12 µm/s from (a) to (c) and Vf = 6.20 ± 0.68 µm/s from (d) to (g)) and average speckle intensities <I>. The flow is directed along the 0° line, while the speckle shift is directed along the 90° line. The areas represent one standard deviation of the particle spread around the average value. (h-n) Same as (a-g) using as selection parameter the particle size (D = 2.06 ± 0.05 µm, green areas, and D = 4.99 ± 0.22 µm, red areas) rather than their refractive index, here kept constant (np = 1.42).
).

Our sorting approach relies on the fact that different particles moving in a ratcheting speckle experience different average drift forces – and, therefore, different average deflection angles – as a function of the particles’ physical characteristics, such as their size and refractive index. As shown in Fig. 5(a), when the laser is off, the particles (both melamine and silica of the same size) are flowing in the direction of the surrounding medium because of the fluid laminar flow [41

41. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Springer, New York, 1983).

]. As the average speckle intensity increases (Figs. 5(b)-5(c)), the particles start being deflected from the direction of the fluid flow: for a given class of particles, the deflection angle grows with the speckle intensity, while, for a given intensity, it grows with the refractive index of the particle. This qualitative behavior is independent of the flow speed, although higher average intensities are needed to achieve comparable deflection angles at higher speeds (Figs. 5(d)-5(g)). Figs. 5(h)-5(n) show that similar conclusions hold when the selection parameter is the particle size rather than its refractive index. For sorting, the important parameter is the difference in deflection angle that, as Fig. 5 shows, increases when increasing the speckle intensity – i.e. the average drift force – and when reducing the flow speed. As a consequence, optical fractionation can be achieved in our proposal with a resolution and sensitivity that is only limited by the size of the speckle field, i.e., the longer the speckle field the higher the sensitivity in particle’s size or refractive index where the minimum length needed to achieve a given sensitivity increases for lower intensities and higher flow speeds [29

29. G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014). [CrossRef] [PubMed]

]. Although it is relatively easy to generate speckles on large areas by propagating coherent light through a multimode optical fiber, available power and spatial limitations in the microfluidic channel are, therefore, the main practical parameters that could limit the sorting characteristics of this approach.

4. Conclusions

In conclusion, we have experimentally demonstrated a novel technique for the optical manipulation of microparticles in microfluidic flows based on static, time- or space-varying speckle fields. Although a carefully engineered periodic potential or array of traps optimized for a given application can perform better than a speckle field, this technique expands the set of tools that researchers and engineers can adopt to perform optical manipulation tasks. As it is the case for alternative optofluidic devices based on periodic optical potentials or holographic optical tweezers [3

3. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]

,7

7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003). [CrossRef] [PubMed]

17

17. M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012). [CrossRef]

,32

32. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995). [CrossRef] [PubMed]

,33

33. S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005). [CrossRef] [PubMed]

], our approach can also be scaled to achieve the high throughput or sensitivity needed in microfluidics by increasing the flow speed and laser power. In fact, the required optical intensities are comparable to those reported in similar studies where the force field was generated either with holographic optical traps or with periodic potentials [3

3. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]

,7

7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003). [CrossRef] [PubMed]

17

17. M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012). [CrossRef]

,32

32. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995). [CrossRef] [PubMed]

,33

33. S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005). [CrossRef] [PubMed]

]. Our technique, beyond demonstrating that random potentials are a valid alternative to more regular potentials for the purpose of optical manipulation, offers some additional advantages to current optical manipulation techniques [3

3. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]

,7

7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003). [CrossRef] [PubMed]

17

17. M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012). [CrossRef]

,32

32. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995). [CrossRef] [PubMed]

,33

33. S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005). [CrossRef] [PubMed]

], such as intrinsic robustness to noise and aberrations from the optics and the environment. Moreover, an additional advantage of speckle patterns is that they are also intrinsically widefield so that they have the potential of sorting many particles in parallel in a broader microfluidic chamber, where flow speed is strongly reduced. In many practical situations, the use of random optical potentials over periodic ones has the advantage of requiring very simple optical setups – i.e. they can be implemented at low cost, with little alignment and a few optical components – as well as a very low degree of control over the experimental environment, thus being readily compatible with optical delivery, lab-on-a-chip or in-vivo applications inside scattering tissues, where light propagation naturally leads to the formation of speckle patterns, without recurring to wavefront shaping [30

30. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010). [CrossRef]

,31

31. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012). [CrossRef] [PubMed]

].

Acknowledgments

The authors acknowledge Fabien Bertillot for his help in the development of the initial setup, and thank Marie Leman and Andrew Griffiths for discussion. Giovanni Volpe was partially supported by Marie Curie Career Integration Grant (MC-CIG) PCIG11 GA-2012-321726. Sylvain Gigan acknowledges funding from Agence Nationale de La Recherche (ANR-JCJC-ROCOCO), the City of Paris (Programme Emergence) and the European Research Council (under grant N°278025).

References and links

1.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24(4), 156–159 (1970). [CrossRef]

2.

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19(8), 283–285 (1971). [CrossRef]

3.

K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics 5(6), 335–342 (2011). [CrossRef]

4.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5(6), 343–348 (2011). [CrossRef]

5.

O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8(11), 807–819 (2013). [CrossRef] [PubMed]

6.

A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235(4795), 1517–1520 (1987). [CrossRef] [PubMed]

7.

M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature 426(6965), 421–424 (2003). [CrossRef] [PubMed]

8.

A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis 29(24), 4813–4851 (2008). [CrossRef] [PubMed]

9.

E. R. Dufresne and D. G. Grier, “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum. 69(5), 1974–1977 (1998). [CrossRef]

10.

M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett. 24(9), 608–610 (1999). [CrossRef] [PubMed]

11.

G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett. 32(9), 1144–1146 (2007). [CrossRef] [PubMed]

12.

K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett. 104(2), 028302 (2010). [CrossRef] [PubMed]

13.

I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett. 88(12), 121116 (2006). [CrossRef]

14.

T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B 74(3), 035105 (2006). [CrossRef]

15.

S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett. 9(10), 3527–3531 (2009). [CrossRef] [PubMed]

16.

V. Demergis and E. L. Florin, “High precision and continuous optical transport using a standing wave optical line trap,” Opt. Express 19(21), 20833–20848 (2011). [CrossRef] [PubMed]

17.

M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett. 100(5), 051103 (2012). [CrossRef]

18.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]

19.

R. W. Applegate Jr, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip 6(3), 422–426 (2006). [CrossRef] [PubMed]

20.

J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am. 66(11), 1145–1150 (1976). [CrossRef]

21.

D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D 7(3), 373–377 (1999). [CrossRef]

22.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt. 12(12), 124003 (2010). [CrossRef]

23.

V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express 18(3), 3137–3142 (2010). [CrossRef] [PubMed]

24.

J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun. 283(23), 4722–4726 (2010). [CrossRef]

25.

R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter 8(9), 2714–2723 (2012). [CrossRef]

26.

K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics 6(12), 834–837 (2012). [CrossRef]

27.

F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 88(2), 022125 (2013). [CrossRef] [PubMed]

28.

F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top. 222(11), 2995–3009 (2013). [CrossRef]

29.

G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep. 4, 3936 (2014). [CrossRef] [PubMed]

30.

T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4(6), 388–394 (2010). [CrossRef]

31.

S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip 12(3), 635–639 (2012). [CrossRef] [PubMed]

32.

L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett. 74(9), 1504–1507 (1995). [CrossRef] [PubMed]

33.

S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett. 94(11), 110601 (2005). [CrossRef] [PubMed]

34.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6(5), 283–292 (2012). [CrossRef]

35.

J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci. 179(1), 298–310 (1996). [CrossRef]

36.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Co. Publishers, Greenwood Village, 2007).

37.

L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature 402(6763), 785–787 (1999). [CrossRef]

38.

A. Callegari, M. Mijalkov, A. B. Gököz, and G. Volpe, “Computational toolbox for optical tweezers in geometrical optics,” arXiv:1402.5439 (2014).

39.

G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys. 81(3), 224–230 (2013). [CrossRef]

40.

A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron. 6(6), 841–856 (2000). [CrossRef]

41.

J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Springer, New York, 1983).

42.

P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep. 361(2-4), 57–265 (2002). [CrossRef]

43.

P. Hänggi and F. Marchesoni, “Artificial Brownian motors: Controlling transport on the nanoscale,” Rev. Mod. Phys. 81(1), 387–442 (2009). [CrossRef]

44.

F. Marchesoni, “Transport properties in disordered ratchet potentials,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 56(3), 2492–2495 (1997). [CrossRef]

45.

J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential,” Nature 370(6489), 446–447 (1994). [CrossRef] [PubMed]

46.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61(7), 834–837 (1988). [CrossRef] [PubMed]

47.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61(20), 2328–2331 (1988). [CrossRef] [PubMed]

OCIS Codes
(030.6140) Coherence and statistical optics : Speckle
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(350.4855) Other areas of optics : Optical tweezers or optical manipulation

ToC Category:
Optical Trapping and Manipulation

History
Original Manuscript: May 29, 2014
Revised Manuscript: July 5, 2014
Manuscript Accepted: July 5, 2014
Published: July 18, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Giorgio Volpe, Lisa Kurz, Agnese Callegari, Giovanni Volpe, and Sylvain Gigan, "Speckle optical tweezers: micromanipulation with random light fields," Opt. Express 22, 18159-18167 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett.24(4), 156–159 (1970). [CrossRef]
  2. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett.19(8), 283–285 (1971). [CrossRef]
  3. K. Dholakia and T. Čižmár, “Shaping the future of manipulation,” Nat. Photonics5(6), 335–342 (2011). [CrossRef]
  4. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics5(6), 343–348 (2011). [CrossRef]
  5. O. M. Maragò, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol.8(11), 807–819 (2013). [CrossRef] [PubMed]
  6. A. Ashkin and J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science235(4795), 1517–1520 (1987). [CrossRef] [PubMed]
  7. M. P. MacDonald, G. C. Spalding, and K. Dholakia, “Microfluidic sorting in an optical lattice,” Nature426(6965), 421–424 (2003). [CrossRef] [PubMed]
  8. A. Jonás and P. Zemánek, “Light at work: the use of optical forces for particle manipulation, sorting, and analysis,” Electrophoresis29(24), 4813–4851 (2008). [CrossRef] [PubMed]
  9. E. R. Dufresne and D. G. Grier, “Optical tweezers arrays and optical substrates created with diffractive optics,” Rev. Sci. Instrum.69(5), 1974–1977 (1998). [CrossRef]
  10. M. Reicherter, T. Haist, E. U. Wagemann, and H. J. Tiziani, “Optical particle trapping with computer-generated holograms written on a liquid-crystal display,” Opt. Lett.24(9), 608–610 (1999). [CrossRef] [PubMed]
  11. G. Milne, D. Rhodes, M. MacDonald, and K. Dholakia, “Fractionation of polydisperse colloid with acousto-optically generated potential energy landscapes,” Opt. Lett.32(9), 1144–1146 (2007). [CrossRef] [PubMed]
  12. K. Xiao and D. G. Grier, “Multidimensional Optical Fractionation of Colloidal Particles with Holographic Verification,” Phys. Rev. Lett.104(2), 028302 (2010). [CrossRef] [PubMed]
  13. I. Ricárdez-Vargas, P. Rodríguez-Montero, R. Ramos-García, and K. Volke-Sepúlveda, “Modulated optical sieve for sorting of polydisperse microparticles,” Appl. Phys. Lett.88(12), 121116 (2006). [CrossRef]
  14. T. Čižmár, M. Šiler, M. Šerý, P. Zemánek, V. Garcés-Chávez, and K. Dholakia, “Optical sorting and detection of submicrometer objects in a motional standing wave,” Phys. Rev. B74(3), 035105 (2006). [CrossRef]
  15. S. Albaladejo, M. I. Marqués, F. Scheffold, and J. J. Sáenz, “Giant enhanced diffusion of gold nanoparticles in optical vortex fields,” Nano Lett.9(10), 3527–3531 (2009). [CrossRef] [PubMed]
  16. V. Demergis and E. L. Florin, “High precision and continuous optical transport using a standing wave optical line trap,” Opt. Express19(21), 20833–20848 (2011). [CrossRef] [PubMed]
  17. M. Šiler, T. Čižmár, and P. Zemánek, “Speed enhancement of multi-particle chain in a traveling standing wave,” Appl. Phys. Lett.100(5), 051103 (2012). [CrossRef]
  18. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011). [CrossRef]
  19. R. W. Applegate, J. Squier, T. Vestad, J. Oakey, D. W. M. Marr, P. Bado, M. A. Dugan, and A. A. Said, “Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping,” Lab Chip6(3), 422–426 (2006). [CrossRef] [PubMed]
  20. J. W. Goodman, “Some fundamental properties of speckle,” J. Opt. Soc. Am.66(11), 1145–1150 (1976). [CrossRef]
  21. D. Boiron, C. Mennerat-Robilliard, J. M. Fournier, L. Guidoni, C. Salomon, and G. Grynberg, “Trapping and cooling cesium atoms in a speckle field,” Eur. Phys. J. D7(3), 373–377 (1999). [CrossRef]
  22. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, D. Leykam, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Laser speckle field as a multiple particle trap,” J. Opt.12(12), 124003 (2010). [CrossRef]
  23. V. G. Shvedov, A. V. Rode, Y. V. Izdebskaya, A. S. Desyatnikov, W. Krolikowski, and Y. S. Kivshar, “Selective trapping of multiple particles by volume speckle field,” Opt. Express18(3), 3137–3142 (2010). [CrossRef] [PubMed]
  24. J. P. Staforelli, J. M. Brito, E. Vera, P. Solano, and A. A. Lencina, “A clustered speckle approach to optical trapping,” Opt. Commun.283(23), 4722–4726 (2010). [CrossRef]
  25. R. D. L. Hanes, C. Dalle-Ferrier, M. Schmiedeberg, M. C. Jenkins, and S. U. Egelhaaf, “Colloids in one dimensional random energy landscapes,” Soft Matter8(9), 2714–2723 (2012). [CrossRef]
  26. K. M. Douglass, S. Sukhov, and A. Dogariu, “Superdiffusion in optically controlled active media,” Nat. Photonics6(12), 834–837 (2012). [CrossRef]
  27. F. Evers, C. Zunke, R. D. L. Hanes, J. Bewerunge, I. Ladadwa, A. Heuer, and S. U. Egelhaaf, “Particle dynamics in two-dimensional random-energy landscapes: Experiments and simulations,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.88(2), 022125 (2013). [CrossRef] [PubMed]
  28. F. Evers, R. D. L. Hanes, C. Zunke, R. F. Capellmann, J. Bewerunge, C. Dalle-Ferrier, M. C. Jenkins, I. Ladadwa, A. Heuer, R. Castañeda-Priego, and S. U. Egelhaaf, “Colloids in light fields: Particle dynamics in random and periodic energy landscapes,” Eur. Phys. J. Spec. Top.222(11), 2995–3009 (2013). [CrossRef]
  29. G. Volpe, G. Volpe, and S. Gigan, “Brownian Motion in a Speckle Light Field: Tunable Anomalous Diffusion and Selective Optical Manipulation,” Sci. Rep.4, 3936 (2014). [CrossRef] [PubMed]
  30. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics4(6), 388–394 (2010). [CrossRef]
  31. S. Bianchi and R. Di Leonardo, “A multi-mode fiber probe for holographic micromanipulation and microscopy,” Lab Chip12(3), 635–639 (2012). [CrossRef] [PubMed]
  32. L. P. Faucheux, L. S. Bourdieu, P. D. Kaplan, and A. J. Libchaber, “Optical Thermal Ratchet,” Phys. Rev. Lett.74(9), 1504–1507 (1995). [CrossRef] [PubMed]
  33. S. H. Lee, K. Ladavac, M. Polin, and D. G. Grier, “Observation of flux reversal in a symmetric optical thermal ratchet,” Phys. Rev. Lett.94(11), 110601 (2005). [CrossRef] [PubMed]
  34. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics6(5), 283–292 (2012). [CrossRef]
  35. J. C. Crocker and D. G. Grier, “Methods of Digital Video Microscopy for Colloidal Studies,” J. Colloid Interface Sci.179(1), 298–310 (1996). [CrossRef]
  36. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts and Co. Publishers, Greenwood Village, 2007).
  37. L. I. McCann, M. Dykman, and B. Golding, “Thermally activated transitions in a bistable three-dimensional optical trap,” Nature402(6763), 785–787 (1999). [CrossRef]
  38. A. Callegari, M. Mijalkov, A. B. Gököz, and G. Volpe, “Computational toolbox for optical tweezers in geometrical optics,” arXiv:1402.5439 (2014).
  39. G. Volpe and G. Volpe, “Simulation of a Brownian particle in an optical trap,” Am. J. Phys.81(3), 224–230 (2013). [CrossRef]
  40. A. Ashkin, “History of optical trapping and manipulation of small-neutral particle, atoms, and molecules,” IEEE J. Sel. Top. Quantum Electron.6(6), 841–856 (2000). [CrossRef]
  41. J. Happel and H. Brenner, Low Reynolds Number Hydrodynamics (Springer, New York, 1983).
  42. P. Reimann, “Brownian motors: noisy transport far from equilibrium,” Phys. Rep.361(2-4), 57–265 (2002). [CrossRef]
  43. P. Hänggi and F. Marchesoni, “Artificial Brownian motors: Controlling transport on the nanoscale,” Rev. Mod. Phys.81(1), 387–442 (2009). [CrossRef]
  44. F. Marchesoni, “Transport properties in disordered ratchet potentials,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics56(3), 2492–2495 (1997). [CrossRef]
  45. J. Rousselet, L. Salome, A. Ajdari, and J. Prost, “Directional motion of Brownian particles induced by a periodic asymmetric potential,” Nature370(6489), 446–447 (1994). [CrossRef] [PubMed]
  46. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett.61(7), 834–837 (1988). [CrossRef] [PubMed]
  47. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett.61(20), 2328–2331 (1988). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited