OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 15 — Jul. 28, 2014
  • pp: 18412–18420
« Show journal navigation

Molecular-absorption-induced thermal bistability in PECVD silicon nitride microring resonators

Tingyi Gu, Mingbin Yu, Dim-Lee Kwong, and Chee Wei Wong  »View Author Affiliations


Optics Express, Vol. 22, Issue 15, pp. 18412-18420 (2014)
http://dx.doi.org/10.1364/OE.22.018412


View Full Text Article

Acrobat PDF (1210 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The wavelength selective linear absorption in communication C-band is investigated in CMOS-processed PECVD silicon nitride rings. In the overcoupled region, the linear absorption loss lowers the on-resonance transmission of a ring resonator and increases its overall quality factor. Both the linear absorption and ring quality factor are maximized near 1520 nm. The direct heating by phonon absorption leads to thermal optical bistable switching in PECVD silicon nitride based microring resonators. We calibrate the linear absorption rate in the microring resonator by measuring its transmission lineshape at different laser power levels, consistent with coupled mode theory calculations.

© 2014 Optical Society of America

1. Introduction

2. Device fabrication

SiNx films are grown by low-frequency low-temperature (350°C) PECVD (follow recipe No. 5 in [26

26. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008). [CrossRef] [PubMed]

]). The 80 sccm: 4000 sccm SiH4:N2 ratio and the 400W RF power control the deposition rate at 22.8A/s. PECVD silicon nitride has a Si/N ratio from 0.8 to 1, a density of 2.5 to 2.8g/cm3, and refractive index of ~2.0 at 1550 nm wavelengths. The optical bandgap is estimated to be 3 to 4 eV [27

27. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534 (1995). [CrossRef]

]. We probe the components of silicon nitride film by the transmission Fourier-transform infrared (FTIR) methods.

With the low-temperature growth, low interlayer stress allows the SiNx deposition thickness up to 0.65 μm (Fig. 1(a)
Fig. 1 Structure and linear optical properties of the device (a) Silicon nitride device layout. Optical image of top view of the ring, where the dashed line shows the cleaved position for the SEM image. Inset (up right): Cross section and the optical profile of the TE mode. Inset (bottom left): SEM image of the ring-waveguide coupling part. Inset (bottom right): 650nm PECVD silicon nitride is sandwiched between the PECVD silicon oxide up cladding layer and the thermal oxide lower cladding layer. Scale bar: 1μm. (b) Output spectrum of TE and TM polarized input with 0dBm input power.
). Deep-UV lithography defines the 1 μm waveguide and ring widths with highly repeatable geometry, followed-by an optimized dry etch with high aspect ratios. The high aspect ratio allows good extinction between TE and TM polarizations (Fig. 1(b)). The optical properties of the waveguide, including refractive index and propagation losses can be optimized by controlling the plasma frequency, precursor gas ratio, and thermal annealing [26

26. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008). [CrossRef] [PubMed]

,28

28. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008). [CrossRef] [PubMed]

]. The characteristic absorption wavelength at 1520 nm arises from the superposition of molecular rotations and vibrations. We verified the defects states absorption by FTIR spectroscopy (Fig. 2(a)
Fig. 2 Wavelength selective absorption and ring quality factors (a) Linear absorption of the PECVD grown silicon nitride thin film, in the range of mid- and near-IR. (b) FTIR measured absorption versus phonon energy of PECVD silicon nitride thin film (gray dots) and the absorption of a 25 mm long SiN waveguide versus photon energy from tunable laser (black solid line). Wavelength dependent linear propagation loss is maximized near 1520 nm. The absorption peak is at 0.816 eV with FWHM of 20 meV. Inset: schematics of incident light direction for waveguide and FTIR measurement. (c) Normalized transmission of ring resonator of 70 μm radius (blue) and 6.7 mm long waveguide (black). Inset: On-resonance transmission versus intracavity field transmission (1-α(λ)L). The blue crosses are experimental data. Red solid line and blue dashed line are theoretical predictions for over-coupled and under-coupled regions respectively. (d) Linear loss dependent total quality factors. Experimental results are directly derived from fitting the ring resonances in (c), and theoretical predictions are given by Eq. (2).
and Fig. 2(b)). The small band around 485 cm−1 is associated with Si breathing vibrations [29

29. D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system,” Phys. Rev. B Condens. Matter 40(3), 1795–1805 (1989). [CrossRef] [PubMed]

]. The absorption band at 863 cm−1 is due to stretching vibration of Si-N bonds [30

30. J. Fandiño, A. Ortiz, L. Rodríguez-Fernandez, and J. C. Alonso, “Composition, structural, and electrical properties of fluorinated silicon-nitride thin films grown by remote plasma-enhanced chemical-vapor deposition from SiF4/NH3 mixtures,” J. Vac. Sci. Technol. 22(3), 570–577 (2004). [CrossRef]

]. The bending vibration of Si-N bonds in the alpha-modification of crystalline silicon nitride is at 910 cm−1 [31

31. D. V. Tsu and G. Lucovsky, “Silicon nitride and silicon diimide grown by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Tech. A: Vacuum, Surfaces, and Films 4(3), 480–485 (1986). [CrossRef]

,32

32. N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4,” J. Non-Cryst. Solids 43(1), 7–15 (1981). [CrossRef]

]. The bands located around 3356 and 1155 cm−1 correspond to stretching and bending vibrations of N-H bonds. The Si-H bonds stretching mode is at 2205 cm−1. Phonon modes beyond 4000cm−1 could be a mix of high order phonon modes and the defects modes in the composite [11

11. C.H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt. 26(13), 2621–2624 (1987).

]. We performed the post-fabrication annealing at 800-1000°C to reduce the molecular bonds, but annealing changes the cladding/core material morphology and led to extra scattering loss.

3. Measurement

Continuous-wave (CW) light generated from tunable laser (AQ4321) is sent onto chip through polarization controller and lensed fiber. An automatic power control circuit built in Ando laser AQ4321 maintains the optical output stability within +/− 0.01 (0.05) dB or less in 5 minutes (1 hour). With integrated spot size converter, the total fiber-chip-fiber loss is reduced to 14 dB. The output light is collected by both a slow power meter and a high-speed near-IR photoreceiver (New Focus Model 1554B, DC to 12 GHz bandwidth). The fast photoreceiver is connected to the digital phosphor oscilloscope (Tektronix TDS 7404, DC to 4 GHz bandwidth).

4. Linear absorption dependent quality factors in the over-coupled region

By scanning the tunable laser from 1480 nm to 1560 nm, we measured the power transmission for a range of waveguide lengths from 25 mm to 44 mm with 5 mm discrete steps. The fitted transmitted power versus waveguide length with linear model gives a propagation loss of 4.3 dB/cm at 1550 nm, and a −13.5 dB insertion loss from the two facets of waveguides. However, we observed the total loss is strongly wavelength dependent, arising largely from molecular-bond absorption in the bulk nitride [11

11. C.H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt. 26(13), 2621–2624 (1987).

]. The propagation loss has an absorption peak at 1520 nm with 37.2 nm (20 meV) full-width half-maximum (Fig. 2(b)). The maximum loss is 6.8dB/cm at 1520 nm and reduces to 2.3dB/cm when the wavelength is detuned 25 nm away from the absorption peak. The propagation scattering loss due to scattering is mostly wavelength independent and about 2 dB/cm.

The wavelength-dependent linear absorption (Fig. 2(b)) is presented by the dip in waveguide transmission spectrum (black solid curve in Fig. 2(c)). The propagation loss composes of waveguide sidewall roughness scattering and material absorption in near-IR. The material absorption near 1520 nm is mostly induced by middle band defects absorption. The coupling matrix gives the linear absorption dependent on-resonance transmission [33

33. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002). [CrossRef]

,34

34. Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012). [CrossRef] [PubMed]

] as:
Tres=[tα(λres)1α(λres)t]2
(1)
where t is the field transmittance between ring and waveguide. α(λ) = exp(-αL(λ)L/2) is the round-trip field transmission of the ring cavity with circumference L (2π × 40μm), and intrinsic propagation coefficient αL. αL is wavelength dependent for the PECVD grown silicon nitride waveguide, and derived from our waveguide transmission measurements. We plot the on-resonance transmission (Tres) as a function of the field transmittance α for the resonances (inset of Fig. 2(c)). As the round-trip transmittance (1- α(λ)) decreases from 0.99 to 0.9, the on-resonance transmittance drops from 0.75 to 0.2 in the overcoupling region (red curve in the inset of Fig. 2(c)). The on-resonance transmission is minimized at the critical coupling point, where the round-trip transmittance keeps decreasing to 0.89, which is the value as ring-waveguide field transmittance (t). The trend is opposite as the linear absorption keeps increasing into the undercoupling region. The on-resonance transmission increases with the linear loss in the under-coupling region (blue dashed line in the inset of Fig. 2(c)), where the quality factor decreases with linear loss in waveguide as usually observed.

With the wavelength-dependent linear loss, the resonator quality factor over the whole spectrum is plotted in Fig. 2(d). The increasing quality factor with higher linear propagation loss is due to the approach into critical coupling regime between the ring and the waveguide. The total Q factor (experimentally measured as λres/Δλ where λres and Δλ are obtained by applying Lorenzian fits to individual resonances) of a microring resonator coupled to a single waveguide can be expressed as [35

35. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004). [CrossRef] [PubMed]

,36

36. A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003). [CrossRef]

]:
Qtotal(α)=2πneffλ0L2arccos[2(0.5/t')exp(αL(λ)L/2)0.5t'exp(αLL(λ)/2)
(2)
where neff = 1.6 is the effective refractive index of silicon nitride waveguide. λ0 is the resonance wavelength of the ring, t’ is the field transmission coefficient between the ring and waveguide. By fitting the model to the measured data, we obtained the field transmission coefficient t’ = 0.93. It is noted that the trend is inverse with t’ = 1. The maximized linear absorption and ring quality factor near 1520 nm form an ideal condition for investigating the optical nonlinearity from the light matter interaction. With the wavelength dependent linear loss (black line in Fig. 2(c)), Eq. (2) predicts the correspondent quality factor (circles in Fig. 2(d)), which is comparable to experimental measurement (crosses in Fig. 2(d)).

We measured three rings with radii of ~20, 40 and 70 μm, with loaded, intrinsic quality factor and FSR respectively of 24,500, 49,000, 8.7nm, 69,600, 175,000, 4.4 nm and 77,300, 244,000, 2.9 nm at 1550 nm. The 40 μm radius ring is presented here for nonlinearity investigation due to its highest Q/V ratio. The loaded and intrinsic factors are obtained by careful coupled-mode-theory curve fitting at different power levels. To show the linear and nonlinear effect of absorption rate to resonator lineshape, we compared the linear and nonlinear response of the ring with different material absorption lifetime in ring resonator (τlin).

5. Thermal induced bistable switching

Comparing the resonances at different wavelengths, the linear loss modifies the ring-waveguide coupling coefficient. The linear loss enlarges extinction ratio in the overcoupling region. The steepened transmission spectrum shows higher the quality factor. With fixed ring-waveguide coupling coefficient, we model the nonlinear cavity transmissions with time-domain nonlinear coupled mode theory for the intracavity photon and temperature dynamics [37

37. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

]:
dadt=(i(ωLω0ΔωT)12τt)a+κPin (3-1)
dΔTdt=Rthτthτlin|a|2+ΔTτth (3-2)
where a is the amplitude of resonance mode; ΔT is the cavity temperature shift. Pin is the power carried by incident CW laser wave. κ is the coupling coefficient between waveguide and cavity, adjusted by linear absorption in waveguide. ωL0 is the detuning between the laser frequency (ωL) and cold cavity resonance (ω0). The thermal induced dispersion is ΔωT = ω0ΔT(dn/dT)/n. The total loss rate is 1/τt = 1/τin + 1/τv + 1/τlin. 1/τin and 1/τv are the loss rates into waveguide (coupling loss) and into free space (scattering loss), (1/τin/v = ω/Qin/v). The defect absorption leads to the linear absorption rate: 1/τlin = cα/n. The linear absorption rate, as a product of defects density and absorption cross section (α = σdefNdef), is estimated to be 0.0017 cm−1. In steady state condition here, Kerr dispersion is negligibly small compared to the thermal effect and thus not included here. The rest of linear and nonlinear parameters in silicon nitride ring are listed in the Table 1

Table 1. Fixed parameters used in the CMT model

table-icon
View This Table
. It is noted that not all the parameters are independent in Table 1. The thermal relaxation time τth,c = Rth × cvρ × V. The mode volume V = 2πrS, where S = 0.1μm2 is FDTD calculated the mode area on the cross section of the waveguide with given dimension in the right inset of Fig. 1(a).

The optical absorption in near 1520 nm is dominated by absorption from the N-H bonds. Through the model-measurement correspondence at different power levels, the linear absorption lifetime in the ring resonator is 400 ps (Fig. 3). Higher linear absorption (absorption rate) lowers the extinction ratio in linear region (dashed red line in Fig. 3(a)) and increases cavity resonance shift at nonlinear region (dashed red line in Fig. 3(b)). The transmission spectrum measurement at different power levels are shown in Fig. 3(c), with the parameter space given in Table 1.

6. Conclusions

The wavelength selective molecular absorption modifies the linear absorption of the PECVD silicon nitride ring resonators, and led to thermal bistability. The absence of free carrier dispersion could improve the stability of thermal bistable switching. Three independent models are compared to experimental data for correlating the linear loss in waveguide to microring resonator behavoir. With fixed scattering loss, higher linear loss from material absorption steepens the extinction ratio in the overcoupling region, and enhances the empirical quality factor of the resonator. The phonon absorption, coupled with enhanced Q factors, leads to pico joule level bistable switching in the wide bandgap material based microring resonator. The power dependent nonlinear transmission spectrum is numerically described by the couple mode theory.

Acknowledgments

References and links

1.

X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett. 91(5), 051113 (2007). [CrossRef]

2.

C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett. 94(2), 021111 (2009). [CrossRef]

3.

J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett. 104(6), 061104 (2014). [CrossRef]

4.

T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon. 6(8), 554–559 (2012). [CrossRef]

5.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photon. 7(8), 597–607 (2013). [CrossRef]

6.

K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express 16(17), 12987–12994 (2008). [CrossRef] [PubMed]

7.

J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express 22(4), 3797–3810 (2014). [CrossRef] [PubMed]

8.

A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express 17(14), 11366–11370 (2009). [CrossRef] [PubMed]

9.

T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express 12(20), 4742–4750 (2004). [CrossRef] [PubMed]

10.

H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett. 85(15), 3029–3031 (2004). [CrossRef]

11.

C.H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt. 26(13), 2621–2624 (1987).

12.

J. Vucković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 65(1 Pt 2), 016608 (2002). [PubMed]

13.

Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt. 59(2), 161–165 (2012). [CrossRef]

14.

M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistgable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express 13(7), 2678–2687 (2005). [CrossRef]

15.

V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett. 29(20), 2387–2389 (2004). [CrossRef] [PubMed]

16.

M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express 18(25), 26695–26703 (2010). [CrossRef] [PubMed]

17.

J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon. 4(1), 37–40 (2010). [CrossRef]

18.

S.-W. Huang, J. F. McMillan, J. Yang, A. Matsko, H. Zhou, M. Yu, D.-L. Kwong, L. Maleki, C. W. Wong, “Direct generation of 74-fs mode-locking from on-chip normal dispersion frequency combs,” submitted under review (2014).

19.

K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett. 37(8), 1331–1333 (2012). [CrossRef] [PubMed]

20.

K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express 18(9), 8998–9005 (2010). [CrossRef] [PubMed]

21.

L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon. 4(1), 41–45 (2010). [CrossRef]

22.

S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature 415(6872), 621–623 (2002). [CrossRef] [PubMed]

23.

N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express 18(25), 26728–26743 (2010). [CrossRef] [PubMed]

24.

Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-Rib Chalcogenide Waveguides by Solution Process,” ACS Photon. 1(3), 153–157 (2014). [CrossRef]

25.

K. Vu, K. Yan, Z. Jin, X. Gai, D.-Y. Choi, S. Debbarma, B. Luther-Davies, and S. Madden, “Hybrid waveguide from As2S3 and Er-doped TeO2 for lossless nonlinear optics,” Opt. Lett. 38(11), 1766–1768 (2013). [CrossRef] [PubMed]

26.

S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express 16(25), 20809–20816 (2008). [CrossRef] [PubMed]

27.

S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys. 77(12), 6534 (1995). [CrossRef]

28.

A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express 16(18), 13509–13516 (2008). [CrossRef] [PubMed]

29.

D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system,” Phys. Rev. B Condens. Matter 40(3), 1795–1805 (1989). [CrossRef] [PubMed]

30.

J. Fandiño, A. Ortiz, L. Rodríguez-Fernandez, and J. C. Alonso, “Composition, structural, and electrical properties of fluorinated silicon-nitride thin films grown by remote plasma-enhanced chemical-vapor deposition from SiF4/NH3 mixtures,” J. Vac. Sci. Technol. 22(3), 570–577 (2004). [CrossRef]

31.

D. V. Tsu and G. Lucovsky, “Silicon nitride and silicon diimide grown by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Tech. A: Vacuum, Surfaces, and Films 4(3), 480–485 (1986). [CrossRef]

32.

N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4,” J. Non-Cryst. Solids 43(1), 7–15 (1981). [CrossRef]

33.

A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett. 14(4), 483–485 (2002). [CrossRef]

34.

Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett. 108(22), 223907 (2012). [CrossRef] [PubMed]

35.

J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett. 29(24), 2861–2863 (2004). [CrossRef] [PubMed]

36.

A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett. 15(7), 921–923 (2003). [CrossRef]

37.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

38.

G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature 462(7273), 633–636 (2009). [CrossRef] [PubMed]

39.

C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express 20(27), 29076–29089 (2012). [CrossRef] [PubMed]

40.

A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett. 38(19), 3878–3881 (2013). [CrossRef] [PubMed]

41.

P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal micro-resonators excited via an integrated waveguide and fiber taper,” Opt. Express 13(3), 801–820 (2005). [CrossRef]

42.

A. Arbabi and L. L. Goddard, “Dynamics of self-heating in microring resonators,” IEEE Photon. J. 4(5), 1702–1711 (2012). [CrossRef]

OCIS Codes
(140.4780) Lasers and laser optics : Optical resonators
(190.1450) Nonlinear optics : Bistability
(130.4815) Integrated optics : Optical switching devices

ToC Category:
Integrated Optics

History
Original Manuscript: June 2, 2014
Revised Manuscript: July 7, 2014
Manuscript Accepted: July 11, 2014
Published: July 22, 2014

Citation
Tingyi Gu, Mingbin Yu, Dim-Lee Kwong, and Chee Wei Wong, "Molecular-absorption-induced thermal bistability in PECVD silicon nitride microring resonators," Opt. Express 22, 18412-18420 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-15-18412


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. X. Yang, C. Husko, C. W. Wong, M. Yu, and D. L. Kwong, “Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities,” Appl. Phys. Lett.91(5), 051113 (2007). [CrossRef]
  2. C. Husko, A. De Rossi, S. Combrié, Q. V. Tran, F. Raineri, and C. W. Wong, “Ultrafast all-optical modulation in GaAs photonic crystal cavities,” Appl. Phys. Lett.94(2), 021111 (2009). [CrossRef]
  3. J. Yang, T. Gu, J. Zheng, M. Yu, G.-Q. Lo, D.-L. Kwong, and C. W. Wong, “Radio-frequency regenerative oscillations in monolithic high-Q/V heterostructured photonic crystal cavities,” Appl. Phys. Lett.104(6), 061104 (2014). [CrossRef]
  4. T. Gu, N. Petrone, J. F. McMillan, A. van der Zande, M. Yu, G. Q. Lo, and C. W. Wong, “Regenerative oscillation and four-wave mixing in graphene optoelectronics,” Nat. Photon.6(8), 554–559 (2012). [CrossRef]
  5. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photon.7(8), 597–607 (2013). [CrossRef]
  6. K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Express16(17), 12987–12994 (2008). [CrossRef] [PubMed]
  7. J. S. Pelc, K. Rivoire, S. Vo, C. Santori, D. A. Fattal, and R. G. Beausoleil, “Picosecond all-optical switching in hydrogenated amorphous silicon microring resonators,” Opt. Express22(4), 3797–3810 (2014). [CrossRef] [PubMed]
  8. A. Gondarenko, J. S. Levy, and M. Lipson, “High confinement micron-scale silicon nitride high Q ring resonator,” Opt. Express17(14), 11366–11370 (2009). [CrossRef] [PubMed]
  9. T. Carmon, L. Yang, and K. Vahala, “Dynamical thermal behavior and thermal self-stability of microcavities,” Opt. Express12(20), 4742–4750 (2004). [CrossRef] [PubMed]
  10. H. Rokhsari, S. M. Spillane, and K. J. Vahala, “Loss characterization in microcavities using the thermal bistability effect,” Appl. Phys. Lett.85(15), 3029–3031 (2004). [CrossRef]
  11. C.H. Henry, R. F. Kazarinov, H. J. Lee, K. J. Orlowsky, and L. E. Katz, “Low loss Si3N4-SiO2 optical waveguides on Si,” Appl. Opt.26(13), 2621–2624 (1987).
  12. J. Vucković, M. Lončar, H. Mabuchi, and A. Scherer, “Design of photonic crystal microcavities for cavity QED,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.65(1 Pt 2), 016608 (2002). [PubMed]
  13. Z.-G. Zang and Y.-J. Zhang, “Low-switching power (<45 mW) optical bistability based on optical nonlinearity of ytterbium-doped fiber with a fiber Bragg grating pair,” J. Mod. Opt.59(2), 161–165 (2012). [CrossRef]
  14. M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistgable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express13(7), 2678–2687 (2005). [CrossRef]
  15. V. R. Almeida and M. Lipson, “Optical bistability on a silicon chip,” Opt. Lett.29(20), 2387–2389 (2004). [CrossRef] [PubMed]
  16. M. W. Lee, C. Grillet, C. Monat, E. Mägi, S. Tomljenovic-Hanic, X. Gai, S. Madden, D.-Y. Choi, D. Bulla, B. Luther-Davies, and B. J. Eggleton, “Photosensitive and thermal nonlinear effects in chalcogenide photonic crystal cavities,” Opt. Express18(25), 26695–26703 (2010). [CrossRef] [PubMed]
  17. J. S. Levy, A. Gondarenko, M. A. Foster, A. C. Turner-Foster, A. L. Gaeta, and M. Lipson, “CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects,” Nat. Photon.4(1), 37–40 (2010). [CrossRef]
  18. S.-W. Huang, J. F. McMillan, J. Yang, A. Matsko, H. Zhou, M. Yu, D.-L. Kwong, L. Maleki, C. W. Wong, “Direct generation of 74-fs mode-locking from on-chip normal dispersion frequency combs,” submitted under review (2014).
  19. K.-Y. Wang and A. C. Foster, “Ultralow power continuous-wave frequency conversion in hydrogenated amorphous silicon waveguides,” Opt. Lett.37(8), 1331–1333 (2012). [CrossRef] [PubMed]
  20. K. Narayanan and S. F. Preble, “Optical nonlinearities in hydrogenated-amorphous silicon waveguides,” Opt. Express18(9), 8998–9005 (2010). [CrossRef] [PubMed]
  21. L. Razzari, D. Duchesne, M. Ferrera, R. Morandotti, S. Chu, B. E. Little, and D. J. Moss, “CMOS-compatible integrated optical hyper-parametric oscillator,” Nat. Photon.4(1), 41–45 (2010). [CrossRef]
  22. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using a spherical dielectric microcavity,” Nature415(6872), 621–623 (2002). [CrossRef] [PubMed]
  23. N. Carlie, J. D. Musgraves, B. Zdyrko, I. Luzinov, J. Hu, V. Singh, A. Agarwal, L. C. Kimerling, A. Canciamilla, F. Morichetti, A. Melloni, and K. Richardson, “Integrated chalcogenide waveguide resonators for mid-IR sensing: leveraging material properties to meet fabrication challenges,” Opt. Express18(25), 26728–26743 (2010). [CrossRef] [PubMed]
  24. Y. Zha, P. T. Lin, L. Kimerling, A. Agarwal, and C. B. Arnold, “Inverted-Rib Chalcogenide Waveguides by Solution Process,” ACS Photon.1(3), 153–157 (2014). [CrossRef]
  25. K. Vu, K. Yan, Z. Jin, X. Gai, D.-Y. Choi, S. Debbarma, B. Luther-Davies, and S. Madden, “Hybrid waveguide from As2S3 and Er-doped TeO2 for lossless nonlinear optics,” Opt. Lett.38(11), 1766–1768 (2013). [CrossRef] [PubMed]
  26. S. C. Mao, S. H. Tao, Y. L. Xu, X. W. Sun, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Low propagation loss SiN optical waveguide prepared by optimal low-hydrogen module,” Opt. Express16(25), 20809–20816 (2008). [CrossRef] [PubMed]
  27. S. V. Deshpande, E. Gulari, S. W. Brown, and S. C. Rand, “Optical properties of silicon nitride films deposited by hot filament chemical vapor deposition,” J. Appl. Phys.77(12), 6534 (1995). [CrossRef]
  28. A. Gorin, A. Jaouad, E. Grondin, V. Aimez, and P. Charette, “Fabrication of silicon nitride waveguides for visible-light using PECVD: a study of the effect of plasma frequency on optical properties,” Opt. Express16(18), 13509–13516 (2008). [CrossRef] [PubMed]
  29. D. V. Tsu, G. Lucovsky, and B. N. Davidson, “Effects of the nearest neighbors and the alloy matrix on SiH stretching vibrations in the amorphous SiOr:H (0<r<2) alloy system,” Phys. Rev. B Condens. Matter40(3), 1795–1805 (1989). [CrossRef] [PubMed]
  30. J. Fandiño, A. Ortiz, L. Rodríguez-Fernandez, and J. C. Alonso, “Composition, structural, and electrical properties of fluorinated silicon-nitride thin films grown by remote plasma-enhanced chemical-vapor deposition from SiF4/NH3 mixtures,” J. Vac. Sci. Technol.22(3), 570–577 (2004). [CrossRef]
  31. D. V. Tsu and G. Lucovsky, “Silicon nitride and silicon diimide grown by remote plasma enhanced chemical vapor deposition,” J. Vac. Sci. Tech. A: Vacuum, Surfaces, and Films4(3), 480–485 (1986). [CrossRef]
  32. N. Wada, S. A. Solin, J. Wong, and S. Prochazka, “Raman and IR absorption spectroscopic studies on α, β, and amorphous Si3N4,” J. Non-Cryst. Solids43(1), 7–15 (1981). [CrossRef]
  33. A. Yariv, “Critical coupling and its control in optical waveguide-ring resonator systems,” IEEE Photon. Technol. Lett.14(4), 483–485 (2002). [CrossRef]
  34. Y. H. Wen, O. Kuzucu, M. Fridman, A. L. Gaeta, L.-W. Luo, and M. Lipson, “All-optical control of an individual resonance in a silicon microresonator,” Phys. Rev. Lett.108(22), 223907 (2012). [CrossRef] [PubMed]
  35. J. Niehusmann, A. Vörckel, P. H. Bolivar, T. Wahlbrink, W. Henschel, and H. Kurz, “Ultrahigh-quality-factor silicon-on-insulator microring resonator,” Opt. Lett.29(24), 2861–2863 (2004). [CrossRef] [PubMed]
  36. A. Vorckel, M. Monster, W. Henschel, P. H. Bolivar, and H. Kurz, “Asymmetrically coupled silicon-on-insulator microring resonators for compact add-drop multiplexers,” IEEE Photon. Technol. Lett.15(7), 921–923 (2003). [CrossRef]
  37. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  38. G. S. Wiederhecker, L. Chen, A. Gondarenko, and M. Lipson, “Controlling photonic structures using optical forces,” Nature462(7273), 633–636 (2009). [CrossRef] [PubMed]
  39. C. Baker, S. Stapfner, D. Parrain, S. Ducci, G. Leo, E. M. Weig, and I. Favero, “Optical instability and self-pulsing in silicon nitride whispering gallery resonators,” Opt. Express20(27), 29076–29089 (2012). [CrossRef] [PubMed]
  40. A. Arbabi and L. L. Goddard, “Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiO(x) using microring resonances,” Opt. Lett.38(19), 3878–3881 (2013). [CrossRef] [PubMed]
  41. P. E. Barclay, K. Srinivasan, and O. Painter, “Nonlinear response of silicon photonic crystal micro-resonators excited via an integrated waveguide and fiber taper,” Opt. Express13(3), 801–820 (2005). [CrossRef]
  42. A. Arbabi and L. L. Goddard, “Dynamics of self-heating in microring resonators,” IEEE Photon. J.4(5), 1702–1711 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited