OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19021–19028
« Show journal navigation

Substrate effects on the transmittance of 1D metal grid transparent electrodes

Kilbock Lee and Jinho Ahn  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19021-19028 (2014)
http://dx.doi.org/10.1364/OE.22.019021


View Full Text Article

Acrobat PDF (2396 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The effect of the presence of substrates below metal grids on light transmission is investigated through finite-different time-domain (FDTD) simulations. Comparing grids on substrates with suspended grids, we identify the effects of the presence of substrates on the transmittances of metal grids. The presence of substrates below micron-scale grids has no specific effect on their transmittances; however, unexpected dips and flattened peaks in transmission spectra were observed in nano-scale grids. The figures of merits (FoMs) of metal grids are calculated using estimated transmittances and grid sheet resistances. Due to their lower resistances and higher transmittances, micron-scale grids show higher FoMs than nano-scale grids and, are thus promising transparent conducting electrode candidates. The best 1D grid electrode in this work exhibited a figure of merit, σdc/σop, > 1000

© 2014 Optical Society of America

1. Introduction

Transparent conductive electrodes (TCE) are key components in optoelectronic devices, such as flat panel displays, light emitting diodes, photovoltaic devices, and touch screens [1–3

1. P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010). [CrossRef] [PubMed]

]. Indium tin oxide (ITO) has commonly been used in industry as a transparent electrode because of its low electrical resistance and high optical transmittance in the visible region. However, the price of indium, the main element of ITO, has drastically increased owing to its depletion. ITO also has a few drawbacks, including a lack of flexibility [4

4. Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1-2), 201–205 (2001). [CrossRef]

] and a tendency to damage organic layers during sputtering [5

5. H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).

], which could be critical problems for flexible displays and organic light emitting diodes (OLED). For these reasons, many studies have been carried out to develop next-generation transparent electrodes from conducting polymers [6, 7

6. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011). [CrossRef] [PubMed]

], graphene [8, 9

8. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009). [CrossRef] [PubMed]

], carbon nanotubes [10, 11

10. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004). [CrossRef] [PubMed]

], metal nanowires [12–15

12. M. C. Rosamond, A. J. Gallant, J. J. Atherton, M. C. Petty, O. Kolosov, and D. A. Zeze, “Transparent gold nanowire electrodes,” in the 11th IEEE Conference on Nanotechnology (IEEE-NANO, 2011), pp. 604–607.

], and metal grids [1, 3, 16

1. P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010). [CrossRef] [PubMed]

], as well as hybrid structures of these candidates [17, 18

17. A. J. Jin and K. Han-Ki, “Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1801–1809 (2009).

]. A recent review by Ellmer indicated that metal based TCEs are some of the most promising candidates for next-generation TCEs because of their high transmittances and low sheet resistances [2

2. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012). [CrossRef]

]. Fan et al. demonstrated that high aspect ratio metal grids show the highest transmittances with affordable sheet resistances [1

1. P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010). [CrossRef] [PubMed]

]. Van de Groep et al. demonstrated how the widths of silver grid networks affect light transmission in metal nano-grids [3

3. J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012). [CrossRef] [PubMed]

]. However, these studies are limited to nano-scale metal grids with restricted period ranges and did not elucidate the influences of the periods on incident light transmission. In addition, the effects of the presence of substrates on the optical transmissions of metal grid transparent electrodes have not been reported.

In this work, we calculate the transmittances and sheet resistances of 1-D networks of metal grids on SiO2 substrates with linewidths ranging from 50 nm to 1 μm. Grid periods were fixed at 10 and 20 times longer than the linewidths (90% and 95% opening ratios) to attain high optical transparencies above 90%. By comparing the transmissions observed in the presence of substrates to those observed in the absence of substrates, the interactions between the substrates and the metal grids were investigated. Two types of metal (silver and aluminum) were employed to verify how the composition can affect the transmission of the metal grids.

2. Simulation method

A commercial FDTD (Finite-difference time-domain) [19

19. F. Solutions, “Lumerical Solutions Inc,” Vancouver, British Columbia, Canada (Accessed January 2013), http://www.lumerical.com/tcad-products/fdtd (2003).

] tool was employed to calculate the transmittance of 1D metal grids in a wavelength region of 300 to 900 nm. The optical constants for Ag and Al were taken from the experimental data in the Handbook of Chemistry and Physics [20

20. W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics 2012–2013 (CRC Press, 2012).

]. Perfectly matched layer (PML) boundary conditions were used for the upper and lower boundaries of the simulations. Periodic boundary conditions were applied to the x-axis boundaries to analyze the periodic structure of the grid. Transverse electric (TE: electric field parallel to the grids) and transverse magnetic (TM: magnetic field parallel to the grids) polarization can be analyzed independently. We used 90 and 95% opening ratio structures (the ratio of a period to the width is 10 and 20, respectively) maintaining metal thicknesses in 50 nm. Ag and Al were employed as grid materials with grid widths ranging from 50 to 1 μm. The metal grids were laid on 80 μm thick quartz substrates.

3. Results and discussion

3.1. Optical properties of grids

Rayleigh anomalies (RAs) and localized surface plasmon resonances (LSPRs) are generated in metal nano grids with transverse electric polarized light (TE-pol light) and transverse magnetic polarized light (TM-pol light), respectively [1, 3, 16

1. P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010). [CrossRef] [PubMed]

]. Figure 1
Fig. 1 TE-pol light transmission spectra of metal grids with 50 and 100 nm linewidths. 95% opening ratio structure spectra are shown in the 1st column and 90% opening ratio structure spectra are shown in the 2nd column. Solid lines indicate metal grid transmission data without substrates and dash lines indicate data for metal grids on substrates. Black lines correspond to Ag and red lines to Al. Vertical dashed (top left) lines indicate RA wavelengths of the grids on substrate.
presents the TE-pol light transmittance results calculated for nano-width grids. In the spectra of the suspended structures, there are sharp peaks caused by RAs (solid lines) [16, 21, 22

16. T. Gao and P. W. Leu, “The role of propagating modes in silver nanowire arrays for transparent electrodes,” Opt. Express 21(S3Suppl 3), A419–A429 (2013). [CrossRef] [PubMed]

]. Aluminum and silver grids with the same structure show RA peaks at the same position because peak position is determined by the period of the grid structure according to the following relationship:sinθ±1=mλ/d, where d is the grid period, θ is the incident angle, λ is the wavelength of incident light, and m is a positive integer [23

23. D. Maystre, “Theory of Wood’s Anomalies,” in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer, 2012), pp. 39–83.

]. At normal incidence (sinθ is zero), the equation can be simplified to λ=±d/m. For grids on substrates, RA peak positions are affected by the refractive indices of the substrates according to the following diffraction equation:n2sinθ2=n1sinθ1+mλ/d, where n1 and n2 are the refractive indices of the atmospheres of the incident and diffracted lights, respectively, θ1 and θ2 are the angles of the incident and diffracted lights, respectively, λ is the wavelength of the light in vacuum, m is the order of diffraction, and d is the period of the grid. RA peaks occurs when sinθ2 = ± 1 and sinθ1 is zero, at normal incidence. Then, the diffraction condition can be simplified toλ=±1.5d/m. Comparing the two simple equations for normal incidence, the Rayleigh wavelengths obtained from the samples on the substrates were 1.5 times longer than those obtained from the samples without substrates.

In the structure, which has a 1 μm period (Fig. 1.,top left) peaks should, in theory, be generated at 333 and 500 nm for the suspended grid and 375, 500, and 750 nm (vertical dashed lines) for the same grid on a substrate (n = 1.5). Unlike the suspended structure, peaks obtained from the sample with a substrate were weak, and the spectrum not only showed insignificant peaks at 375 and 750 nm, but a slight dip at 500 nm.

Figure 4
Fig. 4 The average transmittances of various grids versus their linewidths. Black squares and red circles denote the transmittance of grids without and with substrates, respectively. “Substrate-referenced” (blue triangle) indicates the transmittances of grids on substrates excluding light losses attributed to substrates.
shows the average transmittance of each structure in a wavelength range of 300 to 900 nm, as a function of metal grid linewidth. “Substrate-referenced” denotes the transmittance that can be attributed to the grid alone, as determined by subtracting the transmittance of the reference quartz substrate from that of the grid on a substrate. For 500 nm and 1μm linewidth structures, transmittances obtained from the suspended grids were quite similar to those of the substrate-referenced for both 90 and 95% opening ratio structures. This indicates that the transmittance differences between the “on substrate” (black squares in Fig. 4) and the “without substrate” (red circles in Fig. 4) are caused by light loss from the substrate alone (6.45%), which suggests that there are no additional interactions between the substrates and the metal grids. Differences between the black squares and blue triangles in Fig. 4 were found in the 50 and 100 nm linewidth structures and were due to additional light loss resulting from interactions between the substrates and the LSPRs of the grids (dashed circles in Fig. 3).

The transmission of the 2-dimensional grid was also calculated. By combining the 1D grids of the 95% opening ratio structures with the same grids rotated by 90 degrees, a 2D grid was generated with an opening ratio of approximately 90%. Figure 5
Fig. 5 (a) TE and TM-pol light transmittance spectra of the 2D and 1D Ag grids. Both grids have linewidths of 50 nm and periods of 1µm. (b) TE and TM-pol light losses (1 – transmittance) of the 2D grid and the sum of the light losses of the 1D grid.
shows the TE and TM-pol light transmission and light loss spectra of 2D and 1D grids. The light loss data demonstrates that the sum of the TE and TM light losses of the 1D grid were similar to the light loss of the 2D grid. Since the two 1D grids had the same opening ratio, the transmission of the 2D grid was expected to have the same transmission as can be calculated from the sum of the losses in the TE and TM in1D grids. However, an exceptional transmission dip, slightly deeper (few percent) than the sum of the TE and TM pol light losses of the 1D grid, was found at 500 nm in the spectrum of the 2D grid. The simulation of the 2D grid needs a 3D simulation region, which requires significant memory and time. However, using 1D grid simulations could reduce the time needed to estimate the transmissions of the 2D grids.

3.2 Electrical properties of the metal grids

In view of the line resistivity model, increases in the resistivities caused by limiting widths in the micro-width grids can be neglected [29, 30

29. D. Josell, S. H. Brongersma, and Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009). [CrossRef]

] since these widths were more than 10 times larger than their electron mean free paths (Ag: 52 nm, Al: 15 nm) [31

31. N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders College, 1976).

]. The resistivities of 50 nm thick Ag and Al have been reported to be 1.6 times higher than those of the bulk materials [32

32. W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004). [CrossRef]

]. Hence, the sheet resistances of the micro-width grids with opening ratios of 90 and 95% were expected to be 5.1 Ω/□ and 10.2 Ω/□, respectively, for Ag and 9 Ω/□, 18Ω/□, respectively, for Al.

Using the expected sheet resistance values above, the figures of merits (FoMs) were calculated in order to compare their efficiencies as transparent electrode candidates. FoM was defined as the ratio of the electrical conductance to the optical conductance (σdc/σopt), which is given byT=(1+188.5/Rsσoptdc)2, where the expected sheet resistance and averaged transmission were used for Rs and T, respectively [33

33. L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks,” Nano Lett. 4(12), 2513–2517 (2004). [CrossRef]

]. Figure 6
Fig. 6 Figures of merit (FoM) of metal grids as functions of grid linewidths. Black circles correspond to Ag grid data and red circles to Al grid data. Open circles correspond to 95% opening ratio and closed circles to 90% opening ratio. Micron-scale grids show superior FoM values compared to nano-scale grids because of the higher electrical resistivities of nanogrids.
shows the FoMs of the Al and Ag grid electrodes plotted as functions of the linewidths of the metal grids. The σdc/σopt of ITO is approximately 120–240 [34

34. T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012). [CrossRef]

] and that of an Ag nanowire network, the leading candidate to replace ITO, is reported to be approximately 215 [35, 36

35. S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4(12), 7064–7072 (2010). [CrossRef] [PubMed]

]. Other materials including Al-Cu wire, graphene, and carbon nanotubes were reported to be approximately 75 [2, 34–36

2. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012). [CrossRef]

]. However, our result shows that the σdc/σopt values for micron grids are 600–1100 for Ag and 400–600 for Al. The FoM values for the Ag and Al nano-grids are 130–180 and 70-100, respectively. It should be noted that the high σdc/σopt values obtained from the micro width grids are mainly due to the decreased resistivities since the observed transmittance increases were trivial.

4. Conclusion

In conclusion, the 1D Ag and Al grids exhibit low sheet resistances and very high transmittances in the visible region. On substrates, the metal grids with 50 and 100 nm linewidths exhibit decreased transmittances due to weak RA peaks and transmission dips caused by interactions between LSPRs and substrates. Metal grids with 500 nm and 1 μm linewidths demonstrated uniform transmittance in the visible light range, corresponding to their opening ratios and low sheet resistances, similar to their bulk resistivities. 2D simulation results can be calculated from the light loss of the 1D grid in TE and TM-pol light. The substrates were considered in simulations because they contribute to the transmittances of the metal grids. To achieve lower resistances and higher transmittances, metal grids with larger linewidths (> 100 nm) should be used.

Acknowledgments

This research was supported by Basic Science Research Programs through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (Grant no. 2009-0083540 and 2011-0028570)

References and links

1.

P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett. 10(8), 2944–2949 (2010). [CrossRef] [PubMed]

2.

K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics 6(12), 809–817 (2012). [CrossRef]

3.

J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett. 12(6), 3138–3144 (2012). [CrossRef] [PubMed]

4.

Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films 394(1-2), 201–205 (2001). [CrossRef]

5.

H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett. 86, 183503 (2005).

6.

D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater. 23(13), 1482–1513 (2011). [CrossRef] [PubMed]

7.

J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater. 15(2), 290–296 (2005). [CrossRef]

8.

K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature 457(7230), 706–710 (2009). [CrossRef] [PubMed]

9.

D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology 24(7), 075202 (2013). [CrossRef] [PubMed]

10.

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science 305(5688), 1273–1276 (2004). [CrossRef] [PubMed]

11.

P. Santhosh and K. Dong-Won, “Preparation and characterization of highly conductive transparent films with single-walled carbon nanotubes for flexible display applications,” Carbon 47, 2436–2441 (2009).

12.

M. C. Rosamond, A. J. Gallant, J. J. Atherton, M. C. Petty, O. Kolosov, and D. A. Zeze, “Transparent gold nanowire electrodes,” in the 11th IEEE Conference on Nanotechnology (IEEE-NANO, 2011), pp. 604–607.

13.

P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater. 24(25), 3326–3332 (2012). [CrossRef] [PubMed]

14.

J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett. 8(2), 689–692 (2008). [CrossRef] [PubMed]

15.

S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano 3(7), 1767–1774 (2009). [CrossRef] [PubMed]

16.

T. Gao and P. W. Leu, “The role of propagating modes in silver nanowire arrays for transparent electrodes,” Opt. Express 21(S3Suppl 3), A419–A429 (2013). [CrossRef] [PubMed]

17.

A. J. Jin and K. Han-Ki, “Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells 93(10), 1801–1809 (2009).

18.

M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett. 13(6), 2814–2821 (2013). [CrossRef] [PubMed]

19.

F. Solutions, “Lumerical Solutions Inc,” Vancouver, British Columbia, Canada (Accessed January 2013), http://www.lumerical.com/tcad-products/fdtd (2003).

20.

W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics 2012–2013 (CRC Press, 2012).

21.

K. Lee, S. H. Song, and J. Ahn, “FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes,” Opt. Express 22(6), 6269–6275 (2014). [CrossRef] [PubMed]

22.

L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 6 14(79), 60–65 (1907). [CrossRef]

23.

D. Maystre, “Theory of Wood’s Anomalies,” in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer, 2012), pp. 39–83.

24.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett. 103(20), 203901 (2009). [CrossRef] [PubMed]

25.

B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci Rep 3, 2840 (2013). [CrossRef] [PubMed]

26.

K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc. 34(01), 100–108 (1938). [CrossRef]

27.

E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys. 1(1), 1–42 (1952). [CrossRef]

28.

S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett. 9(6), 2300–2305 (2009). [CrossRef] [PubMed]

29.

D. Josell, S. H. Brongersma, and Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res. 39(1), 231–254 (2009). [CrossRef]

30.

R. B. Dingle, “The Electrical Conductivity of Thin Wires,” Proc. R. Soc. Lond. A Math. Phys. Sci. 201(1067), 545–560 (1950). [CrossRef]

31.

N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders College, 1976).

32.

W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng. 76(1-4), 146–152 (2004). [CrossRef]

33.

L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks,” Nano Lett. 4(12), 2513–2517 (2004). [CrossRef]

34.

T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater. 2(3), 353–360 (2012). [CrossRef]

35.

S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano 4(12), 7064–7072 (2010). [CrossRef] [PubMed]

36.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4(9), 611–622 (2010). [CrossRef]

OCIS Codes
(160.2100) Materials : Electro-optical materials
(310.6628) Thin films : Subwavelength structures, nanostructures
(310.7005) Thin films : Transparent conductive coatings

ToC Category:
Optoelectronics

History
Original Manuscript: June 4, 2014
Revised Manuscript: July 5, 2014
Manuscript Accepted: July 10, 2014
Published: July 29, 2014

Citation
Kilbock Lee and Jinho Ahn, "Substrate effects on the transmittance of 1D metal grid transparent electrodes," Opt. Express 22, 19021-19028 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19021


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. B. Catrysse and S. Fan, “Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices,” Nano Lett.10(8), 2944–2949 (2010). [CrossRef] [PubMed]
  2. K. Ellmer, “Past achievements and future challenges in the development of optically transparent electrodes,” Nat. Photonics6(12), 809–817 (2012). [CrossRef]
  3. J. van de Groep, P. Spinelli, and A. Polman, “Transparent conducting silver nanowire networks,” Nano Lett.12(6), 3138–3144 (2012). [CrossRef] [PubMed]
  4. Z. Chen, B. Cotterell, W. Wang, E. Guenther, and S.-J. Chua, “A mechanical assessment of flexible optoelectronic devices,” Thin Solid Films394(1-2), 201–205 (2001). [CrossRef]
  5. H.-K. Kim, D. G. Kim, K. S. Lee, M. S. Huh, S. Jeong, K. Kim, and T.-Y. Seong, “Plasma damage-free sputtering of indium tin oxide cathode layers for top-emitting organic light-emitting diodes,” Appl. Phys. Lett.86, 183503 (2005).
  6. D. S. Hecht, L. Hu, and G. Irvin, “Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures,” Adv. Mater.23(13), 1482–1513 (2011). [CrossRef] [PubMed]
  7. J. Huang, P. Miller, J. Wilson, A. Mello, J. Mello, and D. Bradley, “Investigation of the effects of doping and postdeposition treatments on the conductivity, morphology, and work function of poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonate) films,” Adv. Funct. Mater.15(2), 290–296 (2005). [CrossRef]
  8. K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, “Large-scale pattern growth of graphene films for stretchable transparent electrodes,” Nature457(7230), 706–710 (2009). [CrossRef] [PubMed]
  9. D. H. Youn, Y. J. Yu, H. Choi, S. H. Kim, S. Y. Choi, and C. G. Choi, “Graphene transparent electrode for enhanced optical power and thermal stability in GaN light-emitting diodes,” Nanotechnology24(7), 075202 (2013). [CrossRef] [PubMed]
  10. Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, and A. G. Rinzler, “Transparent, conductive carbon nanotube films,” Science305(5688), 1273–1276 (2004). [CrossRef] [PubMed]
  11. P. Santhosh and K. Dong-Won, “Preparation and characterization of highly conductive transparent films with single-walled carbon nanotubes for flexible display applications,” Carbon47, 2436–2441 (2009).
  12. M. C. Rosamond, A. J. Gallant, J. J. Atherton, M. C. Petty, O. Kolosov, and D. A. Zeze, “Transparent gold nanowire electrodes,” in the 11th IEEE Conference on Nanotechnology (IEEE-NANO, 2011), pp. 604–607.
  13. P. Lee, J. Lee, H. Lee, J. Yeo, S. Hong, K. H. Nam, D. Lee, S. S. Lee, and S. H. Ko, “Highly stretchable and highly conductive metal electrode by very long metal nanowire percolation network,” Adv. Mater.24(25), 3326–3332 (2012). [CrossRef] [PubMed]
  14. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-processed metal nanowire mesh transparent electrodes,” Nano Lett.8(2), 689–692 (2008). [CrossRef] [PubMed]
  15. S. De, T. M. Higgins, P. E. Lyons, E. M. Doherty, P. N. Nirmalraj, W. J. Blau, J. J. Boland, and J. N. Coleman, “Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios,” ACS Nano3(7), 1767–1774 (2009). [CrossRef] [PubMed]
  16. T. Gao and P. W. Leu, “The role of propagating modes in silver nanowire arrays for transparent electrodes,” Opt. Express21(S3Suppl 3), A419–A429 (2013). [CrossRef] [PubMed]
  17. A. J. Jin and K. Han-Ki, “Low resistance and highly transparent ITO–Ag–ITO multilayer electrode using surface plasmon resonance of Ag layer for bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells93(10), 1801–1809 (2009).
  18. M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. Nam, and J.-U. Park, “High-Performance, Transparent, and Stretchable Electrodes Using Graphene-Metal Nanowire Hybrid Structures,” Nano Lett.13(6), 2814–2821 (2013). [CrossRef] [PubMed]
  19. F. Solutions, “Lumerical Solutions Inc,” Vancouver, British Columbia, Canada (Accessed January 2013), http://www.lumerical.com/tcad-products/fdtd (2003).
  20. W. M. Haynes, D. R. Lide, and T. J. Bruno, CRC Handbook of Chemistry and Physics 2012–2013 (CRC Press, 2012).
  21. K. Lee, S. H. Song, and J. Ahn, “FDTD simulation of transmittance characteristics of one-dimensional conducting electrodes,” Opt. Express22(6), 6269–6275 (2014). [CrossRef] [PubMed]
  22. L. Rayleigh, “III.Note on the remarkable case of diffraction spectra described by Prof. Wood,” Philosophical Magazine Series 614(79), 60–65 (1907). [CrossRef]
  23. D. Maystre, “Theory of Wood’s Anomalies,” in Plasmonics, S. Enoch, and N. Bonod, eds. (Springer, 2012), pp. 39–83.
  24. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103(20), 203901 (2009). [CrossRef] [PubMed]
  25. B. Zeng, Y. Gao, and F. J. Bartoli, “Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters,” Sci Rep3, 2840 (2013). [CrossRef] [PubMed]
  26. K. Fuchs and N. F. Mott, “The conductivity of thin metallic films according to the electron theory of metals,” Math. Proc. Camb. Philos. Soc.34(01), 100–108 (1938). [CrossRef]
  27. E. H. Sondheimer, “The mean free path of electrons in metals,” Adv. Phys.1(1), 1–42 (1952). [CrossRef]
  28. S. J. Jeong, J. E. Kim, H. S. Moon, B. H. Kim, S. M. Kim, J. B. Kim, and S. O. Kim, “Soft graphoepitaxy of block copolymer assembly with disposable photoresist confinement,” Nano Lett.9(6), 2300–2305 (2009). [CrossRef] [PubMed]
  29. D. Josell, S. H. Brongersma, and Z. Tokei, “Size-Dependent Resistivity in Nanoscale Interconnects,” Annu. Rev. Mater. Res.39(1), 231–254 (2009). [CrossRef]
  30. R. B. Dingle, “The Electrical Conductivity of Thin Wires,” Proc. R. Soc. Lond. A Math. Phys. Sci.201(1067), 545–560 (1950). [CrossRef]
  31. N. W. Ashcroft, and N. D. Mermin, Solid State Physics (Saunders College, 1976).
  32. W. Zhang, S. H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, and K. Maex, “Influence of the electron mean free path on the resistivity of thin metal films,” Microelectron. Eng.76(1-4), 146–152 (2004). [CrossRef]
  33. L. Hu, D. S. Hecht, and G. Grüner, “Percolation in transparent and conducting carbon nanotube networks,” Nano Lett.4(12), 2513–2517 (2004). [CrossRef]
  34. T. M. Barnes, M. O. Reese, J. D. Bergeson, B. A. Larsen, J. L. Blackburn, M. C. Beard, J. Bult, and J. Van de Lagemaat, “Comparing the fundamental physics and device performance of transparent, conductive nanostructured networks with conventional transparent conducting oxides,” Adv. Energy Mater.2(3), 353–360 (2012). [CrossRef]
  35. S. De, P. J. King, P. E. Lyons, U. Khan, and J. N. Coleman, “Size effects and the problem with percolation in nanostructured transparent conductors,” ACS Nano4(12), 7064–7072 (2010). [CrossRef] [PubMed]
  36. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited