OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 16 — Aug. 11, 2014
  • pp: 19131–19140
« Show journal navigation

Double antiresonant hollow core fiber – guidance in the deep ultraviolet by modified tunneling leaky modes

Alexander Hartung, Jens Kobelke, Anka Schwuchow, Katrin Wondraczek, Jörg Bierlich, Jürgen Popp, Torsten Frosch, and Markus A. Schmidt  »View Author Affiliations


Optics Express, Vol. 22, Issue 16, pp. 19131-19140 (2014)
http://dx.doi.org/10.1364/OE.22.019131


View Full Text Article

Acrobat PDF (3495 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Guiding light inside the hollow cores of microstructured optical fibers is a major research field within fiber optics. However, most of current fibers reveal limited spectral operation ranges between the mid-visible and the infrared and rely on complicated microstructures. Here we report on a new type of hollow-core fiber, showing for the first time distinct transmission windows between the deep ultraviolet and the near infrared. The fiber, guiding in a single mode, operates by the central core mode being anti-resonant to adjacent modes, leading to a novel modified tunneling leaky mode. The fiber design is straightforward to implement and reveals beneficial features such as preselecting the lowest loss mode (Gaussian-like or donut-shaped mode). Fibers with such a unique combination of attributes allow accessing the extremely important deep-UV range with Gaussian-like mode quality and may pave the way for new discoveries in biophotonics, multispectral spectroscopy, photo-initiated chemistry or ultrashort pulse delivery.

© 2014 Optical Society of America

1. Introduction

The guidance of light in optical fibers having a hollow core is one of the major research directions in fiber optics due to its attractiveness for basic research as well as for interdisciplinary applications. Such “empty-core” fibers are typically made from silica and reveal several key features such as very low or tunable group velocity dispersion for ultrashort pulse propagation and compression [1

1. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29(11), 1285–1287 (2004). [CrossRef] [PubMed]

, 2

2. K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013). [CrossRef] [PubMed]

], large damage threshold for high-power delivery far beyond that of standard fibers [3

3. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003). [CrossRef] [PubMed]

] or a strongly improved sensitivity for in-fiber spectroscopy in e.g. biophotonics [4

4. T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013). [CrossRef] [PubMed]

, 5

5. S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014). [CrossRef] [PubMed]

].

Two directions of hollow core research have emerged in recent time: (i) simplifying the fiber’s design as much as possible, thus making them more practical and useful for commercialization, (ii) pushing the optical guidance windows towards new spectral regimes [6

6. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012). [CrossRef] [PubMed]

]. Beside the visible (VIS) and infrared (IR), the ultraviolet (UV) regime has turned out to be of essential importance for a vast number of applications [7

7. Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008). [CrossRef] [PubMed]

11

11. T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007). [CrossRef] [PubMed]

]. It has the potential to widen the application area of currently used fibers to new fields such as spectroscopy [5

5. S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014). [CrossRef] [PubMed]

, 12

12. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012). [CrossRef] [PubMed]

], photo-initiated chemistry [13

13. J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010). [CrossRef] [PubMed]

, 14

14. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013). [CrossRef] [PubMed]

], gas based frequency standards [15

15. A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Opt. Lett. 36(24), 4776–4778 (2011). [CrossRef] [PubMed]

], lithography [16

16. G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4(6), 1840–1855 (2012). [CrossRef] [PubMed]

] or low-loss UV light delivery for applications in for instance medicine [17

17. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000). [CrossRef] [PubMed]

19

19. T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009). [CrossRef]

].

Recently, a simplified design (negative curvature fiber) based on one single ring of thin walled holes connected to the inner wall of a silica capillary has proven to show 24 dB/km of attenuation at around 2.4 µm [37

37. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013). [CrossRef] [PubMed]

], which is remarkably low for such a simple design. The guidance mechanism relies on the central core mode being anti-resonant to the modes in the core surround [38

38. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005). [CrossRef] [PubMed]

]. The experiments, however, have shown that the loss of the core mode dramatically increases when approaching the VIS spectral range, preventing any light guidance for wavelength below 800 nm.

Here we report on the first experimental demonstration of waveguidance within a single optical mode inside a novel type of fiber down to a wavelength of 225 nm, which strongly extends beyond previously reported transmission windows by more than 100 nm towards shorter wavelength [36

36. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34(19), 2888–2890 (2009). [CrossRef] [PubMed]

]. This innovative design relies on the core mode in the central hollow region being double anti-resonant to two different adjacent cavities and exhibits various transmission bands with propagation losses as small as 2.4 dB/m at 348 nm. Depending on the precise interplay between the involved modes, i.e. the fiber’s internal microstructure, the single transmitted core mode can be tuned either linearly or azimuthally polarized over the entire spectral guidance regime. The guidance properties within the transmission bands are explained by the concept of modified tunneling leaky modes (calculated by quasi-analytic waveguide models), giving a clear picture of the physics behind this new type of double anti-resonance guidance. Compared to HC-PCFs and negative curvature fibers, this new design is much simpler and straightforwardly to realize due to the strongly reduced number of holes, thus being the first realistic approach for a commercial implementation of an anti-resonant waveguide.

The unique capabilities of this novel fiber for Gaussian-like single mode (modes with no central node and no additional side lopes within the core section) light guidance in the deep UV to 225nm significantly extends the limits of currently used holey fibers and will pave the way for new interdisciplinary discoveries in e.g. biophotonics, in-fiber spectroscopy, photo-activated chemistry, light-matter interaction or lithography and provides great potential for or commercialization.

2. Results and discussion

TLMs, which have only been used in the context of capillary modes, comprise features of both bounded and radiation modes at the same time and exist only in the region between the guided mode boundary (rcaustic → ∞, upper black dashed line in Fig. 2(b)) and refracting leaky mode boundary (rcaustica + t, lower black dashed line in Fig. 2(b)). The radiation caustic collapses to the outer boundary of the ring when spectrally approaching the strand resonances, transforming itself into a lossy capillary mode (Fig. 2(b)).

The calculated attenuation of the fundamental mode within the bands (Fig. 1(d)) principally resembles the measured loss behavior (Fig. 1(c)). The measured bands reveal a reduced bandwidth, which mainly results from variations in the strand thicknesses (standard deviation 13nm), inhomogenously broadening the resonances. The experimental attenuation increases for λ0 < 400nm, whereas the model predicts a monotonic decrease. The origin of this effect, which has also been observed in the negative curvature fiber at much longer wavelengths, is under current debate [37

37. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013). [CrossRef] [PubMed]

, 48

48. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011). [CrossRef] [PubMed]

, 49

49. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013). [CrossRef] [PubMed]

]. Broadened resonances, resulting from variations in the silica bridge thicknesses, are at least partly relevant for the increased experimental attenuation. Such variations give rise to a distribution of transmission bands with spectrally different transmission minima. The superposition of all these bands in fact leads to a narrower band with increased attenuation. Ultimately scattering due to intrinsic surface roughness at the silica-air interfaces will constitute the fundamental limit. Such irregularities are intrinsic to the fiber fabrication process and result from surface waves frozen-in during fiber drawing [50

50. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005). [CrossRef] [PubMed]

]. Up to now corresponding low loss limits were derived for the NIR wavelength range only (few dB/km) [51

51. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012). [CrossRef] [PubMed]

]. Due to the severe wavelength dependence an order of magnitude higher loss limit is expected in the UV wavelength range.

3. Conclusion

We have introduced a novel type of double-antiresonant hollow fiber, showing transmission in a single optical mode over a wide range of wavelengths extending for the first time towards the important deep UV range [7

7. Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008). [CrossRef] [PubMed]

11

11. T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007). [CrossRef] [PubMed]

] (shortest guided wavelength is 225 nm). The guidance properties of the core mode have been thoroughly explained by a new type of modified tunneling leaky modes, having features of both leaky and guided modes. The low optical loss is therefore explained by the central mode being simultaneously anti-resonant with both strand and leaky outer waveguide modes. This double anti-resonance reveals negligible wavelength dependence in the experiment, allowing either a fundamental-like (HE11) or a donut-shaped (TE01) mode to be chosen as the lowest loss mode. The fiber’s design relies on only four large air holes and a central square core surrounded by very thin silica strands, making it straightforward to implement, compared to any other known designs. All experimental findings have been thoroughly explained by a quasi-analytic concentric ring model.

We believe that the unique capabilities for single-mode light guidance down to the deep-UV will pave the way for new interdisciplinary discoveries in research areas such as ultrasensitive and multispectral spectroscopy, in-fiber photocatalysis, gas-based metrology or ultrashort pulse forming and represent a fundamental step towards a commercialization of hollow anti-resonant fiber waveguides.

Appendix: Methods

Excluding higher order mode excitation: To be sure that higher-order modes from the prefiber (“pinhole fiber”) did not contribute to our findings, we conducted a single wavelength loss measurement with a high quality beam using a lens-based input coupling scheme (wavelength 355 nm, incoming beam: M2 =1.1), giving practically the same loss value (Fig. 1(c), blue circle) as the butt coupling technique. A potential influence of the higher-order modes from the prefiber can therefore be excluded.

Fabrication of the double anti-resonant square core fiber: The square core fiber has been implemented using a three step version of the stack-and-draw approach (Fig. 5(a)
Fig. 5 Fabrication details of the square core fiber. (a) Fabrication sequence of the three step process. The numbers along the magenta arrows indicate the approximate size reduction factor. (b) Microscope image of the cane. (c) Scanning electron micrograph of the square core fiber cross section.
: (i) a large air filling fraction silica tube (outer and inner diameter 28 and 26 mm, Heraeus Suprasil F300) has been drawn such that four resulting capillaries assembled in square arrangement fit into a jacket tube. (ii) This preform has been drawn into a cane (Fig. 5(b)). (iii) This cane was overcladded by another jacket and drawn to the final fiber (outer diameter 125 µm, Fig. 5(c)). The main challenge is the uniform sintering of the four capillaries at their tangency points to provide an evenly distributed physical connection to the inner wall of the jacket. The thin-wall bridges in the final fiber have been achieved by isostatic pressurization in the second drawing step [53

53. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: Capillary drawing,” J. Lightwave Technol. 19(12), 1924–1931 (2001). [CrossRef]

], allowing formation of very fine bridges and preventing formation of thickened strands. Variations of the bridge thickness are mainly caused by the different stretching ratios resulting from variations of the distances between the sintering points.

Acknowledgments

Funding from the federal state of Thuringia (Forschergruppe Fasersensorik: FKZ: 2012 FGR 0013; FaserINFRA: FKZ: B715-11029) and ESF is highly acknowledged.

References and links

1.

W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29(11), 1285–1287 (2004). [CrossRef] [PubMed]

2.

K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett. 38(18), 3592–3595 (2013). [CrossRef] [PubMed]

3.

D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003). [CrossRef] [PubMed]

4.

T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem. 85(13), 6264–6271 (2013). [CrossRef] [PubMed]

5.

S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem. 86(11), 5278–5285 (2014). [CrossRef] [PubMed]

6.

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012). [CrossRef] [PubMed]

7.

Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol. 4(2), 107–109 (2008). [CrossRef] [PubMed]

8.

T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem. 79(3), 986–993 (2007). [CrossRef] [PubMed]

9.

V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science 269(5232), 1843–1848 (1995). [CrossRef] [PubMed]

10.

T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B 111(16), 4171–4177 (2007). [CrossRef] [PubMed]

11.

T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem. 79(3), 1101–1108 (2007). [CrossRef] [PubMed]

12.

P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett. 37(21), 4371–4373 (2012). [CrossRef] [PubMed]

13.

J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry 16(19), 5607–5612 (2010). [CrossRef] [PubMed]

14.

A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev. 42(22), 8629–8648 (2013). [CrossRef] [PubMed]

15.

A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Opt. Lett. 36(24), 4776–4778 (2011). [CrossRef] [PubMed]

16.

G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale 4(6), 1840–1855 (2012). [CrossRef] [PubMed]

17.

E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol. 45(2), R1–R59 (2000). [CrossRef] [PubMed]

18.

T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.) 134(6), 1126–1132 (2009). [CrossRef] [PubMed]

19.

T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct. 924–926, 301–308 (2009). [CrossRef]

20.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal 43, 1783 (1964).

21.

Y. Fink, D. J. Ripin, S. H. Fan, C. P. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol. 17(11), 2039–2041 (1999). [CrossRef]

22.

S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express 9(13), 748–779 (2001). [CrossRef] [PubMed]

23.

K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express 12(8), 1510–1517 (2004). [CrossRef] [PubMed]

24.

J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science 282(5393), 1476–1478 (1998). [CrossRef] [PubMed]

25.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285(5433), 1537–1539 (1999). [CrossRef] [PubMed]

26.

P. Russell, “Photonic crystal fibers,” Science 299(5605), 358–362 (2003). [CrossRef] [PubMed]

27.

J. C. Knight, “Photonic crystal fibres,” Nature 424(6950), 847–851 (2003). [CrossRef] [PubMed]

28.

C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature 424(6949), 657–659 (2003). [CrossRef] [PubMed]

29.

M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett. 38(13), 2215–2217 (2013). [CrossRef] [PubMed]

30.

O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett. 109(2), 024502 (2012). [CrossRef] [PubMed]

31.

F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today 171(1), 281–289 (2011). [CrossRef]

32.

F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics 7(4), 279–284 (2013). [CrossRef]

33.

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006). [CrossRef] [PubMed]

34.

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007). [CrossRef] [PubMed]

35.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011). [CrossRef] [PubMed]

36.

S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett. 34(19), 2888–2890 (2009). [CrossRef] [PubMed]

37.

F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express 21(18), 21466–21471 (2013). [CrossRef] [PubMed]

38.

P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express 13(20), 8277–8285 (2005). [CrossRef] [PubMed]

39.

J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984). [CrossRef] [PubMed]

40.

N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27(18), 1592–1594 (2002). [CrossRef] [PubMed]

41.

N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11(10), 1243–1251 (2003). [CrossRef] [PubMed]

42.

K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express 16(22), 17935–17951 (2008). [CrossRef] [PubMed]

43.

C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010). [CrossRef] [PubMed]

44.

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010). [CrossRef] [PubMed]

45.

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012). [CrossRef] [PubMed]

46.

P. Yeh, A. Yariv, and E. Marom, “THEORY OF BRAGG FIBER,” J. Opt. Soc. Am. 68(9), 1196–1201 (1978). [CrossRef]

47.

A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).

48.

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011). [CrossRef] [PubMed]

49.

A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express 4(2), 193–205 (2013). [CrossRef] [PubMed]

50.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005). [CrossRef] [PubMed]

51.

E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express 20(19), 20980–20991 (2012). [CrossRef] [PubMed]

52.

F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett. 35(8), 1157–1159 (2010). [CrossRef] [PubMed]

53.

A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: Capillary drawing,” J. Lightwave Technol. 19(12), 1924–1931 (2001). [CrossRef]

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(060.4005) Fiber optics and optical communications : Microstructured fibers

ToC Category:
Fiber Optics

History
Original Manuscript: April 29, 2014
Revised Manuscript: June 27, 2014
Manuscript Accepted: July 7, 2014
Published: July 30, 2014

Citation
Alexander Hartung, Jens Kobelke, Anka Schwuchow, Katrin Wondraczek, Jörg Bierlich, Jürgen Popp, Torsten Frosch, and Markus A. Schmidt, "Double antiresonant hollow core fiber – guidance in the deep ultraviolet by modified tunneling leaky modes," Opt. Express 22, 19131-19140 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-16-19131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Göbel, A. Nimmerjahn, and F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett.29(11), 1285–1287 (2004). [CrossRef] [PubMed]
  2. K. F. Mak, J. C. Travers, N. Y. Joly, A. Abdolvand, and P. S. J. Russell, “Two techniques for temporal pulse compression in gas-filled hollow-core kagomé photonic crystal fiber,” Opt. Lett.38(18), 3592–3595 (2013). [CrossRef] [PubMed]
  3. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  4. T. Frosch, D. Yan, and J. Popp, “Ultrasensitive Fiber Enhanced UV Resonance Raman Sensing of Drugs,” Anal. Chem.85(13), 6264–6271 (2013). [CrossRef] [PubMed]
  5. S. Hanf, R. Keiner, D. Yan, J. Popp, and T. Frosch, “Fiber-Enhanced Raman Multigas Spectroscopy: A Versatile Tool for Environmental Gas Sensing and Breath Analysis,” Anal. Chem.86(11), 5278–5285 (2014). [CrossRef] [PubMed]
  6. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012). [CrossRef] [PubMed]
  7. Y. Xue, A. V. Davis, G. Balakrishnan, J. P. Stasser, B. M. Staehlin, P. Focia, T. G. Spiro, J. E. Penner-Hahn, and T. V. O’Halloran, “Cu(I) recognition via cation-π and methionine interactions in CusF,” Nat. Chem. Biol.4(2), 107–109 (2008). [CrossRef] [PubMed]
  8. T. Frosch, M. Schmitt, T. Noll, G. Bringmann, K. Schenzel, and J. Popp, “Ultrasensitive in situ tracing of the alkaloid dioncophylline A in the tropical liana Triphyophyllum peltatum by applying deep-UV resonance Raman microscopy,” Anal. Chem.79(3), 986–993 (2007). [CrossRef] [PubMed]
  9. V. Jayaraman, K. R. Rodgers, I. Mukerji, and T. G. Spiro, “Hemoglobin allostery: resonance Raman spectroscopy of kinetic intermediates,” Science269(5232), 1843–1848 (1995). [CrossRef] [PubMed]
  10. T. Frosch, M. Schmitt, and J. Popp, “In situ UV Resonance Raman Micro-spectroscopic Localization of the Antimalarial Quinine in Cinchona Bark,” J. Phys. Chem. B111(16), 4171–4177 (2007). [CrossRef] [PubMed]
  11. T. Frosch, N. Tarcea, M. Schmitt, H. Thiele, F. Langenhorst, and J. Popp, “UV Raman Imaging--A Promising Tool for Astrobiology: Comparative Raman Studies with Different Excitation Wavelengths on SNC Martian Meteorites,” Anal. Chem.79(3), 1101–1108 (2007). [CrossRef] [PubMed]
  12. P. Ghenuche, S. Rammler, N. Y. Joly, M. Scharrer, M. Frosz, J. Wenger, P. S. J. Russell, and H. Rigneault, “Kagome hollow-core photonic crystal fiber probe for Raman spectroscopy,” Opt. Lett.37(21), 4371–4373 (2012). [CrossRef] [PubMed]
  13. J. S. Y. Chen, T. G. Euser, N. J. Farrer, P. J. Sadler, M. Scharrer, and P. S. Russell, “Photochemistry in Photonic Crystal Fiber Nanoreactors,” Chemistry16(19), 5607–5612 (2010). [CrossRef] [PubMed]
  14. A. M. Cubillas, S. Unterkofler, T. G. Euser, B. J. M. Etzold, A. C. Jones, P. J. Sadler, P. Wasserscheid, and P. S. J. Russell, “Photonic crystal fibres for chemical sensing and photochemistry,” Chem. Soc. Rev.42(22), 8629–8648 (2013). [CrossRef] [PubMed]
  15. A. Lurie, F. N. Baynes, J. D. Anstie, P. S. Light, F. Benabid, T. M. Stace, and A. N. Luiten, “High-performance iodine fiber frequency standard,” Opt. Lett.36(24), 4776–4778 (2011). [CrossRef] [PubMed]
  16. G. J. Leggett, “Light-directed nanosynthesis: near-field optical approaches to integration of the top-down and bottom-up fabrication paradigms,” Nanoscale4(6), 1840–1855 (2012). [CrossRef] [PubMed]
  17. E. B. Hanlon, R. Manoharan, T. W. Koo, K. E. Shafer, J. T. Motz, M. Fitzmaurice, J. R. Kramer, I. Itzkan, R. R. Dasari, and M. S. Feld, “Prospects for in vivo Raman spectroscopy,” Phys. Med. Biol.45(2), R1–R59 (2000). [CrossRef] [PubMed]
  18. T. Frosch, S. Koncarevic, K. Becker, and J. Popp, “Morphology-sensitive Raman modes of the malaria pigment hemozoin,” Analyst (Lond.)134(6), 1126–1132 (2009). [CrossRef] [PubMed]
  19. T. Frosch and J. Popp, “Relationship between molecular structure and Raman spectra of quinolines,” J. Mol. Struct.924–926, 301–308 (2009). [CrossRef]
  20. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic + Dielectric Waveguides for Long Distance Optical Transmission + Lasers,” Bell System Technical Journal43, 1783 (1964).
  21. Y. Fink, D. J. Ripin, S. H. Fan, C. P. Chen, J. D. Joannopoulos, and E. L. Thomas, “Guiding optical light in air using an all-dielectric structure,” J. Lightwave Technol.17(11), 2039–2041 (1999). [CrossRef]
  22. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, “Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,” Opt. Express9(13), 748–779 (2001). [CrossRef] [PubMed]
  23. K. Kuriki, O. Shapira, S. D. Hart, G. Benoit, Y. Kuriki, J. F. Viens, M. Bayindir, J. D. Joannopoulos, and Y. Fink, “Hollow multilayer photonic bandgap fibers for NIR applications,” Opt. Express12(8), 1510–1517 (2004). [CrossRef] [PubMed]
  24. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, “Photonic Band Gap Guidance in Optical Fibers,” Science282(5393), 1476–1478 (1998). [CrossRef] [PubMed]
  25. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science285(5433), 1537–1539 (1999). [CrossRef] [PubMed]
  26. P. Russell, “Photonic crystal fibers,” Science299(5605), 358–362 (2003). [CrossRef] [PubMed]
  27. J. C. Knight, “Photonic crystal fibres,” Nature424(6950), 847–851 (2003). [CrossRef] [PubMed]
  28. C. M. Smith, N. Venkataraman, M. T. Gallagher, D. Müller, J. A. West, N. F. Borrelli, D. C. Allan, and K. W. Koch, “Low-loss hollow-core silica/air photonic bandgap fibre,” Nature424(6949), 657–659 (2003). [CrossRef] [PubMed]
  29. M. H. Frosz, J. Nold, T. Weiss, A. Stefani, F. Babic, S. Rammler, and P. S. Russell, “Five-ring hollow-core photonic crystal fiber with 1.8 dB/km loss,” Opt. Lett.38(13), 2215–2217 (2013). [CrossRef] [PubMed]
  30. O. A. Schmidt, M. K. Garbos, T. G. Euser, and P. S. J. Russell, “Reconfigurable Optothermal Microparticle Trap in Air-Filled Hollow-Core Photonic Crystal Fiber,” Phys. Rev. Lett.109(2), 024502 (2012). [CrossRef] [PubMed]
  31. F. R. Garcia-Garcia, M. A. Rahman, I. D. Gonzalez-Jimenez, and K. Li, “Catalytic hollow fibre membrane micro-reactor: High purity H-2 production by WGS reaction,” Catal. Today171(1), 281–289 (2011). [CrossRef]
  32. F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavik, and D. J. Richardson, “Towards high-capacity fibre-optic communications at the speed of light in vacuum,” Nat. Photonics7(4), 279–284 (2013). [CrossRef]
  33. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006). [CrossRef] [PubMed]
  34. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express15(20), 12680–12685 (2007). [CrossRef] [PubMed]
  35. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011). [CrossRef] [PubMed]
  36. S. Février, F. Gérôme, A. Labruyère, B. Beaudou, G. Humbert, and J.-L. Auguste, “Ultraviolet guiding hollow-core photonic crystal fiber,” Opt. Lett.34(19), 2888–2890 (2009). [CrossRef] [PubMed]
  37. F. Yu and J. C. Knight, “Spectral attenuation limits of silica hollow core negative curvature fiber,” Opt. Express21(18), 21466–21471 (2013). [CrossRef] [PubMed]
  38. P. J. Roberts, D. P. Williams, B. J. Mangan, H. Sabert, F. Couny, W. J. Wadsworth, T. A. Birks, J. C. Knight, and P. S. J. Russell, “Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround,” Opt. Express13(20), 8277–8285 (2005). [CrossRef] [PubMed]
  39. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt.23(24), 4486–4493 (1984). [CrossRef] [PubMed]
  40. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett.27(18), 1592–1594 (2002). [CrossRef] [PubMed]
  41. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. M. de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express11(10), 1243–1251 (2003). [CrossRef] [PubMed]
  42. K. J. Rowland, S. Afshar V, and T. M. Monro, “Bandgaps and antiresonances in integrated-ARROWs and Bragg fibers; a simple model,” Opt. Express16(22), 17935–17951 (2008). [CrossRef] [PubMed]
  43. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, and H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express18(1), 309–322 (2010). [CrossRef] [PubMed]
  44. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express18(22), 23133–23146 (2010). [CrossRef] [PubMed]
  45. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express20(13), 14350–14361 (2012). [CrossRef] [PubMed]
  46. P. Yeh, A. Yariv, and E. Marom, “THEORY OF BRAGG FIBER,” J. Opt. Soc. Am.68(9), 1196–1201 (1978). [CrossRef]
  47. A. W. Snyder and J. Love, Optical Waveguide Theory (Springer, 1983).
  48. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow - core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19(2), 1441–1448 (2011). [CrossRef] [PubMed]
  49. A. Urich, R. R. J. Maier, F. Yu, J. C. Knight, D. P. Hand, and J. D. Shephard, “Flexible delivery of Er:YAG radiation at 2.94 µm with negative curvature silica glass fibers: a new solution for minimally invasive surgical procedures,” Biomed. Opt. Express4(2), 193–205 (2013). [CrossRef] [PubMed]
  50. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St J Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express13(1), 236–244 (2005). [CrossRef] [PubMed]
  51. E. N. Fokoua, F. Poletti, and D. J. Richardson, “Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers,” Opt. Express20(19), 20980–20991 (2012). [CrossRef] [PubMed]
  52. F. Gérôme, R. Jamier, J.-L. Auguste, G. Humbert, and J.-M. Blondy, “Simplified hollow-core photonic crystal fiber,” Opt. Lett.35(8), 1157–1159 (2010). [CrossRef] [PubMed]
  53. A. D. Fitt, K. Furusawa, T. M. Monro, and C. P. Please, “Modeling the fabrication of hollow fibers: Capillary drawing,” J. Lightwave Technol.19(12), 1924–1931 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited