Super-Nyquist-WDM transmission over 7,326-km seven-core fiber with capacity-distance product of 1.03 Exabit/s·km |
Optics Express, Vol. 22, Issue 2, pp. 1220-1228 (2014)
http://dx.doi.org/10.1364/OE.22.001220
Acrobat PDF (1606 KB)
Abstract
We show super-Nyquist-WDM transmission technique, where optical signals with duobinary-pulse shaping can be wavelength-multiplexed with frequency spacing of below baudrate. Duobinary-pulse shaping can reduce the signal bandwidth to be a half of baudrate while controlling inter-symbol interference can be compensated by the maximum likelihood sequence estimation in a receiver. First, we experimentally evaluate crosstalk characteristics as a function of channel spacing between the dual-channel DP-QPSK signals with duobinary-pulse shaping. As a result, the crosstalk penalty can be almost negligible as far as the ratio of baudrate to frequency spacing is maintained to be less than 1.20. Next, we demonstrate 140.7-Tbit/s, 7,326-km transmission of 7 × 201-channel 25-GHz-spaced super-Nyquist-WDM 100-Gbit/s optical signals using seven-core fiber and full C-band seven-core EDFAs. To the best of our knowledge, this is one of the first reports of high-capacity transmission experiments with capacity-distance product in excess of 1 Exabit/s·km.
© 2014 Optical Society of America
1. Introduction
7. K. Igarashi, K. Takeshima, T. Tsuritani, H. Takahashi, S. Sumita, I. Morita, Y. Tsuchida, M. Tadakuma, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA,” Opt. Express 21(15), 18053–18060 (2013). [CrossRef] [PubMed]
8. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012). [CrossRef]
9. J. -X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs and N. S. Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608km and 400% spectral efficiency over 4,368km,” OFC2010, PDPB10 (2009).
11. T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 x 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” ECOC2013, PD3. E (2013).
2. Concept of super-Nyquist-WDM techniques
8. J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012). [CrossRef]
9. J. -X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs and N. S. Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608km and 400% spectral efficiency over 4,368km,” OFC2010, PDPB10 (2009).
3. Crosstalk characteristics of dual-channel DP-QPSK signals with duobinary-pulse shaping
4. Super-Nyquist-WDM transmission experiment over seven-core fibers with full-C-band seven-core EDFAs
4.1 Experimental setup
7. K. Igarashi, K. Takeshima, T. Tsuritani, H. Takahashi, S. Sumita, I. Morita, Y. Tsuchida, M. Tadakuma, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA,” Opt. Express 21(15), 18053–18060 (2013). [CrossRef] [PubMed]
4.2 Measured back-to-back performance of super-Nyquist-WDM signals
4.3 Results of transmission experiments
5. Conclusions
Acknowledgement
References and links
1. | M. Salsi, H. Mardoyan, P. Tran, C. Koebele, E. Dutisseuil, G. Charlet, and S. Bigo, “155x100Gbit/s coherent PDM-QPSK transmission over 7,200km,” ECOC2009, PDP2.5 (2009). |
2. | M. Mazurczyk, D. G. Foursa, H. G. Batshon, H. Zhang, C. R. Davidson, J. -X. Cai, A. Pilipetskii, G. Mohs and N. S. Bergano, “30 Tb/s transmission over 6,630 km using 16QAM signals at 6.1 bits/s/Hz spectral efficiency,” ECOC2012, Th.3.C.2 (2012). |
3. | D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express 21(12), 14244–14250 (2013). [CrossRef] [PubMed] |
4. | M. Salsi, A. Ghazisaeidi, P. Tran, R. R. Muller, L. Schmalen, J. Renaudier, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “31 Tbit/s transmission over 7,200 km using 46 Gbaud PDM-8QAM with optimized error correcting code rate,” OECC2013, PD3–5 (2013). |
5. | M. Salsi, R. R. Muller, J. Renaudier, P. Tran, L. Schmalen, A. Ghazisaeid, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “38.75 Tb/s transmission experiment over transoceanic distance,” ECOC2013, PD3. E2 (2013). |
6. | D. G. Foursa, H. G. Batshon, H. Zhang, M. Mazurczyk, J.-X. Cai, O. Sinkin, A. Pilipetskii, G. Mohs, and N. S. Bergano, “44.1 Tb/s transmission over 9,100 km using coded modulation based on 16QAM signals at 4.9 bits/s/Hz spectral efficiency,” ECOC2013, PD3. E (2013). |
7. | K. Igarashi, K. Takeshima, T. Tsuritani, H. Takahashi, S. Sumita, I. Morita, Y. Tsuchida, M. Tadakuma, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA,” Opt. Express 21(15), 18053–18060 (2013). [CrossRef] [PubMed] |
8. | J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol. 30(11), 1664–1676 (2012). [CrossRef] |
9. | J. -X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs and N. S. Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608km and 400% spectral efficiency over 4,368km,” OFC2010, PDPB10 (2009). |
10. | K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “1.03-Exabit/s×km super-Nyquist-WDM transmission over 7,326-km seven-core fiber,” ECOC2013, PD3 (2013). |
11. | T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 x 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” ECOC2013, PD3. E (2013). |
12. | D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” OFC 2012, OW1H.4 (2012). |
13. | S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T.F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E.M. Monberg, and F.V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” ECOC2011, Th.13.C.4 (2011). |
14. | Y. Mori, Z. Chao, and K. Kikuchi, “Novel FIR-filter configuration tolerant to fast phase fluctuations in digital coherent receivers for higher-order QAM signals,” OFC2012, OTh4C.4 (2012). |
OCIS Codes
(060.1660) Fiber optics and optical communications : Coherent communications
(060.2330) Fiber optics and optical communications : Fiber optics communications
(060.4230) Fiber optics and optical communications : Multiplexing
ToC Category:
Point to Point Transmission Systems
History
Original Manuscript: November 7, 2013
Revised Manuscript: January 4, 2014
Manuscript Accepted: January 7, 2014
Published: January 13, 2014
Virtual Issues
European Conference and Exhibition on Optical Communication (2013) Optics Express
Citation
Koji Igarashi, Takehiro Tsuritani, Itsuro Morita, Yukihiro Tsuchida, Koichi Maeda, Masateru Tadakuma, Tsunetoshi Saito, Kengo Watanabe, Katsunori Imamura, Ryuichi Sugizaki, and Masatoshi Suzuki, "Super-Nyquist-WDM transmission over 7,326-km seven-core fiber with capacity-distance product of 1.03 Exabit/s·km," Opt. Express 22, 1220-1228 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1220
Sort: Year | Journal | Reset
References
- M. Salsi, H. Mardoyan, P. Tran, C. Koebele, E. Dutisseuil, G. Charlet, and S. Bigo, “155x100Gbit/s coherent PDM-QPSK transmission over 7,200km,” ECOC2009, PDP2.5 (2009).
- M. Mazurczyk, D. G. Foursa, H. G. Batshon, H. Zhang, C. R. Davidson, J. -X. Cai, A. Pilipetskii, G. Mohs and N. S. Bergano, “30 Tb/s transmission over 6,630 km using 16QAM signals at 6.1 bits/s/Hz spectral efficiency,” ECOC2012, Th.3.C.2 (2012).
- D. Qian, M.-F. Huang, S. Zhang, Y. Zhang, Y.-K. Huang, F. Yaman, I. B. Djordjevic, and E. Mateo, “30Tb/s C- and L-bands bidirectional transmission over 10,181km with 121km span length,” Opt. Express21(12), 14244–14250 (2013). [CrossRef] [PubMed]
- M. Salsi, A. Ghazisaeidi, P. Tran, R. R. Muller, L. Schmalen, J. Renaudier, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “31 Tbit/s transmission over 7,200 km using 46 Gbaud PDM-8QAM with optimized error correcting code rate,” OECC2013, PD3–5 (2013).
- M. Salsi, R. R. Muller, J. Renaudier, P. Tran, L. Schmalen, A. Ghazisaeid, H. Mardoyan, P. Brindel, G. Charlet, and S. Bigo, “38.75 Tb/s transmission experiment over transoceanic distance,” ECOC2013, PD3. E2 (2013).
- D. G. Foursa, H. G. Batshon, H. Zhang, M. Mazurczyk, J.-X. Cai, O. Sinkin, A. Pilipetskii, G. Mohs, and N. S. Bergano, “44.1 Tb/s transmission over 9,100 km using coded modulation based on 16QAM signals at 4.9 bits/s/Hz spectral efficiency,” ECOC2013, PD3. E (2013).
- K. Igarashi, K. Takeshima, T. Tsuritani, H. Takahashi, S. Sumita, I. Morita, Y. Tsuchida, M. Tadakuma, K. Maeda, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “110.9-Tbit/s SDM transmission over 6,370 km using a full C-band seven-core EDFA,” Opt. Express21(15), 18053–18060 (2013). [CrossRef] [PubMed]
- J. Li, E. Tipsuwannakul, T. Eriksson, M. Karlsson, and P. A. Andrekson, “Approaching Nyquist limit in WDM systems by low-complexity receiver-side duobinary shaping,” J. Lightwave Technol.30(11), 1664–1676 (2012). [CrossRef]
- J. -X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs and N. S. Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608km and 400% spectral efficiency over 4,368km,” OFC2010, PDPB10 (2009).
- K. Igarashi, T. Tsuritani, I. Morita, Y. Tsuchida, K. Maeda, M. Tadakuma, T. Saito, K. Watanabe, K. Imamura, R. Sugizaki, and M. Suzuki, “1.03-Exabit/s×km super-Nyquist-WDM transmission over 7,326-km seven-core fiber,” ECOC2013, PD3 (2013).
- T. Kobayashi, H. Takara, A. Sano, T. Mizuno, H. Kawakami, Y. Miyamoto, K. Hiraga, Y. Abe, H. Ono, M. Wada, Y. Sasaki, I. Ishida, K. Takenaga, S. Matsuo, K. Saitoh, M. Yamada, H. Masuda, and T. Morioka, “2 x 344 Tb/s propagation-direction interleaved transmission over 1500-km MCF enhanced by multicarrier full electric-field digital back-propagation,” ECOC2013, PD3. E (2013).
- D. Chang, F. Yu, Z. Xiao, N. Stojanovic, F. N. Hauske, Y. Cai, C. Xie, L. Li, X. Xu, and Q. Xiong, “LDPC convolutional codes using layered decoding algorithm for high speed coherent optical transmission,” OFC 2012, OW1H.4 (2012).
- S. Chandrasekhar, A. H. Gnauck, X. Liu, P. J. Winzer, Y. Pan, E. C. Burrows, B. Zhu, T.F. Taunay, M. Fishteyn, M. F. Yan, J. M. Fini, E.M. Monberg, and F.V. Dimarcello, “WDM/SDM transmission of 10 x 128-Gb/s PDM-QPSK over 2688-km 7-core fiber with a per-fiber net aggregate spectral-efficiency distance product of 40,320 km·b/s/Hz,” ECOC2011, Th.13.C.4 (2011).
- Y. Mori, Z. Chao, and K. Kikuchi, “Novel FIR-filter configuration tolerant to fast phase fluctuations in digital coherent receivers for higher-order QAM signals,” OFC2012, OTh4C.4 (2012).
Cited By |
Alert me when this paper is cited |
OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.
« Previous Article | Next Article »
OSA is a member of CrossRef.