OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1359–1365
« Show journal navigation

Optical and magneto-optical anisotropies in large-area two-dimensional Co antidots film

W.B. Xia, J.L. Gao, S.Y. Zhang, X.J. Luo, L.Y. Chen, L.Q. Xu, S.L. Tang, and Y.W. Du  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1359-1365 (2014)
http://dx.doi.org/10.1364/OE.22.001359


View Full Text Article

Acrobat PDF (1230 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this work, we investigate the plasmon-induced optical and magneto-optical anisotropies in the large-area square-ordered Co antidots film. It shows that both the outline of reflectivity spectrum and Kerr spectrum are significantly modified by surface plasmon polarition (SPP) resonances. Moreover, the magnitude of Kerr angle reaches to about 10 minutes at the azimuthal angle 45°, which is over 3 times of that of pure Co film. These phenomena are attributed to the SPP resonances with different diffraction orders of reciprocal lattice vectors.

© 2014 Optical Society of America

1. Introduction

Surface plasmons (SPs) are the collective electronic oscillation at the interface between metal and dielectric materials [1

1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

]. In recently years, SPs have derived various interdisciplines and applications, for example, nano-lasers [2

2. P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011). [CrossRef]

, 3

3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]

], bio-sensors [4

4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]

, 5

5. B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006). [CrossRef] [PubMed]

], plasmonic tweezers [6

6. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010). [CrossRef] [PubMed]

9

9. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]

], chiral and negative refractivity materials [10

10. D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000). [CrossRef] [PubMed]

, 11

11. D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]

], etc. By introducing surface plasmons into magneto-optics, the so-called magneto-plasmonics has become a hotspot of research in last decade. The combination of ferromagnetism and plasmonics in the magneto-plasmonic materials can result in many novel experimental phenomena. For example, by changing the way SPs excited, in turn changing the way electrons and photons oscillate and interact, we can manipulate the magneto-optical (MO) response of the magneto-plasmonic materials. In the magneto-optical Kerr effect (MOKE) experiments, the excitation of SPs can significantly enhance either the magnitude of Kerr angle in the longitudinal [12

12. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009). [CrossRef]

] and polar [13

13. J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007). [CrossRef]

] configuration or the relative reflectivity change in the transversal [14

14. A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010). [CrossRef]

] configuration. Moreover, by manipulating the in-phase or out-phase relationship between localized SPs and the electromagnetic wave, the sign of Kerr angle can reverse [15

15. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011). [CrossRef] [PubMed]

]. On the other hand, the properties of SPs are tunable in the ferromagnetic materials due to the time-reversal symmetry breaking by an applying magnetic field along the light propagation direction [16

16. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013). [CrossRef] [PubMed]

].

Among the several methods to excite SP resonances, utilizing the periodically patterned structures [12

12. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009). [CrossRef]

, 14

14. A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010). [CrossRef]

] which can support propagating surface plasmon polaritons by fulfilling the wavevector match condition from the reciprocal lattice vectors, is the most convenient way.

The anisotropic effect, that originated from the breaking of system symmetry in the periodically patterned ferromagnetic materials, namely magneto-plasmonic crystals [17

17. G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013). [CrossRef]

], is another way to manipulate the MOKE through SPs.

Researchers preferred to utilize the nanosphere lithography to fabricate the periodic patterned samples [18

18. Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009). [CrossRef]

21

21. A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, and A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).

]. M.V. Sapozhnikov [20

20. M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, and D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010). [CrossRef]

] and Z.L. Han [19

19. Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, and Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011). [CrossRef]

] both studied the Co corrugated film by depositing metal onto the close-packed polystyrene spheres. The latter found that the anisotropy of magneto-optical response in the range of tens of micrometers at wavelength λ = 633nm. E.T. Papaioannou [22

22. E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011). [CrossRef] [PubMed]

] and J.F. Torrado [23

23. J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010). [CrossRef]

] also investigated the anisotropic effects in the hexagonal Ni and Fe antidots arrays. However, due to the intrinsic properties of nanosphere lithography, the samples are limited to hexagonal symmetry and because of the lack of centimeter-level order, the anisotropic effects are usually covered by the average effect of short-range domains with different packing orientations. Other fabrication methods were also used, like anodic alumina template [13

13. J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007). [CrossRef]

, 24

24. J. Oh and C. V. Thompson, “Selective barrier perforation in porous alumina anodized on substrates,” Adv. Mater. 20(7), 1368–1372 (2008). [CrossRef]

], ion beam etching [25

25. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013). [CrossRef]

], etc. However, most of them are incapable to reach both large-area order and nanoscale size feature in a convenient and inexpensive way.

2.Fabrication

In the present work 1cm × 1cm square-order cobalt antidots film with 412nm × 412nm period was prepared. The interference photolithography [24

24. J. Oh and C. V. Thompson, “Selective barrier perforation in porous alumina anodized on substrates,” Adv. Mater. 20(7), 1368–1372 (2008). [CrossRef]

, 26

26. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999). [CrossRef]

28

28. C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, and R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999). [CrossRef]

], which is a fast way to produce designed patterns over a large area without any defects, is chosen to fabricate our antidots sample. We will demonstrate that the optical and magneto-optical response of Co antidots film is strongly anisotropic, and the Kerr angle is significantly enhanced by SPPs.

First, broadband anti-reflection(BAR, Brewer Science, WiDE-15B) layer was spin-coated on a silicon substrate at 3000rpm, in order to prevent any unnecessary light reflection from the substrate, otherwise it would deform and blur the interference pattern. Then the coated film was baked at 180 °C for two minutes on a hot plate, allowing for the second spin-coating of the negative photo resist (NPR) (Allresist, AR-4740) at 4000 rpm. After that the film with 180nm NPR was baked at 95 °C for one minute. To obtain periodical NPR antidots pattern, a Lloyd’s Mirror interference lithography system with a 325nm wavelength He-Cd laser was used. The NPR film was exposed in the interference illumination twice before and after a 90° rotation normal to the sample surface in order to produce square lattice pattern. The Co antidots film with 60nm height was produced by depositing Co on the NPR antidots pattern using DC magnetron sputtering. The SEM images of the final Co antidots pattern are shown in Fig. 1(a)
Fig. 1 Schematic of the Co antidots film sample and light configuration. (a), (b) SEM images of Co antidots film after magnetron sputtering. The period is 412nm and the hole diameter is 175nm. (c) The schematic of p-polarized light in the reflectivity and MOKE measurement.
(small-scale) and Fig. 1(b) (large-scale). The film has good periodicity with highly reproduced NPR antidots pattern. The inter-antidots space and antidots diameters can be easily controlled by the interference parameters, and the thickness of Co antidots film can be controlled by sputtering time. Figure 1(c) depicts the structure diagram of the cross-section of the films. There are double layers in the sample, the top layer is the Co antidots array and the bottom layer is the Co disks array. Since Co is high damping, the top layer can effectively prevent light from penetrating to the bottom layer, thus we simply exclude the bottom layer from discussion. It has also been confirmed by the COMSOL simulations in Fig. 4.

3. Experiments and discussion

The COMSOL simulation results of the intensity of E field at two resonant positions also prove the excitation of SPPs, as shown in Fig. 4
Fig. 4 COMSOL simulation results of the intensity of E field |E|. (a)(b)(c) are the |E| distributions when azimuthal angle φ is 0° and wavelength of incident light λ is 698nm, while (d)(e) are at φ = 45° and λ = 502nm. The incident angle is 45°. (a) |E| in the xz plane. (b)(d) |E| at the surface of the top layer. (c)(e) |E| at the surface of the bottom layer. The arc arrows and the dot-dash lines in (a) indicate the cross-sectional positions of (b)(c)(d)(e) in xz plane. And the arrow and the dot-dash line in (b) indicates the cross-sectional position of (a) in xy plane.
. The geometric model for simulation is exactly the same as the sample except for the absence of the BAR layer. At the surface of antidots film [Fig. 4(b)(d)], the patterns of |E| distribution show a wave-like configuration which is clearly originated from SPPs. In addition, since the |E| at the bottom layer is much less than that of top layer, thus it is reasonable to neglect the effect of the bottom layer [Fig. 4(c), 4(e)].

With azimuthal angle φ increasing, there are two Kerr angle peaks appear in the visible range. One is at shorter wavelength, and the other is at longer wavelength [Fig. 5(c)]. The two peaks move towards each other [Fig. 5(b) and 5(c)], and at last coincide in the middle wavelength around 525nm when φ reaches to 45° [Fig. 5(e)]. According to Fig. 2(b) and Fig. 3, peak 1 mainly comes from the (0, −1) diffraction order and partly from the (−1, −1) order, due to relatively weak resonance amplitudes of higher diffraction orders’ SPPs. On the other hand, peak 2 is exclusively induced by (−1, 0)-diffraction-order SPPs. The two peaks merge into a single peak around 525nm at φ = 45°. The reason why the two reflectivity minima in Fig. 3(c) (θ≤65°) don’t coincide with each other, maybe that the wave band breadth of resonances for LMOKE is wider than that of the reflectivity’s minima. While increasing azimuthal angle, the Kerr angles of the two peaks gradually increase, and a maximum appears at wavelength 550nm at φ = 45°, the Kerr rotation angle reaches to 10 minutes, almost 3 times stronger than pure Co film. The result indicates that the interplay between SPP and LMOKE can significantly change the outline of LMOKE spectrum, and shows strong anisotropic effect.

4. Conclusion

Acknowledgments

This work is supported by the National Key Project of Fundamental Research of China (Grant Nos. 2012CB932304 and 2010CB923404), the Natural Science Foundation of China (Grant Nos. 11374146 and U1232210) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

References and links

1.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]

2.

P. Berini and I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011). [CrossRef]

3.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]

4.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]

5.

B. Sepúlveda, A. Calle, L. M. Lechuga, and G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006). [CrossRef] [PubMed]

6.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010). [CrossRef] [PubMed]

7.

M. Righini, G. Volpe, C. Girard, D. Petrov, and R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008). [CrossRef] [PubMed]

8.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004). [CrossRef]

9.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]

10.

D. R. Smith and N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000). [CrossRef] [PubMed]

11.

D. R. Smith, J. B. Pendry, and M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]

12.

V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, and A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009). [CrossRef]

13.

J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, and U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007). [CrossRef]

14.

A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, and A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010). [CrossRef]

15.

V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, and A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011). [CrossRef] [PubMed]

16.

J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, and H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013). [CrossRef] [PubMed]

17.

G. Armelles, A. Cebollada, A. García-Martín, and M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013). [CrossRef]

18.

Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, and Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009). [CrossRef]

19.

Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, and Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011). [CrossRef]

20.

M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, and D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010). [CrossRef]

21.

A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, and A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).

22.

E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, and G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011). [CrossRef] [PubMed]

23.

J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, and A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010). [CrossRef]

24.

J. Oh and C. V. Thompson, “Selective barrier perforation in porous alumina anodized on substrates,” Adv. Mater. 20(7), 1368–1372 (2008). [CrossRef]

25.

S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, and Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013). [CrossRef]

26.

M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, and H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999). [CrossRef]

27.

D. Xia, Z. Ku, S. C. Lee, and S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011). [CrossRef] [PubMed]

28.

C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, and R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999). [CrossRef]

29.

A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, and A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012). [CrossRef]

30.

R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902). [CrossRef]

OCIS Codes
(160.3820) Materials : Magneto-optical materials
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:
Plasmonics

History
Original Manuscript: October 15, 2013
Revised Manuscript: December 23, 2013
Manuscript Accepted: January 2, 2014
Published: January 14, 2014

Citation
W.B. Xia, J.L. Gao, S.Y. Zhang, X.J. Luo, L.Y. Chen, L.Q. Xu, S.L. Tang, and Y.W. Du, "Optical and magneto-optical anisotropies in large-area two-dimensional Co antidots film," Opt. Express 22, 1359-1365 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1359


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. L. Barnes, A. Dereux, T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003). [CrossRef] [PubMed]
  2. P. Berini, I. De Leon, “Surface plasmon-polariton amplifiers and lasers,” Nat. Photonics 6(1), 16–24 (2011). [CrossRef]
  3. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  4. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater. 7(6), 442–453 (2008). [CrossRef] [PubMed]
  5. B. Sepúlveda, A. Calle, L. M. Lechuga, G. Armelles, “Highly sensitive detection of biomolecules with the magneto-optic surface-plasmon-resonance sensor,” Opt. Lett. 31(8), 1085–1087 (2006). [CrossRef] [PubMed]
  6. W. Zhang, L. Huang, C. Santschi, O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett. 10(3), 1006–1011 (2010). [CrossRef] [PubMed]
  7. M. Righini, G. Volpe, C. Girard, D. Petrov, R. Quidant, “Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range,” Phys. Rev. Lett. 100(18), 186804 (2008). [CrossRef] [PubMed]
  8. J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett. 4(1), 115–118 (2004). [CrossRef]
  9. M. L. Juan, M. Righini, R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics 5(6), 349–356 (2011). [CrossRef]
  10. D. R. Smith, N. Kroll, “Negative refractive index in left-handed materials,” Phys. Rev. Lett. 85(14), 2933–2936 (2000). [CrossRef] [PubMed]
  11. D. R. Smith, J. B. Pendry, M. C. Wiltshire, “Metamaterials and negative refractive index,” Science 305(5685), 788–792 (2004). [CrossRef] [PubMed]
  12. V. I. Belotelov, D. A. Bykov, L. L. Doskolovich, A. N. Kalish, A. K. Zvezdin, “Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films,” J. Opt. Soc. Am. B 26(8), 1594–1598 (2009). [CrossRef]
  13. J. B. González-Díaz, A. García-Martín, G. Armelles, D. Navas, M. Vázquez, K. Nielsch, R. B. Wehrspohn, U. Gösele, “Enhanced magneto-optics and size effects in ferromagnetic nanowire arrays,” Adv. Mater. 19(18), 2643–2647 (2007). [CrossRef]
  14. A. A. Grunin, A. G. Zhdanov, A. A. Ezhov, E. A. Ganshina, A. A. Fedyanin, “Surface-plasmon-induced enhancement of magneto-optical Kerr effect in all-nickel subwavelength nanogratings,” Appl. Phys. Lett. 97(26), 261908 (2010). [CrossRef]
  15. V. Bonanni, S. Bonetti, T. Pakizeh, Z. Pirzadeh, J. Chen, J. Nogués, P. Vavassori, R. Hillenbrand, J. Åkerman, A. Dmitriev, “Designer magnetoplasmonics with nickel nanoferromagnets,” Nano Lett. 11(12), 5333–5338 (2011). [CrossRef] [PubMed]
  16. J. Y. Chin, T. Steinle, T. Wehlus, D. Dregely, T. Weiss, V. I. Belotelov, B. Stritzker, H. Giessen, “Nonreciprocal plasmonics enables giant enhancement of thin-film Faraday rotation,” Nat Commun 4, 1599 (2013). [CrossRef] [PubMed]
  17. G. Armelles, A. Cebollada, A. García-Martín, M. U. González, “Magnetoplasmonics: combining magnetic and plasmonic functionalities,” Adv. Opt. Mater. 1(1), 10–35 (2013). [CrossRef]
  18. Z. Liu, L. Shi, Z. Shi, X. H. Liu, J. Zi, S. M. Zhou, S. J. Wei, J. Li, X. Zhang, Y. J. Xia, “Magneto-optical Kerr effect in perpendicularly magnetized Co/Pt films on two-dimensional colloidal crystals,” Appl. Phys. Lett. 95(3), 032502 (2009). [CrossRef]
  19. Z. L. Han, J. H. Ai, P. Zhan, J. Du, H. F. Ding, Z. L. Wang, “Strong in-plane anisotropy of magneto-optical Kerr effect in corrugated cobalt films deposited on highly ordered two-dimensional colloidal crystals,” Appl. Phys. Lett. 98(3), 031903 (2011). [CrossRef]
  20. M. V. Sapozhnikov, S. A. Gusev, V. V. Rogov, O. L. Ermolaeva, B. B. Troitskii, L. V. Khokhlova, D. A. Smirnov, “Magnetic and optical properties of nanocorrugated Co films,” Appl. Phys. Lett. 96(12), 122507 (2010). [CrossRef]
  21. A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. A. Fedyanin, “Magnetoplasmonic nanostructures based on nickel inverse opal slabs,” J. Appl. Phys. 111, 07A948 (2012).
  22. E. T. Papaioannou, V. Kapaklis, E. Melander, B. Hjörvarsson, S. D. Pappas, P. Patoka, M. Giersig, P. Fumagalli, A. Garcia-Martin, G. Ctistis, “Surface plasmons and magneto-optic activity in hexagonal Ni anti-dot arrays,” Opt. Express 19(24), 23867–23877 (2011). [CrossRef] [PubMed]
  23. J. F. Torrado, E. T. Papaioannou, G. Ctistis, P. Patoka, M. Giersig, G. Armelles, A. Garcia-Martin, “Plasmon induced modification of the transverse magneto-optical response in Fe antidot arrays,” Phys. Status. Solidi. RRL 4(10), 271–273 (2010). [CrossRef]
  24. J. Oh, C. V. Thompson, “Selective barrier perforation in porous alumina anodized on substrates,” Adv. Mater. 20(7), 1368–1372 (2008). [CrossRef]
  25. S. Wu, Z. Zhang, Y. Zhang, K. Zhang, L. Zhou, X. Zhang, Y. Zhu, “Enhanced rotation of the polarization of a light beam transmitted through a silver film with an array of perforated S-shaped holes,” Phys. Rev. Lett. 110(20), 207401 (2013). [CrossRef]
  26. M. Farhoud, J. Ferrera, A. J. Lochtefeld, T. E. Murphy, M. L. Schattenburg, J. Carter, C. A. Ross, H. I. Smith, “Fabrication of 200 nm period nanomagnet arrays using interference lithography and a negative resist,” J. Vac. Sci. Technol. B 17(6), 3182–3185 (1999). [CrossRef]
  27. D. Xia, Z. Ku, S. C. Lee, S. R. J. Brueck, “Nanostructures and functional materials fabricated by interferometric lithography,” Adv. Mater. 23(2), 147–179 (2011). [CrossRef] [PubMed]
  28. C. A. Ross, H. I. Smith, T. Savas, M. Schattenburg, M. Farhoud, M. Hwang, M. Walsh, M. C. Abraham, R. J. Ram, “Fabrication of patterned media for high density magnetic storage,” J. Vac. Sci. Technol. B 17(6), 3168–3176 (1999). [CrossRef]
  29. A. V. Chetvertukhin, A. A. Grunin, A. V. Baryshev, T. V. Dolgova, H. Uchida, M. Inoue, A. A. Fedyanin, “Magneto-optical Kerr effect enhancement at the Wood's anomaly in magnetoplasmonic crystals,” J. Magn. Magn. Mater. 324(21), 3516–3518 (2012). [CrossRef]
  30. R. Wood, “XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited