OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 1551–1559
« Show journal navigation

Concentration of entangled nitrogen-vacancy centers in decoherence free subspace

Chuan Wang, Tie-Jun Wang, Yong Zhang, Rong-zhen Jiao, and Guang-sheng Jin  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 1551-1559 (2014)
http://dx.doi.org/10.1364/OE.22.001551


View Full Text Article

Acrobat PDF (1289 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Exploiting the input-output process of low-Q cavities confining nitrogen-vacancy centers, we present an efficient entanglement concentration protocol on electron spin state in decoherence free subspace. Less entangled state can be concentrated to maximally entangled state with the assistance of single photon detection. With its robustness and scalability, the present protocol is immune to dephasing and can be further applied to quantum repeaters and distributed quantum computation.

© 2014 Optical Society of America

1. Introduction

Entanglement between solid state systems plays an important role in quantum information processing (QIP). Particularly, the strong coupling interaction between microcavities and various dipoles can be easy manipulated and exhibits scalability as quantum bits (qubits) [1

1. M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010). [CrossRef]

]. These separate solid qubits can be used as quantum nodes to build a quantum information processor.

Over the past decades, QIP based on nitrogen-vacancy (N-V) centers has attracted growing interest. N-V centers are the diamond nanoparticles with one carbon been replaced by a nitrogen atom and another neighboring carbon been replaced by a vacuum. In 2007, Dutt et al. [2

2. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316(2007). [CrossRef]

] proposed a controllable quantum register in N-V centers by using the coherent manipulation of an electron spin and nearby individual nuclear spins. Later, Robledo et al. [3

3. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578(2011). [CrossRef] [PubMed]

] described a method for initialization and measurement on the N-V center qubit which achieves high-fidelity read-out of the electronic spin, and then project up to nearby nuclear spin qubits onto a well-defined state. Toyli et al. [4

4. D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10(8), 3168–3172(2010). [CrossRef] [PubMed]

] fabricated N-V centers in diamond based on broad-beam nitrogen implantation through apertures in electron beam lithography resist which provides a promising platform for scalable QIP. Later in 2011, Hausmann et al. realized the optical diamond nanostructures containing a single-color center. Also Fuchs et al. [5

5. G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogenC-vacancy centres in diamond,” Nature Physics 7, 789–793(2011). [CrossRef]

] demonstrated a room-temperature quantum memory by using the nitrogen nucleus spin intrinsic to each N-V centre in diamond. They performed a 120ns high fidelity state transfer in this regime. And Maurer et al. [6

6. P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286(2012). [CrossRef] [PubMed]

] realized a room temperature quantum memory with the storage time exceeded 1 second which provides more applications of QIP. For the realization of N-V centers, Hausmann et al. [7

7. B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, and M. Lonc̆ar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004(2011). [CrossRef]

] demonstrated the techniques of single color center implanting in nanostructure in which photon anti-bunching even at high pump powers can be observed.

2. Single DFS qubit assisted entanglement concentration

2.1. The model of single photon input-output relation

Consider two three-level N-V centers trapped in a single mode optical resonant cavity as shown in Fig. 1, by using a and a for the annihilation and creation operators of the cavity mode with the frequency ωc, the Hamiltonian of the composite system can be described as
H^=j=1,2[ω0jσ^zj2+igj(a^σ^+ja^σ^j)]+ωca^a^,
(1)
where gj denote the coupling strength between the jth N-V centers and microcavity. The operators σz and σ+(−) represent the inversion and raising(lowering) operators of the N-V center with frequency ω0.

Fig. 1 The energy level structure of the N-V center coupled to microcavity, where the lower levels are Zeeman sublevels of the ground state and the upper level is the excited one. Quantum information is encoded in the spin state |0〉 and |1〉. The energy level transition between |0〉 and |e〉 is resonated by the left(L) circularly polarized mode. And the energy level transition between |1〉 and |e〉 is resonated by the right(R) circularly polarized mode.

By solving the Heisenberg equations of the cavity mode and the N-V center operators, we found the evolution operators of the cavity field and the atomic operators which can be described as [24

24. D. F. Walls and G. J. Milburn, “Quantum Optics,” (Springer-Verlag, Berlin Heidelberg, 1994).

]:
da^dt=[i(ωcω)+κ2+κs2]a^jgjσjκa^in,
(2)
dσjdt=[i(ω0ω)+γj2]σjgja^σi,
(3)
where the γj/2 denotes the decay rate of the jth N-V center. κ and κs are the cavity decay rate and the cavity leaky rate, respectively. ω, ωc and ω0 denote the frequencies of the input photon, cavity mode and the atomic level transition, respectively. For a simple solution, we assume that the coupling strength between the two N-V centers and the resonator are identical, as g1 = g2 = g and γ1 = γ2 = γ. The above Heisenberg equations of motion can be solved and the reflection coefficient of this system can be obtained:
r(ω)=i(ωcω)κ2+2g2/[i(ω0ω)+γ/2]i(ωcω)+κ2+2g2/[i(ω0ω)+γ/2],
(4)
here we omit the cavity loss as κs = 0. On the resonant condition of the system with ωc = ωp = ω0, the reflection coefficient r for the uncoupled cavity system can be written as
r(ω)=2g2/γκ/22g2/γ+κ/2.
(5)
So the definition of the reflection coefficient on uncoupled condition shows unity reflectance |r0(ω)| = 1 as g = 0.

In the next, we describe the mechanism of the interaction in detail. At first, we consider the N-V center which is prepared in the state |0〉, the transition will be driven by the left circularly polarized photon in the state |L〉. The output photon pulse acquires a relative phase shift ϕ determined by the input-output relation: |Φout〉 = r(ω)|L〉 = e |L〉. On the other hand, if the input photon is prepared in the right circularly polarized state |R〉, the output photon will evolve as |Φout〉 = r(ω)|R〉 = eiψ|R〉. In all, the dynamics of the photon input-output process on the logic qubits can be described as:
|0|0:|Leiϕ2|L,|Reiϕ0|R;|1|1:|Leiϕ0|L,|Reiϕ2|R.
(6)
The relative phase shifts are defined by the reflection coefficient r(ω) during the input-output process which can be set as: ϕ0 = π/2 and ϕ2 = −π/2 in our further application. Recently, in Ref. [25

25. Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010). [CrossRef]

], Chen et al. combines the idea of input-output process and the DFS encoding theory, and presents a high quality QIP protocol. And in Ref. [26

26. A. P. Liu, L. -Y. Cheng, L. Chen, S. -L. Su, H. -F. Wang, and S. Zhang, “Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator,” Opt. Comm. 313, 180–185 (2014). [CrossRef]

], Liu et al. a hybrid controlled phase flip gate based on the inputCoutput process of the DFS qubit and microcavity system.

2.2. Single DFS qubit assisted entanglement concentration

Suppose the two N-V centers are encoded in the state |0̃〉 = |0〉1|1〉2 and |1̃〉 = |1〉1|0〉2. The generated entangled state in DFS requires local operations σx on one atom to flip one spin direction of the logical qubit, and the entangled state can be described as (|0˜1|0˜2±|1˜2|1˜2)/2 and (|0˜1|1˜2±|1˜1|0˜2)/2. Here the DFS qubits expanded Bell state is introduced to against the detrimental effects from decoherence. However, the probability amplitude of the superposed state will be effected and made the maximally entanglement to nonmaximally entangled state (α|0̃〉1|0̃〉2 + β|1̃〉1|1̃〉2), here the probability amplitude of the state obeys |α|2 + |β|2 = 1.

Here following the left part of the setup shown in Fig. 2, if we choose the input pulse in the state |=(|L+|R)/2 or in the state |=(|L|R)/2, we found that during the input-output process of the Cavity-1, the relative phase shift is added on the input pulses as:
|0˜|0˜||0˜|0˜|;|1˜|1˜|eiπ|1˜|1˜|;|0˜|1˜||0˜|1˜|;|1˜|0˜||1˜|0˜|.
(7)
If the two spins are in the odd parity, the left circularly polarized photon remains unchanged, otherwise, the left circularly polarized photon will change to the right circularly polarized state corresponding to the even parity of the spins. After the parity check process, the parity information of the DFS qubits can be readout by measuring the state of the output photon.

Fig. 2 The schematic diagram shown the principle of nonlocally entanglement concentration by using single photon input-output process.

In the following, we described the protocol in details. The solid qubits are distributed on Alice’s and Bob’s side, respectively. The environment noise will effect the maximally entangled state and change to the less-entangled state as α|0̃〉A|0̃〉B + β|1̃〉A|1̃〉B. One party, say Alice, prepares a single logic qubit in the state α|0̃〉a + β|1̃〉a. At first, a local operation σx on Alice’s side is needed to flip the single qubit state in the DFS. Exploiting the setup shown in Fig. 2, the evolution of the system can be described as:
(α|0˜A|0˜B+β|1˜A|1˜B)(α|0˜a+β|1˜a)(|L+|R)2αβ(|0˜|0˜|1˜+|1˜|1˜|0˜)e2iϕ2|L+e2iϕ0|R2+(α2|0˜|0˜|0˜+β2|1˜|1˜|1˜)ei(ϕ2+ϕ0)(|L+|R)2.
(8)
It is obvious that the relative phase of the photon state can be distinguished. By performing single particle measurement on the ancillary photon, the state of the composite N-V centers system collapse to c1(α2|0̃〉|0̃〉|0̃〉 + β2|1̃〉|1̃〉|1̃〉) and (|0˜|0˜|1˜+|1˜|1˜|0˜)/2 corresponds to the photon state (|L+|R)/2 and (|L|R)/2, respectively. The final step is to perform single spin measurement on the ancillary N-V center in the basis (|0˜±|1˜)/2. The yield of the EC process is defined as 2|αβ|2 that the state has been concentrated to the maximally entanglement.

For the remaining part, the state can be described as
|ϕ2=1|α|2+|β|2(α2|0˜|0˜±β2|1˜|1˜).
(9)
Then we further iterate the concentration process. Alice prepares another single logic qubit in the state |ψ2〉 = α2|1̃〉 + β2|0̃〉. By iterating the process exploiting the setup shown in Fig. 2, the composite system state |ϕ2〉|ψ2〉 can be concentrated to the maximally entangled state with the yield 2Z|αβ|4. Here Z represents the normalized constant. Moreover, the system without been concentrated are remaining in the state |ϕ3=(α4|0˜|0˜±β4|1˜|1˜)/|α|4+|β|4. And the yield of the third round concentration is y3=2|αβ|4|α|4+|β|4 after the third round iteration.

We can conclude that the total yield of the ECP can be represented as
Y=n2|α2nβ2n||α|2n+|β|2n,
(10)
here n denotes the iteration times. In Fig. 3, we numerically simulated the yield of the protocol versus the initial coefficient α in ideal conditions. By comparing the yield with different iteration times, the total yield of the protocol is efficiently improved. As the iteration times increase to three, the yield values increase from 0.4998 to 0.812 if the probability amplitude α = 0.7.

Fig. 3 The yield of the ECP after different iteration times in ideal cases without considering the system decoherence. Here we simulated the yield of the protocol by one time concentration (dotted line), two times (dashed line) and three times iteration (solid line).

2.3. Experiment feasibilities

As N-V centers have long coherence electron spin relaxation time [9

9. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nature Physics 2, 408–413(2006). [CrossRef]

], it is well suited for QIP. The electronic spins in N-V centers are easy for initialization, manipulation and measurement. The important building block of our scheme is the strong coupling between the two N-V centers and the optical microcavity. In realistic experiment, optical microcavity with high-Q factor can be fabricated in various systems, such as microsphere and microtoroid resonators [30

30. D. K. Armani, T. J. Kippenberg, S. M. Spillance, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef] [PubMed]

, 31

31. J. Zhu, S. K. Ozdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Optics Express 18, 23535–23543 (2010). [CrossRef] [PubMed]

]. Moreover, the coupling strength on the order of hundreds of megahertz between the N-V centers and microcavity has been realized. Strong coupling between a single N-V center and a gallium phosphide microdisc [32

32. P. E. Barclay, F. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” App. Phys. Lett. 95, 191115 (2009). [CrossRef]

] has been reported. The N-V centers are experimentally coupled with chip-based microcavity with Q > 25, 000 and the coupling strength between a single microdisk photon and the N-V center zero photon line (ZPL) is g/2π = 0.3GHz. The total spontaneous emission rates of the N-V center is γ/2π = 0.013GHz. As illustrated in Ref. [33

33. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012). [CrossRef] [PubMed]

], the coupling of the zero-phonon line of a single N-V center to a photonic crystal microcavity is realized. The spontaneous emission into the ZPL is enhanced by a factor of ∼ 70, which corresponds to more than 70% of the photons being emitted into the cavity mode.

3. Discussion and summary

Consider the imperfection of the system, the efficiency of the protocol relies on the realistic experimental parameters. As shown in Fig. 4, we numerically simulated the efficiencies of the EC protocol under realistic experiment parameters by using three times iteration. We can conclude that the success probability is larger than 80% on condition that the coherent coupling strength 2g/κ = 0.8 in the dephasing error mode. In realistic experiment, suppose the coefficient α=1/3, the failure rate caused by coupling strength and the cavity decay is about 2%. And photon loss reduces the success rate by 5%. The dark count of the single-photon detector reduces the efficiency by 10−4. We can simply estimate the success probability of the protocol to be p = 2 × (1 – 2%) × (1 – 10−4) × 95% × 4/9 = 82.7%. On condition that there are dephasing process, the success probability reduces to (1 + cos2δθ)p/2 where δθ represents the relative phase shift induced by the noise on the orthogonal states. Moreover, we can improve the success probabilities of our protocol by repeating our operations.

Fig. 4 The yield of the ECP versus the coupling strength. Here we simulated the yield of the protocol by three times iteration, where γ/κ = 0.01.

In addition, there are many ingredients which may also reduce the success probability of the proposed protocol, such as the spin decoherence and the photon loss during the cavity reflection, scattering and fiber absorption. Obviously, the EC process is repeated until the click of the photon detector. So the photon loss will not affect the yield of the protocol, but only the time of success. The main effect on the yield is the spin decoherence of the N-V center which is characterized by spin relaxation time T1 and dephasing time T2. In Ref. [34

34. A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, and D. Budke, “Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond,” Phys. Rev. Lett. 108, 197601 (2012). [CrossRef] [PubMed]

], it is reported that the spin relaxation time varies depend on the temperature. The results show that the time T1 approaches to microsecond at room temperature, and the longest T1 observed was on the order of minutes at 10 K for the sample. Also in Ref. [35

35. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008). [CrossRef] [PubMed]

], the electron spin relaxation time T1 of N-V centers in diamond scales from microseconds to seconds at low temperature. Moreover, the dephasing time T2 of N-V center is about 2ms in a isotopically pure diamond [36

36. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Material 8, 383–387 (2009). [CrossRef]

] which provides our scheme enough time for gate operations.

In summary, we have demonstrated the possibility to concentrate maximally entanglement by DFS encoding logic qubits confined in low-Q cavities. The DFS qubits can be prepared in maximally entangled state and be preserved by using the scheme nonlocally. As the electron spin state in N-V centers is used for storing quantum information and the photons are used as the quantum bus to transmit information between remote nodes. The protocol is scalable as the N-V centers and microcavity resonator coupled system acts as a quantum node that are immune to dephasing, by simply performing projective measurement on the transmitted photons from different nodes, then the quantum network can be established which can be used for quantum repeaters and distributed quantum computation. Also the main building block of our DFS EC protocol is the parity check detectors. One can distinguish the parity information between the DFS qubits without measuring them which provides a novel way of parity non-demolition detectors. The detectors are useful for accomplishing some interesting QIP tasks with the N-V centers and low-Q microcavity systems. For example, the entanglement analysis between DFS qubits and quantum repeaters between the two quantum nodes, and so on.

Acknowledgments

This work is supported by the National Fundamental Research Program Grant No. 2010CB923202, the National Natural Science Foundation of China under Grant Nos. 61205117 and 11374042, Beijing Higher Education Young Elite Teacher Project No. YETP0456, and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, Tsinghua University Grant No. KF201301.

References and links

1.

M. Saffman, T. G. Walker, and K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010). [CrossRef]

2.

M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, and M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316(2007). [CrossRef]

3.

L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, and R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578(2011). [CrossRef] [PubMed]

4.

D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, and D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10(8), 3168–3172(2010). [CrossRef] [PubMed]

5.

G. D. Fuchs, G. Burkard, P. V. Klimov, and D. D. Awschalom, “A quantum memory intrinsic to single nitrogenC-vacancy centres in diamond,” Nature Physics 7, 789–793(2011). [CrossRef]

6.

P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, and M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286(2012). [CrossRef] [PubMed]

7.

B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, and M. Lonc̆ar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004(2011). [CrossRef]

8.

J. H. An, M. Feng, and C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009). [CrossRef]

9.

T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, and J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nature Physics 2, 408–413(2006). [CrossRef]

10.

W. L. Yang, Z. Y. Xu, M. Feng, and J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12, 113039 (2010). [CrossRef]

11.

Q. Chen, W. L. Yang, M. Fang, and J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011). [CrossRef]

12.

B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, and H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008). [CrossRef] [PubMed]

13.

E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, and M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010). [CrossRef] [PubMed]

14.

C. H. Bennett, H. J. Bernstein, S. Popescu, and B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052(1996). [CrossRef] [PubMed]

15.

Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901(2003). [CrossRef] [PubMed]

16.

T. Yamamoto, M. Koashi, S. K. Ozdemir, and N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346(2003). [CrossRef] [PubMed]

17.

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]

18.

C. Wang, Y. Zhang, and G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]

19.

Y. B. Sheng, F. G. Deng, and H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication.,” Quantum Inform. Comput. 10, 272–281 (2010).

20.

D. A. Lidar, I. L. Chuang, and K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998). [CrossRef]

21.

M. Mohseni, J. S. Lundeen, K. J. Resch, and A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91, 187903 (2003). [CrossRef] [PubMed]

22.

L. M. Duan and G. C. Guo, “Preserving coherence in quantum computation by pairing quantum bits,” Phys. Rev. Lett. 79, 1953–1956 (1997). [CrossRef]

23.

D. Kielpinski, C. Monroe, and D.J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711 (2002). [CrossRef] [PubMed]

24.

D. F. Walls and G. J. Milburn, “Quantum Optics,” (Springer-Verlag, Berlin Heidelberg, 1994).

25.

Q. Chen and M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010). [CrossRef]

26.

A. P. Liu, L. -Y. Cheng, L. Chen, S. -L. Su, H. -F. Wang, and S. Zhang, “Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator,” Opt. Comm. 313, 180–185 (2014). [CrossRef]

27.

J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nature Photonics 4, 46–49 (2010) [CrossRef]

28.

Y.-S. Park, A. K. Cook, and H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Letters 6, 2075–2079(2006). [CrossRef] [PubMed]

29.

H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, and R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012). [CrossRef] [PubMed]

30.

D. K. Armani, T. J. Kippenberg, S. M. Spillance, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef] [PubMed]

31.

J. Zhu, S. K. Ozdemir, L. He, and L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Optics Express 18, 23535–23543 (2010). [CrossRef] [PubMed]

32.

P. E. Barclay, F. M. C. Fu, C. Santori, and R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” App. Phys. Lett. 95, 191115 (2009). [CrossRef]

33.

A. Faraon, C. Santori, Z. Huang, V. M. Acosta, and R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012). [CrossRef] [PubMed]

34.

A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, and D. Budke, “Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond,” Phys. Rev. Lett. 108, 197601 (2012). [CrossRef] [PubMed]

35.

P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, and J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008). [CrossRef] [PubMed]

36.

G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, and J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Material 8, 383–387 (2009). [CrossRef]

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(270.5568) Quantum optics : Quantum cryptography
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Quantum Optics

History
Original Manuscript: November 18, 2013
Revised Manuscript: December 22, 2013
Manuscript Accepted: December 26, 2013
Published: January 15, 2014

Citation
Chuan Wang, Tie-Jun Wang, Yong Zhang, Rong-zhen Jiao, and Guang-sheng Jin, "Concentration of entangled nitrogen-vacancy centers in decoherence free subspace," Opt. Express 22, 1551-1559 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1551


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. Saffman, T. G. Walker, K. Mølmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313–2363 (2010). [CrossRef]
  2. M. V. Gurudev Dutt, L. Childress, L. Jiang, E. Togan, J. Maze, F. Jelezko, A. S. Zibrov, P. R. Hemmer, M. D. Lukin, “Quantum register based on individual electronic and nuclear spin qubits in diamond,” Science 316, 1312–1316(2007). [CrossRef]
  3. L. Robledo, L. Childress, H. Bernien, B. Hensen, P. F. A. Alkemade, R. Hanson, “High-fidelity projective read-out of a solid-state spin quantum register,” Nature 477, 574–578(2011). [CrossRef] [PubMed]
  4. D. M. Toyli, C. D. Weis, G. D. Fuchs, T. Schenkel, D. D. Awschalom, “Chip-scale nanofabrication of single spins and spin arrays in diamond,” Nano Lett. 10(8), 3168–3172(2010). [CrossRef] [PubMed]
  5. G. D. Fuchs, G. Burkard, P. V. Klimov, D. D. Awschalom, “A quantum memory intrinsic to single nitrogenC-vacancy centres in diamond,” Nature Physics 7, 789–793(2011). [CrossRef]
  6. P. C. Maurer, G. Kucsko, C. Latta, L. Jiang, N. Y. Yao, S. D. Bennett, F. Pastawski, D. Hunger, N. Chisholm, M. Markham, D. J. Twitchen, J. I. Cirac, M. D. Lukin, “Room-temperature quantum bit memory exceeding one second,” Science 336, 1283–1286(2012). [CrossRef] [PubMed]
  7. B. J. M. Hausmann, T. M. Babinec, J. T. Choy, J. S. Hodges, S. Hong, I. Bulu, A. Yacoby, M. D. Lukin, M. Lonc̆ar, “Single-color centers implanted in diamond nanostructures,” New J. Phys. 13, 045004(2011). [CrossRef]
  8. J. H. An, M. Feng, C. H. Oh, “Quantum-information processing with a single photon by an input-output process with respect to low-Q cavities,” Phys. Rev. A 79, 032303 (2009). [CrossRef]
  9. T. Gaebel, M. Domhan, I. Popa, C. Wittmann, P. Neumann, F. Jelezko, J. R. Rabeau, N. Stavrias, A. D. Greentree, S. Prawer, J. Meijer, J. Twamley, P. R. Hemmer, J. Wrachtrup, “Room-temperature coherent coupling of single spins in diamond,” Nature Physics 2, 408–413(2006). [CrossRef]
  10. W. L. Yang, Z. Y. Xu, M. Feng, J. F. Du, “Entanglement of separate nitrogen-vacancy centers coupled to a whispering-gallery mode cavity,” New J. Phys. 12, 113039 (2010). [CrossRef]
  11. Q. Chen, W. L. Yang, M. Fang, J. F. Du, “Entangling separate nitrogen-vacancy centers in a scalable fashion via coupling to microtoroidal resonators,” Phys. Rev. A 83, 054305 (2011). [CrossRef]
  12. B. Dayan, A. S. Parkins, T. Aoki, E. P. Ostby, K. J. Vahala, H. J. Kimble, “A photon turnstile dynamically regulated by one atom,” Science 319, 1062–1065 (2008). [CrossRef] [PubMed]
  13. E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. Dutt, A. S. Sorensen, P. R. Hemmer, A. S. Zibrov, M. D. Lukin, “Quantum entanglement between an optical photon and a solid-state spin qubit,” Nature 466, 730–734 (2010). [CrossRef] [PubMed]
  14. C. H. Bennett, H. J. Bernstein, S. Popescu, B. Schumacher, “Concentrating partial entanglement by local operations,” Phys. Rev. A 53, 2046–2052(1996). [CrossRef] [PubMed]
  15. Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett. 90, 207901(2003). [CrossRef] [PubMed]
  16. T. Yamamoto, M. Koashi, S. K. Ozdemir, N. Imoto, “Experimental extraction of an entangled photon pair from two identically decohered pairs,” Nature 421, 343–346(2003). [CrossRef] [PubMed]
  17. Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics,” Phys. Rev. A 77, 062325 (2008). [CrossRef]
  18. C. Wang, Y. Zhang, G. S. Jin, “Entanglement purification and concentration of electron-spin entangled states using quantum-dot spins in optical microcavities,” Phys. Rev. A 84, 032307 (2011). [CrossRef]
  19. Y. B. Sheng, F. G. Deng, H. Y. Zhou, “Single-photon entanglement concentration for long-distance quantum communication.,” Quantum Inform. Comput. 10, 272–281 (2010).
  20. D. A. Lidar, I. L. Chuang, K. B. Whaley, “Decoherence-free subspaces for quantum computation,” Phys. Rev. Lett. 81, 2594–2597 (1998). [CrossRef]
  21. M. Mohseni, J. S. Lundeen, K. J. Resch, A. M. Steinberg, “Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm,” Phys. Rev. Lett. 91, 187903 (2003). [CrossRef] [PubMed]
  22. L. M. Duan, G. C. Guo, “Preserving coherence in quantum computation by pairing quantum bits,” Phys. Rev. Lett. 79, 1953–1956 (1997). [CrossRef]
  23. D. Kielpinski, C. Monroe, D.J. Wineland, “Architecture for a large-scale ion-trap quantum computer,” Nature 417, 709–711 (2002). [CrossRef] [PubMed]
  24. D. F. Walls, G. J. Milburn, “Quantum Optics,” (Springer-Verlag, Berlin Heidelberg, 1994).
  25. Q. Chen, M. Feng, “Quantum-information processing in decoherence-free subspace with low-Q cavities,” Phys. Rev. A 82, 052329 (2010). [CrossRef]
  26. A. P. Liu, L. -Y. Cheng, L. Chen, S. -L. Su, H. -F. Wang, S. Zhang, “Quantum information processing in decoherence-free subspace with nitrogen-vacancy centers coupled to a whispering-gallery mode microresonator,” Opt. Comm. 313, 180–185 (2014). [CrossRef]
  27. J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nature Photonics 4, 46–49 (2010) [CrossRef]
  28. Y.-S. Park, A. K. Cook, H. Wang, “Cavity QED with diamond nanocrystals and silica microspheres,” Nano Letters 6, 2075–2079(2006). [CrossRef] [PubMed]
  29. H. Bernien, L. Childress, L. Robledo, M. Markham, D. Twitchen, R. Hanson, “Two-photon quantum interference from separate nitrogen vacancy centers in diamond,” Phys. Rev. Lett. 108, 043604 (2012). [CrossRef] [PubMed]
  30. D. K. Armani, T. J. Kippenberg, S. M. Spillance, K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003). [CrossRef] [PubMed]
  31. J. Zhu, S. K. Ozdemir, L. He, L. Yang, “Controlled manipulation of mode splitting in an optical microcavity by two Rayleigh scatterers,” Optics Express 18, 23535–23543 (2010). [CrossRef] [PubMed]
  32. P. E. Barclay, F. M. C. Fu, C. Santori, R. G. Beausoleil, “Chip-based microcavities coupled to nitrogen-vacancy centers in single crystal diamond,” App. Phys. Lett. 95, 191115 (2009). [CrossRef]
  33. A. Faraon, C. Santori, Z. Huang, V. M. Acosta, R. G. Beausoleil, “Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond,” Phys. Rev. Lett. 109, 033604 (2012). [CrossRef] [PubMed]
  34. A. Jarmola, V. M. Acosta, K. Jensen, S. Chemerisov, D. Budke, “Temperature- and magnetic-field-dependent longitudinal spin relaxation in nitrogen-vacancy ensembles in diamond,” Phys. Rev. Lett. 108, 197601 (2012). [CrossRef] [PubMed]
  35. P. Neumann, N. Mizuochi, F. Rempp, P. Hemmer, H. Watanabe, S. Yamasaki, V. Jacques, T. Gaebel, F. Jelezko, J. Wrachtrup, “Multipartite entanglement among single spins in diamond,” Science 320, 1326–1329 (2008). [CrossRef] [PubMed]
  36. G. Balasubramanian, P. Neumann, D. Twitchen, M. Markham, R. Kolesov, N. Mizuochi, J. Isoya, J. Achard, J. Beck, J. Tissler, V. Jacques, P. R. Hemmer, F. Jelezko, J. Wrachtrup, “Ultralong spin coherence time in isotopically engineered diamond,” Nature Material 8, 383–387 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited