## Quantum metropolitan optical network based on wavelength division multiplexing |

Optics Express, Vol. 22, Issue 2, pp. 1576-1593 (2014)

http://dx.doi.org/10.1364/OE.22.001576

Acrobat PDF (1576 KB)

### Abstract

Quantum Key Distribution (QKD) is maturing quickly. However, the current approaches to its application in optical networks make it an expensive technology. QKD networks deployed to date are designed as a collection of point-to-point, dedicated QKD links where non-neighboring nodes communicate using the trusted repeater paradigm. We propose a novel optical network model in which QKD systems share the communication infrastructure by wavelength multiplexing their quantum and classical signals. The routing is done using optical components within a metropolitan area which allows for a dynamically any-to-any communication scheme. Moreover, it resembles a commercial telecom network, takes advantage of existing infrastructure and utilizes commercial components, allowing for an easy, cost-effective and reliable deployment.

© 2014 Optical Society of America

## 1. Introduction

15. Y. Chen, M. T. Fatehi, H. J. La Roche, J. Z. Larsen, and B. L. Nelson, “Metro optical networking,” Bell Labs Tech. J. **4**, 163–186 (1999). [CrossRef]

16. C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol. **24**, 4568–4583 (2006). [CrossRef]

17. P. Townsend, S. Phoenix, K. Blow, and S. Barnett, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. **30**, 1875–1877 (1994). [CrossRef]

27. M. Razavi, “Multiple-access quantum key distribution networks,” IEEE Trans. Commun. **60**, 3071–3079 (2012). [CrossRef]

28. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express **16**, 18790–18979 (2008). [CrossRef]

34. A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys. **11**, 045013 (2009). [CrossRef]

## 2. Metropolitan optical network

*canonical*MON.

48. T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. **24**, 2311–2317 (2006). [CrossRef]

### 2.1. Access network

50. S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. **22**, 2582–2591 (2004). [CrossRef]

### 2.2. Core network: backbone

*M*nodes covering all the metropolitan area, where each backbone node is connected to the OLT of one or more access networks. Signals within the ring are wavelength multiplexed and a (reconfigurable) optical add-drop multiplexer, (R)OADM, is used at the backbone node to add and drop different channels, i.e. add or extract wavelengths to/from the ring. The connection between core and access networks typically includes an electro-optical conversion, since the protocols and technologies can be very different. However, when the backbone and the access network are both based on optical technology and WDM, they can also be directly connected in the optical domain, thus opening the possibility to support quantum communications. This allows for a realistic network where QKD emitters can connect to different receivers (even if different QKD protocols are used [51

51. B. Korzh, N. Walenta, R. Houlmann, and H. Zbinden, “A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator,” Opt. Express **21**, 19579–19592 (2013). [CrossRef] [PubMed]

## 3. Multiplexing QKD systems in a MON

52. H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. **81**, 5932–5935 (1998). [CrossRef]

54. C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A **86**, 023815 (2012). [CrossRef]

### 3.1. Bands structure and channel plan

19. P. Townsend, “Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems,” IEEE Photonics Technol. Lett. **10**, 1048–1050 (1998). [CrossRef]

38. P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. **33**, 188–190 (1997). [CrossRef]

41. T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. **11**, 105001 (2009). [CrossRef]

55. P. Toliver, R. Runser, T. Chapuran, S. McNown, M. Goodman, J. Jackel, R. Hughes, C. Peterson, K. McCabe, J. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Impact of spontaneous anti-Stokes Raman scattering on QKD+DWDM networking,” in *17th Annual Meeting of the IEEE Lasers and Electro-Optics Society* (IEEE, 2004), pp. 491–492.

*service band*at the S, C and L bands (≈ 1500–1600 nm), and a

*quantum band*at the O band (1260–1360 nm). The distance between channels in the same band will depend on the specific ITU grid used for the implementation. It might not seem an optimal choice to move the quantum signals to the O band since fiber losses are slightly bigger (≈ 0.1 dB/km more), but actually the main source of losses in a MON comes from components such as splitters, filters, multiplexers, switches, etc., and they are similar across the bands (see Table 1). Henceforth, we will use the optical loss as the reference value when comparing different proposals instead of the distance. Beyond having well separated wavelengths for the quantum and classical signals, the motivation behind this choice is the ability to use existing DWDM commercial equipment for the classical service signals, which is backed by a mature industry. For example, a possible implementation of the schema could use standard and readily available small form-factor pluggable transceivers for the classical signals in the DWDM 100 GHz grid in the C band that simply do not exist in the O band. These would be very expensive to commercially manufacture without the high market demand that drove the development in the C band. At the same time, the manufacturing of QKD equipment can be carried out in the O band as it is in the C band. QKD components such as single-photon detectors [2

2. ID Quantique SA, http://www.idquantique.com.

*periodic set*the set of channels that can be used through each output port of the AWG.

### 3.2. Simplified network

*M*×

*M*switch in front of the emitter’s AWG. This switch is the only active element in the network. On the other hand, optical switches do not spoil the quantum signal and have very low losses. With this modification, the network is an all-to-all, wavelength addressable and dynamically reconfigurable network, since any QKD emitter can communicate with any receiver at any time by using the appropriate channel and setting the switch accordingly. This network is, however, directional; all emitters have to be located in one access network and all the receivers in the other. If a switch is also added to the receiver’s side AWG, this limitation no longer exists and QKD emitters/receivers can be freely mixed and located at any port of any of the two access networks.

### 3.3. Backbone nodes and full QKD-MON

28. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express **16**, 18790–18979 (2008). [CrossRef]

57. D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express **17**, 13326–13334 (2009). [CrossRef] [PubMed]

58. J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE **7681**, 76810Z (2010). [CrossRef]

31. S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. **37**, 1008–1010 (2012). [CrossRef] [PubMed]

28. A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express **16**, 18790–18979 (2008). [CrossRef]

31. S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. **37**, 1008–1010 (2012). [CrossRef] [PubMed]

57. D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express **17**, 13326–13334 (2009). [CrossRef] [PubMed]

58. J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE **7681**, 76810Z (2010). [CrossRef]

43. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. **11**, 045012 (2009). [CrossRef]

55. P. Toliver, R. Runser, T. Chapuran, S. McNown, M. Goodman, J. Jackel, R. Hughes, C. Peterson, K. McCabe, J. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Impact of spontaneous anti-Stokes Raman scattering on QKD+DWDM networking,” in *17th Annual Meeting of the IEEE Lasers and Electro-Optics Society* (IEEE, 2004), pp. 491–492.

60. D. Subacius, A. Zavriyev, and A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett. **86**, 011103 (2005). [CrossRef]

## 4. Network prototype

**16**, 18790–18979 (2008). [CrossRef]

57. D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express **17**, 13326–13334 (2009). [CrossRef] [PubMed]

58. J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE **7681**, 76810Z (2010). [CrossRef]

2. ID Quantique SA, http://www.idquantique.com.

**7681**, 76810Z (2010). [CrossRef]

*μτη*), where

*μ*is the mean photon number,

*τ*is the transmittance and

*η*is the quantum efficiency of the SPD. Therefore, we can estimate the QBER as the ratio of erroneous detections measured with the SPD over the total number of detections. This measurement includes contributions from the dark count rate and the noise generated by the service signals. Calculated values of the QBER of several representative points of the experiment are also shown.

23. D. Lancho, J. Martínez, D. Elkouss, M. Soto, and V. Martín, “QKD in standard optical telecommunications networks,” in *1st Int. Conf. on Quantum Communication and Quantum Networking* (ICST, 2010), pp. 142–149. [CrossRef]

43. N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. **11**, 045012 (2009). [CrossRef]

**7681**, 76810Z (2010). [CrossRef]

^{−9}[45]. Less conservative estimates, using shorter gates at the SPDs (e.g. 100 ps [58

**7681**, 76810Z (2010). [CrossRef]

### Modes of network operation

*return channels*; they are already located in the channel plan. However, return channels require a different switch configuration and, thus, they cannot be used simultaneously with the corresponding service channel. This is because, in general, emitter and receiver are connected to different ports of their respective AWGs. Due to the number of signals that need to be generated to produce enough key material to get rid of finite key effects [65

65. V. Scarani and R. Renner, “Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. **100**, 200501 (2008). [CrossRef] [PubMed]

## 5. Conclusions

## Acknowledgments

## References and links

1. | N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys |

2. | ID Quantique SA, http://www.idquantique.com. |

3. | Toshiba Research Europe Ltd., http://www.toshiba-europe.com/research/. |

4. | MagiQ Technologies Inc., http://www.magiqtech.com. |

5. | SeQureNet, http://www.sequrenet.com. |

6. | AIT, http://www.ait.ac.at/epr. |

7. | Swiss Quantum, http://swissquantum.idquantique.com. |

8. | A. Mirza and P. Petruccione, “Realizing long-term quantum cryptography,” J. Opt. Soc. Am. B |

9. | P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, and P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express |

10. | C. Elliot, “Building the quantum network,” New J. Phys. |

11. | M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, and A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys. |

12. | D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, and H. Zbinden, “Long-term performance of the SwissQuantum quantum key distribution network in a field environment,” New J. Phys. |

13. | M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, and A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express |

14. | K. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, K. Harasawa, Y. Nagasako, and A. Takada, “Security in photonic networks: threats and security enhancement,” J. Lightwave Technol. |

15. | Y. Chen, M. T. Fatehi, H. J. La Roche, J. Z. Larsen, and B. L. Nelson, “Metro optical networking,” Bell Labs Tech. J. |

16. | C.-H. Lee, W. V. Sorin, and B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol. |

17. | P. Townsend, S. Phoenix, K. Blow, and S. Barnett, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. |

18. | P. Townsend, “Quantum cryptography on multiuser optical fibre networks,” Nature |

19. | P. Townsend, “Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems,” IEEE Photonics Technol. Lett. |

20. | D. Kumavor, C. Beal, S. Yelin, E. Donkor, and C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks,” J. Lightwave Technol. |

21. | V. Fernandez, R. J. Collins, K. J. Gordon, P. D. Townsend, and G. S. Buller, “Passive optical network approach to gigahertz-clocked multiuser quantum key distribution,” IEEE J. Quantum Electron. |

22. | W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, and A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron. |

23. | D. Lancho, J. Martínez, D. Elkouss, M. Soto, and V. Martín, “QKD in standard optical telecommunications networks,” in |

24. | I. Choi, R. J. Young, and P. D. Townsend, “Quantum key distribution on a 10Gb/s WDM-PON,” Opt. Express |

25. | J. Capmany and C. Fernández-Pousa, “Analysis of passive optical networks for subcarrier multiplexed quantum key distribution,” IEEE Trans. Microwave Theory Tech. |

26. | I. Choi, R. J. Young, and P. D. Townsend, “Quantum information to the home,” New J. Phys. |

27. | M. Razavi, “Multiple-access quantum key distribution networks,” IEEE Trans. Commun. |

28. | A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, and A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express |

29. | H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, and Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photon. |

30. | D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, and S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” New J. Phys. |

31. | S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, and Z.-F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. |

32. | N. Namekata, H. Takesue, T. Honjo, Y. Tokura, and S. Inoue, “High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express |

33. | P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, and E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photon. |

34. | A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, and A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys. |

35. | Recommendation ITU-T G.694.2, Spectral grids for WDM applications: CWDM frequency grid (2003). |

36. | Recommendation ITU-T G.694.1, Spectral grids for WDM applications: DWDM frequency grid (2012). |

37. | C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. |

38. | P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. |

39. | T. Xia, D. Chen, G. Wellbrock, A. Zavriyev, A. Beal, and K. Lee, “In-band quantum key distribution (QKD) on fiber populated by high-speed classical data channels,” in |

40. | H. Rohde, S. Smolorz, A. Poppe, and H. Huebel, “Quantum key distribution integrated into commercial WDM systems,” in |

41. | T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, and H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. |

42. | B. Qi, W. Zhu, L. Qian, and H.-K. Lo, “Feasibility of quantum key distribution through dense wavelength division multiplexing network,” New J. Phys. |

43. | N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, and K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. |

44. | P. Eraerds, N. Walenta, M. Legré, N. Gisin, and H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. |

45. | K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, and A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X |

46. | V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, and M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. |

47. | IEEE, IEEE standard for local and metropolitan area networks: overview and architecture (2002). |

48. | T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, and H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. |

49. | R. Ramaswami, K. Sivarajan, and G. Sasaki, |

50. | S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, and K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. |

51. | B. Korzh, N. Walenta, R. Houlmann, and H. Zbinden, “A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator,” Opt. Express |

52. | H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. |

53. | L. Tian and H. Wang, “Optical wavelength conversion of quantum states with optomechanics,” Phys. Rev. A |

54. | C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, and R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A |

55. | P. Toliver, R. Runser, T. Chapuran, S. McNown, M. Goodman, J. Jackel, R. Hughes, C. Peterson, K. McCabe, J. Nordholt, K. Tyagi, P. Hiskett, and N. Dallmann, “Impact of spontaneous anti-Stokes Raman scattering on QKD+DWDM networking,” in |

56. | R. Runser, T. Chapuran, P. Toliver, M. Goodman, and J. Jackel, “Demonstration of 1.3 μm quantum key distribution (QKD) compatibility with 1.5 μm metropolitan wavelength division multiplexed (WDM) systems,” in |

57. | D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, and H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express |

58. | J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, and H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE |

59. | N. Walenta, “Concepts, components and implementations for quantum key distribution over optical fibers,” Ph.D. thesis, Faculté des Sciences de l’Université de Genève (2012). |

60. | D. Subacius, A. Zavriyev, and A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett. |

61. | Corning: SMF-28e+ LL optical fiber, http://www.corning.com/. |

62. | Flyin Optronics: splitter, circulators, CWDM filters and 1310/1550 WDM multiplexers, http://www.flyinoptronics.com/. |

63. | Polatis: optical switch Series 6000, http://www.polatis.com/datasheets/series-6000-192x192-low-loss-optical-switch.pdf. |

64. | LG Nortel WPF 1132C (32-channels AWG). |

65. | V. Scarani and R. Renner, “Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. |

**OCIS Codes**

(060.4265) Fiber optics and optical communications : Networks, wavelength routing

(060.5565) Fiber optics and optical communications : Quantum communications

(270.5568) Quantum optics : Quantum cryptography

**ToC Category:**

Quantum Optics

**History**

Original Manuscript: August 16, 2013

Revised Manuscript: November 22, 2013

Manuscript Accepted: December 4, 2013

Published: January 16, 2014

**Citation**

A. Ciurana, J. Martínez-Mateo, M. Peev, A. Poppe, N. Walenta, H. Zbinden, and V. Martín, "Quantum metropolitan optical network based on wavelength division multiplexing," Opt. Express **22**, 1576-1593 (2014)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1576

Sort: Year | Journal | Reset

### References

- N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys 74, 145–195 (2002). [CrossRef]
- ID Quantique SA, http://www.idquantique.com .
- Toshiba Research Europe Ltd., http://www.toshiba-europe.com/research/ .
- MagiQ Technologies Inc., http://www.magiqtech.com .
- SeQureNet, http://www.sequrenet.com .
- AIT, http://www.ait.ac.at/epr .
- Swiss Quantum, http://swissquantum.idquantique.com .
- A. Mirza, P. Petruccione, “Realizing long-term quantum cryptography,” J. Opt. Soc. Am. B 27, A185–A188 (2010). [CrossRef]
- P. Jouguet, S. Kunz-Jacques, T. Debuisschert, S. Fossier, E. Diamanti, R. Alléaume, R. Tualle-Brouri, P. Grangier, A. Leverrier, P. Pache, P. Painchault, “Field test of classical symmetric encryption with continuous variables quantum key distribution,” Opt. Express 20, 14030–14041 (2012). [CrossRef] [PubMed]
- C. Elliot, “Building the quantum network,” New J. Phys. 4, 46 (2002). [CrossRef]
- M. Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, S. Fasel, S. Fossier, M. Fürst, J.-D. Gautier, O. Gay, N. Gisin, P. Grangier, A. Happe, Y. Hasani, M. Hentschel, H. Hübel, G. Humer, T. Länger, M. Legré, R. Lieger, J. Lodewyck, T. Lorünser, N. Lütkenhaus, A. Marhold, T. Matyus, O. Maurhart, L. Monat, S. Nauerth, J.-B. Page, A. Poppe, E. Querasser, G. Ribordy, S. Robyr, L. Salvail, A. W. Sharpe, A. J. Shields, D. Stucki, M. Suda, C. Tamas, T. Themel, R. T. Thew, Y. Thoma, A. Treiber, P. Trinkler, R. Tualle-Brouri, F. Vannel, N. Walenta, H. Weier, H. Weinfurter, I. Wimberger, Z. L. Yuan, H. Zbinden, A. Zeilinger, “The SECOQC quantum key distribution network in Vienna,” New J. Phys. 11, 075001 (2009). [CrossRef]
- D. Stucki, M. Legré, F. Buntschu, B. Clausen, N. Felber, N. Gisin, L. Henzen, P. Junod, G. Litzistorf, P. Monbaron, L. Monat, J.-B. Page, D. Perroud, G. Ribordy, A. Rochas, S. Robyr, J. Tavares, R. Thew, P. Trinkler, S. Ventura, R. Voirol, N. Walenta, H. Zbinden, “Long-term performance of the SwissQuantum quantum key distribution network in a field environment,” New J. Phys. 13, 123001 (2011). [CrossRef]
- M. Sasaki, M. Fujiwara, H. Ishizuka, W. Klaus, K. Wakui, M. Takeoka, S. Miki, T. Yamashita, Z. Wang, A. Tanaka, K. Yoshino, Y. Nambu, S. Takahashi, A. Tajima, A. Tomita, T. Domeki, T. Hasegawa, Y. Sakai, H. Kobayashi, T. Asai, K. Shimizu, T. Tokura, T. Tsurumaru, M. Matsui, T. Honjo, K. Tamaki, H. Takesue, Y. Tokura, J. F. Dynes, A. R. Dixon, A. W. Sharpe, Z. L. Yuan, A. J. Shields, S. Uchikoga, M. Legré, S. Robyr, P. Trinkler, L. Monat, J.-B. Page, G. Ribordy, A. Poppe, A. Allacher, O. Maurhart, T. Länger, M. Peev, A. Zeilinger, “Field test of quantum key distribution in the Tokyo QKD Network,” Opt. Express 19, 10387–10409 (2011). [CrossRef] [PubMed]
- K. Kitayama, M. Sasaki, S. Araki, M. Tsubokawa, A. Tomita, K. Inoue, K. Harasawa, Y. Nagasako, A. Takada, “Security in photonic networks: threats and security enhancement,” J. Lightwave Technol. 29, 3210–3222 (2011). [CrossRef]
- Y. Chen, M. T. Fatehi, H. J. La Roche, J. Z. Larsen, B. L. Nelson, “Metro optical networking,” Bell Labs Tech. J. 4, 163–186 (1999). [CrossRef]
- C.-H. Lee, W. V. Sorin, B. Y. Kim, “Fiber to the home using a PON infrastructure,” J. Lightwave Technol. 24, 4568–4583 (2006). [CrossRef]
- P. Townsend, S. Phoenix, K. Blow, S. Barnett, “Design of quantum cryptography systems for passive optical networks,” Electron. Lett. 30, 1875–1877 (1994). [CrossRef]
- P. Townsend, “Quantum cryptography on multiuser optical fibre networks,” Nature 385, 47–49 (1997). [CrossRef]
- P. Townsend, “Experimental investigation of the performance limits for first telecommunications-window quantum cryptography systems,” IEEE Photonics Technol. Lett. 10, 1048–1050 (1998). [CrossRef]
- D. Kumavor, C. Beal, S. Yelin, E. Donkor, C. Wang, “Comparison of four multi-user quantum key distribution schemes over passive optical networks,” J. Lightwave Technol. 23, 268–276 (2005). [CrossRef]
- V. Fernandez, R. J. Collins, K. J. Gordon, P. D. Townsend, G. S. Buller, “Passive optical network approach to gigahertz-clocked multiuser quantum key distribution,” IEEE J. Quantum Electron. 43, 130–138 (2007). [CrossRef]
- W. Maeda, A. Tanaka, S. Takahashi, A. Tajima, A. Tomita, “Technologies for quantum key distribution networks integrated with optical communication networks,” IEEE J. Sel. Top. Quantum Electron. 15, 1591–1601 (2009). [CrossRef]
- D. Lancho, J. Martínez, D. Elkouss, M. Soto, V. Martín, “QKD in standard optical telecommunications networks,” in 1st Int. Conf. on Quantum Communication and Quantum Networking (ICST, 2010), pp. 142–149. [CrossRef]
- I. Choi, R. J. Young, P. D. Townsend, “Quantum key distribution on a 10Gb/s WDM-PON,” Opt. Express 18, 9600–9612 (2010). [CrossRef] [PubMed]
- J. Capmany, C. Fernández-Pousa, “Analysis of passive optical networks for subcarrier multiplexed quantum key distribution,” IEEE Trans. Microwave Theory Tech. 58, 3220–3228 (2010). [CrossRef]
- I. Choi, R. J. Young, P. D. Townsend, “Quantum information to the home,” New J. Phys. 13, 063039 (2011). [CrossRef]
- M. Razavi, “Multiple-access quantum key distribution networks,” IEEE Trans. Commun. 60, 3071–3079 (2012). [CrossRef]
- A. R. Dixon, Z. L. Yuan, J. F. Dynes, A. W. Sharpe, A. J. Shields, “Gigahertz decoy quantum key distribution with 1 Mbit/s secure key rate,” Opt. Express 16, 18790–18979 (2008). [CrossRef]
- H. Takesue, S. W. Nam, Q. Zhang, R. H. Hadfield, T. Honjo, K. Tamaki, Y. Yamamoto, “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nat. Photon. 1, 1749–4885 (2007).
- D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray, C. R. Towery, S. Ten, “High rate, long-distance quantum key distribution over 250 km of ultra low loss fibres,” New J. Phys. 11, 075003 (2009). [CrossRef]
- S. Wang, W. Chen, J.-F. Guo, Z.-Q. Yin, H.-W. Li, Z. Zhou, G.-C. Guo, Z.-F. Han, “2 GHz clock quantum key distribution over 260 km of standard telecom fiber,” Opt. Lett. 37, 1008–1010 (2012). [CrossRef] [PubMed]
- N. Namekata, H. Takesue, T. Honjo, Y. Tokura, S. Inoue, “High-rate quantum key distribution over 100 km using ultra-low-noise, 2-GHz sinusoidally gated InGaAs/InP avalanche photodiodes,” Opt. Express 19, 10632–10639 (2011). [CrossRef] [PubMed]
- P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti, “Experimental demonstration of long-distance continuous-variable quantum key distribution,” Nat. Photon. 7, 378–381 (2013). [CrossRef]
- A. Treiber, A. Poppe, M. Hentschel, D. Ferrini, T. Lorünser, E. Querasser, T. Matyus, H. Hübel, A. Zeilinger, “Fully automated entanglement-based quantum cryptography system for telecom fiber networks,” New J. Phys. 11, 045013 (2009). [CrossRef]
- Recommendation ITU-T G.694.2, Spectral grids for WDM applications: CWDM frequency grid (2003).
- Recommendation ITU-T G.694.1, Spectral grids for WDM applications: DWDM frequency grid (2012).
- C. A. Brackett, “Dense wavelength division multiplexing networks: principles and applications,” IEEE J. Sel. Areas Commun. 8, 948–964 (1990). [CrossRef]
- P. Townsend, “Simultaneous quantum cryptographic key distribution and conventional data transmission over installed fibre using wavelength-division multiplexing,” Electron. Lett. 33, 188–190 (1997). [CrossRef]
- T. Xia, D. Chen, G. Wellbrock, A. Zavriyev, A. Beal, K. Lee, “In-band quantum key distribution (QKD) on fiber populated by high-speed classical data channels,” in Optical Fiber Communication Conf. (IEEE, 2006), p. 3.
- H. Rohde, S. Smolorz, A. Poppe, H. Huebel, “Quantum key distribution integrated into commercial WDM systems,” in Optical Fiber Communication Conf. (IEEE, 2008), pp. 1–3.
- T. E. Chapuran, P. Toliver, N. A. Peters, J. Jackel, M. S. Goodman, R. J. Runser, S. R. McNown, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, C. G. Peterson, K. T. Tyagi, L. Mercer, H. Dardy, “Optical networking for quantum key distribution and quantum communications,” New J. Phys. 11, 105001 (2009). [CrossRef]
- B. Qi, W. Zhu, L. Qian, H.-K. Lo, “Feasibility of quantum key distribution through dense wavelength division multiplexing network,” New J. Phys. 12, 18 (2010).
- N. A. Peters, P. Toliver, T. E. Chapuran, R. J. Runser, S. R. McNown, C. G. Peterson, D. Rosenberg, N. Dallmann, R. J. Hughes, K. P. McCabe, J. E. Nordholt, K. T. Tyagi, “Dense wavelength multiplexing of 1550 nm QKD with strong classical channels in reconfigurable networking environments,” New J. Phys. 11, 045012 (2009). [CrossRef]
- P. Eraerds, N. Walenta, M. Legré, N. Gisin, H. Zbinden, “Quantum key distribution and 1 Gbps data encryption over a single fibre,” New J. Phys. 12, 063027 (2010). [CrossRef]
- K. A. Patel, J. F. Dynes, I. Choi, A. W. Sharpe, A. R. Dixon, Z. L. Yuan, R. V. Penty, A. J. Shields, “Coexistence of high-bit-rate quantum key distribution and data on optical fiber,” Phys. Rev. X 2, 041010 (2012).
- V. Scarani, H. Bechmann-Pasquinucci, N. J. Cerf, M. Dusek, N. Lütkenhaus, M. Peev, “The security of practical quantum key distribution,” Rev. Mod. Phys. 81, 1301–1350 (2009). [CrossRef]
- IEEE, IEEE standard for local and metropolitan area networks: overview and architecture (2002).
- T. Ohara, H. Takara, T. Yamamoto, H. Masuda, T. Morioka, M. Abe, H. Takahashi, “Over-1000-channel ultradense WDM transmission with supercontinuum multicarrier source,” J. Lightwave Technol. 24, 2311–2317 (2006). [CrossRef]
- R. Ramaswami, K. Sivarajan, G. Sasaki, Optical Networks: A Practical Perspective, 3rd ed. (Morgan Kaufmann, 2009).
- S.-J. Park, C.-H. Lee, K.-T. Jeong, H.-J. Park, J.-G. Ahn, K.-H. Song, “Fiber-to-the-home services based on wavelength-division-multiplexing passive optical network,” J. Lightwave Technol. 22, 2582–2591 (2004). [CrossRef]
- B. Korzh, N. Walenta, R. Houlmann, H. Zbinden, “A high-speed multi-protocol quantum key distribution transmitter based on a dual-drive modulator,” Opt. Express 21, 19579–19592 (2013). [CrossRef] [PubMed]
- H.-J. Briegel, W. Dür, J. I. Cirac, P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett. 81, 5932–5935 (1998). [CrossRef]
- L. Tian, H. Wang, “Optical wavelength conversion of quantum states with optomechanics,” Phys. Rev. A 82, 053806 (2010). [CrossRef]
- C. I. Osorio, N. Bruno, N. Sangouard, H. Zbinden, N. Gisin, R. T. Thew, “Heralded photon amplification for quantum communication,” Phys. Rev. A 86, 023815 (2012). [CrossRef]
- P. Toliver, R. Runser, T. Chapuran, S. McNown, M. Goodman, J. Jackel, R. Hughes, C. Peterson, K. McCabe, J. Nordholt, K. Tyagi, P. Hiskett, N. Dallmann, “Impact of spontaneous anti-Stokes Raman scattering on QKD+DWDM networking,” in 17th Annual Meeting of the IEEE Lasers and Electro-Optics Society (IEEE, 2004), pp. 491–492.
- R. Runser, T. Chapuran, P. Toliver, M. Goodman, J. Jackel, “Demonstration of 1.3 μm quantum key distribution (QKD) compatibility with 1.5 μm metropolitan wavelength division multiplexed (WDM) systems,” in Optical Fiber Communication Conf. (IEEE, 2005), p. 3.
- D. Stucki, C. Barreiro, S. Fasel, J.-D. Gautier, O. Gay, N. Gisin, R. Thew, Y. Thoma, P. Trinkler, F. Vannel, H. Zbinden, “Continuous high speed coherent one-way quantum key distribution,” Opt. Express 17, 13326–13334 (2009). [CrossRef] [PubMed]
- J. Zhang, P. Eraerds, N. Walenta, C. Barreiro, R. Thew, H. Zbinden, “2.23 GHz gating InGaAs/InP single-photon avalanche diode for quantum key distribution,” Proc. SPIE 7681, 76810Z (2010). [CrossRef]
- N. Walenta, “Concepts, components and implementations for quantum key distribution over optical fibers,” Ph.D. thesis, Faculté des Sciences de l’Université de Genève (2012).
- D. Subacius, A. Zavriyev, A. Trifonov, “Backscattering limitation for fiber-optic quantum key distribution systems,” Appl. Phys. Lett. 86, 011103 (2005). [CrossRef]
- Corning: SMF-28e+ LL optical fiber, http://www.corning.com/ .
- Flyin Optronics: splitter, circulators, CWDM filters and 1310/1550 WDM multiplexers, http://www.flyinoptronics.com/ .
- Polatis: optical switch Series 6000, http://www.polatis.com/datasheets/series-6000-192x192-low-loss-optical-switch.pdf .
- LG Nortel WPF 1132C (32-channels AWG).
- V. Scarani, R. Renner, “Quantum cryptography with finite resources: Unconditional security bound for discrete-variable protocols with one-way postprocessing,” Phys. Rev. Lett. 100, 200501 (2008). [CrossRef] [PubMed]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.