## 1306-km 20x124.8-Gb/s PM-64QAM Transmission over PSCF with Net SEDP 11,300 (b∙km)/s/Hz using 1.15 samp/symb DAC |

Optics Express, Vol. 22, Issue 2, pp. 1796-1805 (2014)

http://dx.doi.org/10.1364/OE.22.001796

Acrobat PDF (1331 KB)

### Abstract

We demonstrated the transmission of a Nyquist-WDM signal based on PM-64QAM modulation in an EDFA-only submarine configuration composed of 54.4 km-long fiber spans: 20 channels at 124.8-Gb/s were propagated over 1306 km of low-loss pure-silica-core fiber (PSCF). Thanks to an aggressive digital spectral shaping, we achieved a raw spectral efficiency (SE) of 10.4 b/s/Hz, corresponding to 8.67 b/s/Hz net SE when considering a 20% FEC overhead. Transmitter DACs are operated at a record-low 1.15 samples/symbol, enabled by the insertion of advanced anti-alias filters. The achieved SE-times-distance product was 11,327 (b∙km)/(s∙Hz), the highest reported so far for PM-64QAM. Combining the experimental results with the performance predictions obtained using an analytical model of nonlinear propagation in uncompensated coherent optical systems (the so-called “GN-model”), we show that PM-64QAM is a realistic option for ultra-high capacity systems in the 1,000 km range, carrying up 40 Tb/s in the C-band.

© 2014 Optical Society of America

## 1. Introduction

1. J. Renaudier, G. Charlet, O. Bertran Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Experimental analysis of 100Gb/s coherent PDM-QPSK long-haul transmission under constraints of typical terrestrial networks,” in *Proceedings of ECOC**2008**,* paper Th.2.A.3. [CrossRef]

20. A. Nespola, S. Straullu, G. Bosco, A. Carena, J. Yanchao, P. Poggiolini, F. Forghieri, Y. Yamamoto, M. Hirano, T. Sasaki, J. Bauwelinck, and K. Verheyen, “1306-km 20x124.8-Gb/s PM-64QAM transmission over PSCF with Net SEDP 11,300 (b∙km)/s/Hz using 1.15 samp/symb DAC,” in *Proceedings of ECOC**2013**,* paper Th.2.D.1.

21. G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” J. Lightwave Technol. **29**(1), 53–61 (2011). [CrossRef]

4. E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at Baud-Rate subcarrier spacing,” in *Proceedings of ECOC**2010**,* paper We.7.C.2. [CrossRef]

8. R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9x138 Gb/s Prefiltered PM-8QAM Signals Over 4000 km of Pure Silica-Core Fiber,” J. Lightwave Technol. **29**(15), 2310–2318 (2011). [CrossRef]

_{DAC}and the number of resolution bits N

_{DAC}. Typically, if S

_{DAC}increases, N

_{DAC}decreases. The higher is the order of the modulation format, the higher is the required value of N

_{DAC}, while S

_{DAC}limits the achievable symbol rate R

_{s}= S

_{DAC}/SpS, where SpS is the number of samples per symbol (or “oversampling factor”).

_{s}can be clearly increased by decreasing the oversampling factor: research efforts have been made to decrease the value of SpS without incurring in aliasing-like penalties. In [22

22. R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16 × 125 Gb/s quasi-nyquist DAC-generated PM-16QAM transmission over 3590 km of PSCF,” IEEE Photon. Technol. Lett. **24**(23), 2143–2146 (2012). [CrossRef]

23. R. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s Real-Time Nyquist Pulse Generation by Reducing the Oversampling Factor to 1.33,” in *Proceedings of OFC**2013**,* paper OTu2I.1. [CrossRef]

18. A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band All-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in *Proceedings of OFC**2012**,* paper PDP5C.3. [CrossRef]

## 2. Experimental setup

_{π}, so as to operate them in linearity. All the modulated optical channels, so far single-polarization, were then coupled together and sent into a commercial PM emulator with a 10 ns polarization decorrelation delay.

^{2}. The total loss of each span was 9.7 dB, resulting from a combination of fiber loss and splicing loss between standard single-mode fiber and the large-effective-area PSCF. The loop made use of EDFA-only amplification. It included a spectrally-resolved gain equalizer (GEQ) and a loop-synchronous polarization scrambler (PS) to, respectively, compensate for the EDFA gain-tilt and ripples and effectively average the impact of polarization effects. The EDFA noise figure was 4.5 dB.

25. Y. Gao, A. P. T. Lau, C. Lu, J. Wu, Y. Li, K. Xu, W. Li, and J. Lin, “Low-complexity two-stage carrier phase estimation for 16-QAM systems using QPSK partitioning and maximum likelihood detection,” in *Proceedings of OFC**2011**,* paper OMJ6. [CrossRef]

## 3. Results

26. X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “High spectral efﬁciency 400 Gb/s transmission using PDM time-domain hybrid 32–64 QAM and training-assisted carrier recovery,” J. Lightwave Technol. **31**(7), 999–1005 (2013). [CrossRef]

^{−2}(Q

^{2}= 5.7 dB). The penalty between single-channel and WDM at FEC threshold is only 0.4 dB, confirming that DAC-enabled spectral shaping and the use of steep electrical anti-alias filters effectively curtails inter-channel linear crosstalk, allowing an extremely tight channel spacing. The penalty in WDM conditions with respect to theory at FEC threshold amounts to 3.6 dB. It is due to a combination of electrical and optical component non-idealities, with main contributors the limited effective number of bit of DAC and oscilloscope, the transmitter RF broadband amplifiers noise and the electrical circuitry reflections due to impedance mismatch. In order to quantify the amount of penalty due to electrical components only, we tested the system in an electrical back–to-back configuration, connecting the AA filter output directly to the real-time oscilloscope. The measured BER was found to be equal to 10

^{−4}while the corresponding electrical SNR, verified by measuring EVM on the scattering diagram, was equal to 24.4 dB. Taking analytically into account such contribution, we derived the actual theoretical baseline for our system (shown in Fig. 6 as a green solid line) and we concluded that, at FEC threshold, the contribution of the electrical non idealities to the total penalty is 1 dB. The additional penalties, not measurable with the back-to-back electrical configuration, are due to some remaining non-idealities such as the electro-optical bandwidth of modulators, the electrical bandwidth and noise of the coherent receiver and the most important impedance mismatch between the anti-alias filter and the electrical ports of modulators.

## 4. GN-model prediction

27. A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. **30**(10), 1524–1539 (2012). [CrossRef]

14. A. Nespola, S. Straullu, A. Carena, G. Bosco, R. Cigliutti, V. Curri, P. Poggiolini, M. Hirano, Y. Yamamoto, T. Sasaki, J. Bauwelinck, K. Verheyen, and F. Forghieri, “Extensive fiber comparison and GN-model validation in uncompensated links using DAC-generated nyquist-WDM PM-16QAM channels,” in *Proceedings of OFC**2013**,* paper OTh3G.5. [CrossRef]

28. G. Bosco, R. Cigliutti, A. Nespola, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, J. Yanchao, and P. Poggiolini, “Experimental investigation of nonlinear interference accumulation in uncompensated links,” IEEE Photon. Technol. Lett. **24**(14), 1230–1232 (2012). [CrossRef]

30. A. J. Stark, Y.-T. Hsueh, T. F. Detwiler, M. M. Filer, S. Tibuleac, and S. E. Ralph, “System performance prediction with the Gaussian noise model in 100G PDM-QPSK coherent optical networks,” J. Lightwave Technol. **31**(21), 3352–3360 (2013). [CrossRef]

31. P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightwave Technol. **30**(24), 3857–3879 (2012). [CrossRef]

^{−2}, was affected by 3.6 dB of penalty with respect to theory (see Fig. 6). An optimized transceiver design together with device integration will surely be able to deliver an improved back-to-back performance. Assuming a 1-dB OSNR improvement with respect to our Tx/Rx pair, the maximum reach would increase to 1632 Km (30 spans), as shown as the green solid line in Fig. 9. Such results clearly show that PM-64QAM, even considering adequate system margin in actual field deployment, can reach over 1,000 km offering a 40 Tb/s throughput in EDFA-only configurations based solely on C-band.

## 5. Conclusions

## Acknowledgments

## References and links

1. | J. Renaudier, G. Charlet, O. Bertran Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Experimental analysis of 100Gb/s coherent PDM-QPSK long-haul transmission under constraints of typical terrestrial networks,” in |

2. | M. Salsi, H. Mardoyan, P. Tran, C. Koebele, G. Charlet, and S. Bigo, “155x100 Gbit/s coherent PDM-QPSK transmission over 7,200 km,” in |

3. | J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608km and 400% spectral efficiency over 4,368km,” in |

4. | E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at Baud-Rate subcarrier spacing,” in |

5. | J.-X. Cai, Y. Cai, Y. Sun, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “112x112 Gb/s transmission over 9,360 km with channel spacing set to the Baud rate (360% spectral efficiency),” in |

6. | D. Foursa, Y. Cai, J.-X. Cai, C. Davidson, O. V. Sinkin, W. T. Anderson, A. Lucero, A. Pilipetskii, G. Mohs, and N. S. Bergano, “Coherent 40 Gb/s transmission with high spectral efficiency over transpacific distancE,” in |

7. | X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Ten, H. B. Matthew, and S. K. Mishra, “32Tb/s (320´114Gb/s) PDM-RZ-8QAM transmission over 580 km of SMF-28 ultra-low-loss fiber,” in |

8. | R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, and F. Forghieri, “Transmission of 9x138 Gb/s Prefiltered PM-8QAM Signals Over 4000 km of Pure Silica-Core Fiber,” J. Lightwave Technol. |

9. | P. J. Winzer and A. H. Gnauck, “112-Gb/s polarization-multiplexed 16-QAM on a 25-GHz WDM grid,” in |

10. | A. H. Gnauck, P. J. Winzer, C. R. Doerr, and L. L. Buhl, “10 × 112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency,” in |

11. | S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11 x 171 Gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC,” in |

12. | M.-F. Huang, Y.-K. Huang, E. Ip, Y. Shao, and T. Wang, “WDM transmission of 152-Gb/s polarization multiplexed RZ-16QAM signals with 25-GHz channel spacing over 15×80-km of SSMF,” in |

13. | J.-X. Cai, H. G. Batshon, H. Zhang, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “25 Tb/s Transmission over 5,530 km using 16QAM at 5.2 bits/s/Hz spectral efficiency,” in |

14. | A. Nespola, S. Straullu, A. Carena, G. Bosco, R. Cigliutti, V. Curri, P. Poggiolini, M. Hirano, Y. Yamamoto, T. Sasaki, J. Bauwelinck, K. Verheyen, and F. Forghieri, “Extensive fiber comparison and GN-model validation in uncompensated links using DAC-generated nyquist-WDM PM-16QAM channels,” in |

15. | A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, and T. Mizuno, “100 x 120-Gb/s PDM 64-QAM transmission over 160 km using linewidth-tolerant pilotless digital coherent detection,” in |

16. | T. Kobayashi, A. Sano, A. Matsuura, M. Yoshida, T. Sakano, H. Kubota, Y. Miyamoto, K. Ishihara, M. Mizoguchi, and M. Nagatani, “45.2Tb/s C-band WDM transmission over 240km using 538Gb/s PDM-64QAM single carrier FDM signal with digital pilot tone,” in |

17. | J. Yu, Z. Dong, H.-C. Chien, Y. Shao, and N. Chi, “7-Tb/s (7×1.284 Tb/s/ch) signal transmission over 320 km using PDM-64QAM modulation,” IEEE Photon. Technol. Lett. |

18. | A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band All-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in |

19. | O. Bertran-Pardo, J. Renaudier, H. Mardoyan, P. Tran, R. Rios-Muller, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, B. Duval, J. Godin, S. Randel, G. Charlet, and S. Bigo, “Transmission of 50-GHz-spaced single-carrier channels at 516Gb/s over 600km,” in |

20. | A. Nespola, S. Straullu, G. Bosco, A. Carena, J. Yanchao, P. Poggiolini, F. Forghieri, Y. Yamamoto, M. Hirano, T. Sasaki, J. Bauwelinck, and K. Verheyen, “1306-km 20x124.8-Gb/s PM-64QAM transmission over PSCF with Net SEDP 11,300 (b∙km)/s/Hz using 1.15 samp/symb DAC,” in |

21. | G. Bosco, V. Curri, A. Carena, P. Poggiolini, and F. Forghieri, “On the performance of nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” J. Lightwave Technol. |

22. | R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, and P. Poggiolini, “16 × 125 Gb/s quasi-nyquist DAC-generated PM-16QAM transmission over 3590 km of PSCF,” IEEE Photon. Technol. Lett. |

23. | R. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s Real-Time Nyquist Pulse Generation by Reducing the Oversampling Factor to 1.33,” in |

24. | A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, and T. Mizuno, ”100 x 120-Gb/s PDM 64-QAM transmission over 160 km using linewidth-tolerant pilotless digital coherent detection,” in |

25. | Y. Gao, A. P. T. Lau, C. Lu, J. Wu, Y. Li, K. Xu, W. Li, and J. Lin, “Low-complexity two-stage carrier phase estimation for 16-QAM systems using QPSK partitioning and maximum likelihood detection,” in |

26. | X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, and K. Carlson, “High spectral efﬁciency 400 Gb/s transmission using PDM time-domain hybrid 32–64 QAM and training-assisted carrier recovery,” J. Lightwave Technol. |

27. | A. Carena, V. Curri, G. Bosco, P. Poggiolini, and F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. |

28. | G. Bosco, R. Cigliutti, A. Nespola, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, J. Yanchao, and P. Poggiolini, “Experimental investigation of nonlinear interference accumulation in uncompensated links,” IEEE Photon. Technol. Lett. |

29. | E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in |

30. | A. J. Stark, Y.-T. Hsueh, T. F. Detwiler, M. M. Filer, S. Tibuleac, and S. E. Ralph, “System performance prediction with the Gaussian noise model in 100G PDM-QPSK coherent optical networks,” J. Lightwave Technol. |

31. | P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightwave Technol. |

**OCIS Codes**

(060.0060) Fiber optics and optical communications : Fiber optics and optical communications

(060.1660) Fiber optics and optical communications : Coherent communications

(060.2360) Fiber optics and optical communications : Fiber optics links and subsystems

(060.4080) Fiber optics and optical communications : Modulation

**ToC Category:**

Point to Point Transmission Systems

**History**

Original Manuscript: October 15, 2013

Manuscript Accepted: December 27, 2013

Published: January 21, 2014

**Virtual Issues**

European Conference and Exhibition on Optical Communication (2013) *Optics Express*

**Citation**

A. Nespola, S. Straullu, G. Bosco, A. Carena, J. Yanchao, P. Poggiolini, F. Forghieri, Y. Yamamoto, M. Hirano, T. Sasaki, J. Bauwelinck, and K. Verheyen, "1306-km 20x124.8-Gb/s PM-64QAM Transmission over PSCF with Net SEDP 11,300 (b∙km)/s/Hz using 1.15 samp/symb DAC," Opt. Express **22**, 1796-1805 (2014)

http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-1796

Sort: Year | Journal | Reset

### References

- J. Renaudier, G. Charlet, O. Bertran Pardo, H. Mardoyan, P. Tran, M. Salsi, and S. Bigo, “Experimental analysis of 100Gb/s coherent PDM-QPSK long-haul transmission under constraints of typical terrestrial networks,” in Proceedings of ECOC2008, paper Th.2.A.3. [CrossRef]
- M. Salsi, H. Mardoyan, P. Tran, C. Koebele, G. Charlet, and S. Bigo, “155x100 Gbit/s coherent PDM-QPSK transmission over 7,200 km,” in Proceedings of ECOC2009, paper PD2.5.
- J.-X. Cai, Y. Cai, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “Transmission of 96x100G pre-filtered PDM-RZ-QPSK channels with 300% spectral efficiency over 10,608km and 400% spectral efficiency over 4,368km,” in Proceedings of OFC2010, paper PDPB10. [CrossRef]
- E. Torrengo, R. Cigliutti, G. Bosco, G. Gavioli, A. Alaimo, A. Carena, V. Curri, F. Forghieri, S. Piciaccia, M. Belmonte, A. Brinciotti, A. La Porta, S. Abrate, and P. Poggiolini, “Transoceanic PM-QPSK terabit superchannel transmission experiments at Baud-Rate subcarrier spacing,” in Proceedings of ECOC2010, paper We.7.C.2. [CrossRef]
- J.-X. Cai, Y. Cai, Y. Sun, C. R. Davidson, D. G. Foursa, A. Lucero, O. Sinkin, W. Patterson, A. Pilipetskii, G. Mohs, and N. S. Bergano, “112x112 Gb/s transmission over 9,360 km with channel spacing set to the Baud rate (360% spectral efficiency),” in Proceedings of ECOC2010, paper PD2.1.
- D. Foursa, Y. Cai, J.-X. Cai, C. Davidson, O. V. Sinkin, W. T. Anderson, A. Lucero, A. Pilipetskii, G. Mohs, and N. S. Bergano, “Coherent 40 Gb/s transmission with high spectral efficiency over transpacific distancE,” in Proceedings of OFC2011, paper OMI4. [CrossRef]
- X. Zhou, J. Yu, M.-F. Huang, Y. Shao, T. Wang, P. Magill, M. Cvijetic, L. Nelson, M. Birk, G. Zhang, S. Ten, H. B. Matthew, and S. K. Mishra, “32Tb/s (320´114Gb/s) PDM-RZ-8QAM transmission over 580 km of SMF-28 ultra-low-loss fiber,” in Proceedings of OFC2009, paper PDPB4.
- R. Cigliutti, E. Torrengo, G. Bosco, N. P. Caponio, A. Carena, V. Curri, P. Poggiolini, Y. Yamamoto, T. Sasaki, F. Forghieri, “Transmission of 9x138 Gb/s Prefiltered PM-8QAM Signals Over 4000 km of Pure Silica-Core Fiber,” J. Lightwave Technol. 29(15), 2310–2318 (2011). [CrossRef]
- P. J. Winzer and A. H. Gnauck, “112-Gb/s polarization-multiplexed 16-QAM on a 25-GHz WDM grid,” in Proceedings of ECOC2008, paper Th.3.E.5. [CrossRef]
- A. H. Gnauck, P. J. Winzer, C. R. Doerr, and L. L. Buhl, “10 × 112-Gb/s PDM 16-QAM transmission over 630 km of fiber with 6.2-b/s/Hz spectral efficiency,” in Proceedings of OFC2009, paper PDPB8. [CrossRef]
- S. Yamanaka, T. Kobayashi, A. Sano, H. Masuda, E. Yoshida, Y. Miyamoto, T. Nakagawa, M. Nagatani, and H. Nosaka, “11 x 171 Gb/s PDM 16-QAM transmission over 1440 km with a spectral efficiency of 6.4 b/s/Hz using high-speed DAC,” in Proceedings of ECOC2010, paper We.8.C.1.
- M.-F. Huang, Y.-K. Huang, E. Ip, Y. Shao, and T. Wang, “WDM transmission of 152-Gb/s polarization multiplexed RZ-16QAM signals with 25-GHz channel spacing over 15×80-km of SSMF,” in Proceedings of OFC2011, paper OThX2.
- J.-X. Cai, H. G. Batshon, H. Zhang, C. R. Davidson, Y. Sun, M. Mazurczyk, D. G. Foursa, A. Pilipetskii, G. Mohs, and N. S. Bergano, “25 Tb/s Transmission over 5,530 km using 16QAM at 5.2 bits/s/Hz spectral efficiency,” in Proceedings of ECOC2012, paper Mo.1.C.1. [CrossRef]
- A. Nespola, S. Straullu, A. Carena, G. Bosco, R. Cigliutti, V. Curri, P. Poggiolini, M. Hirano, Y. Yamamoto, T. Sasaki, J. Bauwelinck, K. Verheyen, and F. Forghieri, “Extensive fiber comparison and GN-model validation in uncompensated links using DAC-generated nyquist-WDM PM-16QAM channels,” in Proceedings of OFC2013, paper OTh3G.5. [CrossRef]
- A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, and T. Mizuno, “100 x 120-Gb/s PDM 64-QAM transmission over 160 km using linewidth-tolerant pilotless digital coherent detection,” in Proceedings of ECOC2010, paper PD2.2.
- T. Kobayashi, A. Sano, A. Matsuura, M. Yoshida, T. Sakano, H. Kubota, Y. Miyamoto, K. Ishihara, M. Mizoguchi, and M. Nagatani, “45.2Tb/s C-band WDM transmission over 240km using 538Gb/s PDM-64QAM single carrier FDM signal with digital pilot tone,” in Proceedings of ECOC2011, paper Th.13.C.6. [CrossRef]
- J. Yu, Z. Dong, H.-C. Chien, Y. Shao, N. Chi, “7-Tb/s (7×1.284 Tb/s/ch) signal transmission over 320 km using PDM-64QAM modulation,” IEEE Photon. Technol. Lett. 24(4), 264–266 (2012). [CrossRef]
- A. Sano, T. Kobayashi, S. Yamanaka, A. Matsuura, H. Kawakami, Y. Miyamoto, K. Ishihara, and H. Masuda, “102.3-Tb/s (224 x 548-Gb/s) C- and extended L-band All-Raman transmission over 240 km using PDM-64QAM single carrier FDM with digital pilot tone,” in Proceedings of OFC2012, paper PDP5C.3. [CrossRef]
- O. Bertran-Pardo, J. Renaudier, H. Mardoyan, P. Tran, R. Rios-Muller, A. Konczykowska, J.-Y. Dupuy, F. Jorge, M. Riet, B. Duval, J. Godin, S. Randel, G. Charlet, and S. Bigo, “Transmission of 50-GHz-spaced single-carrier channels at 516Gb/s over 600km,” in Proceedings of OFC2013, paper OTh4E.2. [CrossRef]
- A. Nespola, S. Straullu, G. Bosco, A. Carena, J. Yanchao, P. Poggiolini, F. Forghieri, Y. Yamamoto, M. Hirano, T. Sasaki, J. Bauwelinck, and K. Verheyen, “1306-km 20x124.8-Gb/s PM-64QAM transmission over PSCF with Net SEDP 11,300 (b∙km)/s/Hz using 1.15 samp/symb DAC,” in Proceedings of ECOC2013, paper Th.2.D.1.
- G. Bosco, V. Curri, A. Carena, P. Poggiolini, F. Forghieri, “On the performance of nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM Subcarriers,” J. Lightwave Technol. 29(1), 53–61 (2011). [CrossRef]
- R. Cigliutti, A. Nespola, D. Zeolla, G. Bosco, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, P. Poggiolini, “16 × 125 Gb/s quasi-nyquist DAC-generated PM-16QAM transmission over 3590 km of PSCF,” IEEE Photon. Technol. Lett. 24(23), 2143–2146 (2012). [CrossRef]
- R. Schmogrow, M. Meyer, P. C. Schindler, A. Josten, S. Ben-Ezra, C. Koos, W. Freude, and J. Leuthold, “252 Gbit/s Real-Time Nyquist Pulse Generation by Reducing the Oversampling Factor to 1.33,” in Proceedings of OFC2013, paper OTu2I.1. [CrossRef]
- A. Sano, T. Kobayashi, A. Matsuura, S. Yamamoto, S. Yamanaka, E. Yoshida, Y. Miyamoto, M. Matsui, M. Mizoguchi, and T. Mizuno, ”100 x 120-Gb/s PDM 64-QAM transmission over 160 km using linewidth-tolerant pilotless digital coherent detection,” in Proceedings of OFC2010, paper PD2.4.
- Y. Gao, A. P. T. Lau, C. Lu, J. Wu, Y. Li, K. Xu, W. Li, and J. Lin, “Low-complexity two-stage carrier phase estimation for 16-QAM systems using QPSK partitioning and maximum likelihood detection,” in Proceedings of OFC2011, paper OMJ6. [CrossRef]
- X. Zhou, L. E. Nelson, P. Magill, R. Isaac, B. Zhu, D. W. Peckham, P. I. Borel, K. Carlson, “High spectral efﬁciency 400 Gb/s transmission using PDM time-domain hybrid 32–64 QAM and training-assisted carrier recovery,” J. Lightwave Technol. 31(7), 999–1005 (2013). [CrossRef]
- A. Carena, V. Curri, G. Bosco, P. Poggiolini, F. Forghieri, “Modeling of the impact of nonlinear propagation effects in uncompensated optical coherent transmission links,” J. Lightwave Technol. 30(10), 1524–1539 (2012). [CrossRef]
- G. Bosco, R. Cigliutti, A. Nespola, A. Carena, V. Curri, F. Forghieri, Y. Yamamoto, T. Sasaki, J. Yanchao, P. Poggiolini, “Experimental investigation of nonlinear interference accumulation in uncompensated links,” IEEE Photon. Technol. Lett. 24(14), 1230–1232 (2012). [CrossRef]
- E. Torrengo, R. Cigliutti, G. Bosco, A. Carena, V. Curri, P. Poggiolini, A. Nespola, D. Zeolla, and F. Forghieri, “Experimental validation of an analytical model for nonlinear propagation in uncompensated optical links,” in Proceedings of ECOC2011, paper We.7.B.2. [CrossRef]
- A. J. Stark, Y.-T. Hsueh, T. F. Detwiler, M. M. Filer, S. Tibuleac, S. E. Ralph, “System performance prediction with the Gaussian noise model in 100G PDM-QPSK coherent optical networks,” J. Lightwave Technol. 31(21), 3352–3360 (2013). [CrossRef]
- P. Poggiolini, “The GN model of non-linear propagation in uncompensated coherent optical systems,” J. Lightwave Technol. 30(24), 3857–3879 (2012). [CrossRef]

## Cited By |
Alert me when this paper is cited |

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article | Next Article »

OSA is a member of CrossRef.