OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 2 — Jan. 27, 2014
  • pp: 2060–2069
« Show journal navigation

Insertable pulse cleaning module with a saturable absorber pair and a compensating amplifier for high-intensity ultrashort-pulse lasers

A. Yogo, K. Kondo, M. Mori, H. Kiriyama, K. Ogura, T. Shimomura, N. Inoue, Y. Fukuda, H. Sakaki, S. Jinno, M. Kanasaki, and P. R. Bolton  »View Author Affiliations


Optics Express, Vol. 22, Issue 2, pp. 2060-2069 (2014)
http://dx.doi.org/10.1364/OE.22.002060


View Full Text Article

Acrobat PDF (2953 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate the performance of an efficient insertable pulse cleaning module (IPCM) that uses a saturable absorber (SA) pair with a compensating multi-pass amplifier. IPCM consists of a first SA, a grating compressor, a second SA, a stretcher and a compensating Ti:sapphire amplifier. It is implemented with a conventional chirped pulse amplification (CPA) Ti:sapphire laser system, resulting in a double CPA system architecture, and suppresses the amplified spontaneous emission (ASE) level of the pulse pedestal by about three orders of magnitude while preserving the output pulse energy and repetition-rate of the overall laser system. The duration of recompressed cleaned pulses is comparable to that obtained without the cleaning module. The effectiveness of the cleaning module is confirmed in laser-driven proton acceleration experiments. At the 109 W/cm2 pedestal level, the surface structure and electrical resistivity of an insulator target (100 nm silicon nitride) are preserved prior to the arrival of the intense ultrashort pulse.

© 2014 Optical Society of America

1. Introduction

Advances in the technology of high power lasers based on chirped-pulse-amplification (CPA) [1

1. D. Strickland and G. Mourou, “Comparison of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985). [CrossRef]

] further enable the study of laser-driven particle acceleration to relativistic energies. In the case of ion acceleration [2

2. A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013). [CrossRef]

, 3

3. H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012). [CrossRef] [PubMed]

] from thin solid targets the laser-target interaction can be complicated by a significant pedestal prior to the main ultrashort pulse. The pedestal portion is attributed mainly to amplified spontaneous emission (ASE) and can significantly irradiate and alter the target condition before the main pulse arrives. Although lowest atomic field ionization thresholds are of order 1012 W/cm2 for ultrashort pulse durations, significant preplasma can be formed at the target with pedestal intensities as low as 109 W/cm2 because they are typically of longer duration (∼nanosecond) [4

4. J. Itatani, J. Faure, M. Nantel, G. Mourou, and S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998). [CrossRef]

]. The formation of a plasma corona at a rear (downstream) side of a relatively thick target can impede ion acceleration. Pedestal ASE suppression within the nanosecond time scale can be necessary in solid-target interactions, because hydrodynamic expansion of preplasma can progress with velocities typically of order 1–10 μm/ns [5

5. A. Yogo, H. Daido, S. V. Bulanov, K. Nemoto, Y. Oishi, T. Nayuki, T. Fujii, K. Ogura, S. Orimo, A. Sagisaka, J.-L. Ma, T. Z. Esirkepov, M. Mori, M. Nishiuchi, A. S. Pirozhkov, S. Nakamura, A. Noda, H. Nagatomo, T. Kimura, and T. Tajima, “Laser ion acceleration via control of the near-critical density target,” Phys. Rev. E 77, 016401 (2008). [CrossRef]

], resulting in a serious deformation of the target on the nanosecond time scale. Consequently control (in most cases suppression) of ASE intensity is crucially required for ion acceleration from a solid target.

The time-dependent ratio of the main pulse intensity to that of the pedestal is contrast. Therefore achieving high contrast (low pedestal intensity) at optimum levels for a given experiment becomes more critical and more challenging with higher intensity laser pulses. Various techniques have been developed to improve contrast by reducing the ASE pedestal such as: saturable absorption [4

4. J. Itatani, J. Faure, M. Nantel, G. Mourou, and S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998). [CrossRef]

, 6

6. S. Fourmaux, S. Payeur, S. Buffechoux, P. Lassonde, C. St-Pierre, F. Martin, and J. C. Kieffer, “Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system,” Opt. Express 19, 8486–8497 (2011). [CrossRef] [PubMed]

], saturable absorption combined with optical parametric chirped pulse amplification (OPCPA) [7

7. H. Kiriyama, T. Shimomura, H. Sasao, Y. Nakai, M. Tanoue, S. Kondo, S. Kanazawa, A. S. Pirozhkov, M. Mori, Y. Fukuda, M. Nishiuchi, M. Kando, S. V. Bulanov, K. Nagashima, M. Yamagiwa, K. Kondo, A. Sugiyama, P. R. Bolton, T. Tajima, and N. Miyanaga, “Temporal contrast enhancement of petawatt-class laser pulses,” Opt. Lett. 37, 3363–3366 (2012). [CrossRef]

9

9. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, M. Tanoue, A. Akutsu, H. Okada, T. Motomura, S. Kondo, S. Kanazawa, A. Sagisaka, J. Ma, I. Daito, H. Kotaki, H. Daido, S. Bulanov, T. Kimura, and T. Tajima, “Generation of high-contrast and high-intensity laser pulses using an OPCPA preamplifier in a double CPA, Ti:sapphire laser system,” Opt. Commun. 282, 625–628 (2009). [CrossRef]

], the use of double CPA laser schemes [10

10. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30, 923–925 (2005). [CrossRef] [PubMed]

], cross polarized wave generation (XPW) [11

11. G. I. Petrov, O. Albert, J. Etchepare, and S. M. Saltiel, “Cross-polarized wave generation by effective cubic nonlinear optical interaction,” Opt. Lett. 26, 355–357 (2001). [CrossRef]

,12

12. V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, and V. Yanovsky, “Generation of 1011 contrast 50 TW laser pulses,” Opt. Lett. 31, 1456–1458 (2006). [CrossRef] [PubMed]

] and the plasma mirror (PM) [13

13. G. Doumy, F. Quéré, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, “Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses,” Phys. Rev. E 69, 026402 (2004) [CrossRef]

,14

14. C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Reau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007). [CrossRef]

]. The plasma mirror is typically inserted downstream of the laser system’s final compressor where there can be no further ASE contributions to the pedestal. However, repetition-rated plasma mirror operation is challenging and energy loss in the PM is not retrievable within the laser system. In reference [14

14. C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Reau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007). [CrossRef]

], double PM operation features about 2000 uninterrupted shots at a repetition-rate of 1 Hz with total efficiency (reflectivity) near 50%.

In the present work, we describe a novel scheme for increasing contrast (so-called pulse ‘cleaning’) by using two saturable absorbers where the pulse energy loss is compensated directly with an additional amplifier. The result is a double CPA system architecture for which the saturable absorber pair plus amplifier preserve final laser pulse energy (i.e. compared to the case without the cleaning module) and repetition-rate as an efficient pulse cleaning module. Saturable absorbers have typically been used with femtosecond (fs) pulses of several micro-joules [4

4. J. Itatani, J. Faure, M. Nantel, G. Mourou, and S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998). [CrossRef]

, 7

7. H. Kiriyama, T. Shimomura, H. Sasao, Y. Nakai, M. Tanoue, S. Kondo, S. Kanazawa, A. S. Pirozhkov, M. Mori, Y. Fukuda, M. Nishiuchi, M. Kando, S. V. Bulanov, K. Nagashima, M. Yamagiwa, K. Kondo, A. Sugiyama, P. R. Bolton, T. Tajima, and N. Miyanaga, “Temporal contrast enhancement of petawatt-class laser pulses,” Opt. Lett. 37, 3363–3366 (2012). [CrossRef]

] and with stretched pulses at the mJ energy level [6

6. S. Fourmaux, S. Payeur, S. Buffechoux, P. Lassonde, C. St-Pierre, F. Martin, and J. C. Kieffer, “Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system,” Opt. Express 19, 8486–8497 (2011). [CrossRef] [PubMed]

]. Here we report damage-free saturable absprber use with incident pulse energies up to tens of millijoules which affords implementation downstream of the laser pre-amplifier and first amplifier. Significant pulse cleaning with the insertable module has been confirmed by direct laser pulse measurement and also by measured energy spectra of laser-accelerated protons from a thin foil target which are sensitive to pulse contrast. With the cleaning module significantly increased maximum proton energies have been observed.

2. Experimental setup

This work has been performed using the 8 TW J-LITE-X laser [15

15. M. Mori, K. Kondo, Y. Mizuta, M. Kando, H. Kotaki, M. Nishiuchi, M. Kado, A. S. Pirozhkov, K. Ogura, H. Sugiyama, S. V. Bulanov, K. A. Tanaka, H. Nishimura, and H. Daido, “Generation of stable and low-divergence 10-MeV quasimonoenergetic electron bunch using argon gas jet,” Phys. Rev. ST Accel. Beams 12, 082801 (2009). [CrossRef]

], at the Kansai Photon Science Institute of JAEA. It is a modified commercial system (originally supplied by HOYA). The laser configuration is shown in Fig. 1. The front end consists of a Ti:sapphire oscillator that delivers 12-fs pulses and a pulse stretcher based on Öffner triplet [16

16. G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett. 21, 414–416 (1996). [CrossRef] [PubMed]

]. The energy of the positively chirped ∼nanosecond pulses is increased to about 2 mJ in a regenerative pre-amplifier and subsequently increased to the 30 mJ level in a four-pass pre-amplifier pumped at 532 nm by a Nd:YAG laser (Surelite II-10 by Continuum). In the original JLITE-X system, the laser pulse is subsequently introduced into the final four-pass amplifier, the crystal of which is pumped with two 600-mJ, 532-nm Nd:YAG lasers (Continuum, Powerlite 9010), and reaches uncompressed 500-mJ energy level.

Fig. 1 A configuation of the insertable pulse cleaning module (IPCM) connected to JLITE-X laser system.

For this work the pulse cleaning module was inserted between the four-pass pre-amplifier and the final four-pass amplifier as shown in Fig 1. The insertable pulse cleaning module (IPCM) consists of a first saturable absorber (SA), a grating compressor, a second SA, a stretcher and a compensating four-pass Ti:sapphire amplifier. A stretched ∼30 mJ pulse encounters the first SA (CVI Melles Griot, RG-850 of 1 mm thickness). Here, we note that the first SA works on the leading edge of the stretched laser pulse having 1-ns duration. Hence, the ASE suppression seen in the range closer than −500 ps is achieved predominantly with the second SA, which cleans the pulse up to the rising edge of the re-compressed pulse (a similar approach is also seen in references 5 and 7). Because the second SA (CVI Melles Griot RG-850 of 2 mm thickness) acts on a compressed pulse (of 50 femtosecond duration and energy near 10 mJ) pedestal suppression occurs within picoseconds of the peak of the main ultrashort pulse.

The cleaned laser pulse of diameter 5 mm is stretched by an Öffner-triplee stretcher and subsequently amplified in a four-pass amplifier that compensates for the inefficiency of pedestal suppression (losses in the compressor, SA units and the stretcher). The ∼30 mJ pulse energy of the stretched pulse incident on the cleaning module is recovered at the exit of this amplifier.

3. Results and discussion

3.1. Temporal profile measurements

Because SA transmittance is known to more rapidly increase with the wavelength above 800 nm. [6

6. S. Fourmaux, S. Payeur, S. Buffechoux, P. Lassonde, C. St-Pierre, F. Martin, and J. C. Kieffer, “Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system,” Opt. Express 19, 8486–8497 (2011). [CrossRef] [PubMed]

,7

7. H. Kiriyama, T. Shimomura, H. Sasao, Y. Nakai, M. Tanoue, S. Kondo, S. Kanazawa, A. S. Pirozhkov, M. Mori, Y. Fukuda, M. Nishiuchi, M. Kando, S. V. Bulanov, K. Nagashima, M. Yamagiwa, K. Kondo, A. Sugiyama, P. R. Bolton, T. Tajima, and N. Miyanaga, “Temporal contrast enhancement of petawatt-class laser pulses,” Opt. Lett. 37, 3363–3366 (2012). [CrossRef]

], it can introduce spectral narrowing. We have minimized spectral narrowing by attenuating amplification of longer-wavelength components in the regenerative pre-amplifier with a tilted pellicle étalon (5- μm-thickness) [17

17. C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21, 668–670 (1996). [CrossRef] [PubMed]

]. Figure 2 illustrates the spectra exiting the final amplifier. The comparative bandwidths (FWHM) are 35 nm and 45 nm with and without the cleaning module respectively.

Fig. 2 Spectra obtained with (a) and without (b) the IPCM.

Prepulse temporal profiles were obtained by a scanned third-order cross-correlation (Amplitude Technologies, Sequoia) scanned over a time interval of 570 picoseconds at 10 Hz. To demonstrate the pulse cleaning for the first and second SA individually, we show in Fig. 3(a) the correlation traces measured at the entrance of the first stretcher (denoted by a closed star in Fig. 1) for three cases: (i) with no SA, (ii) with the second SA only, and (iii) with the SA pair. By comparing (ii) and (iii), one can see the effect of the first SA indicating that the contrast ratio (between the intensities of the main pulse peak and the prepulse pedestal at a specified time) is predominantly enhanced for the longer time frame. The contrast is improved about one order of magnitude at −500 ps, while the contrast is comparable around −50 ps.

Fig. 3 (a) Third-order cross correlation measurement of prepulse temporal profiles at the first stretcher entrance with no SA (grey line), with the second SA (red line) and with the SA pair (blue line). (b) Temporal profiles at the final compressor exit with (blue line) and without (grey line) the IPCM. (c) A temporal profile around the main peak acquired from second-harmonic gener- ation frequency-resolved optical gating (SHG-FROG) spectrogram.

The blue (gray) line of Fig. 3(b) is the prepulse temporal profile with (without) the cleaning module exiting the final compressor (denoted by an open star in Fig. 1). The measurement was performed at full-power laser operation, when the output laser is adequately attenuated by a pair of wedge mirrors inserted between the final amplifier and the compressor. For the cleaned pulse the contrast ratio is determined to be 1 × 109 and 2.5 × 108 at 500 ps and 150 ps prior to the main pulse peak respectively. It is worth noting that from −500 to −50 picoseconds the prepulse data of Fig. 3 is relatively free of structural artifacts (spikes). On the other hand, without the IPCM, the intensity contrast ratio is 5 × 105 at −150 ps. The IPCM has suppressed the pedestal level by about three orders of magnitude.

Pulse temporal profiles at the exit of the final amplifier are shown in Fig. 3(c). Compressed pulse duration measurement were obtained with a single shot SHG-FROG device. The compressed pulse duration (FWHM) with and without the cleaning module is 45.7 femtoseconds (standard deviation of 6.8 femtoseconds) and 40 femtoseconds respectively [15

15. M. Mori, K. Kondo, Y. Mizuta, M. Kando, H. Kotaki, M. Nishiuchi, M. Kado, A. S. Pirozhkov, K. Ogura, H. Sugiyama, S. V. Bulanov, K. A. Tanaka, H. Nishimura, and H. Daido, “Generation of stable and low-divergence 10-MeV quasimonoenergetic electron bunch using argon gas jet,” Phys. Rev. ST Accel. Beams 12, 082801 (2009). [CrossRef]

].

3.2. Focusability

The re-compressed pulse is subsequently focused with an off- axis parabolic (OAP) mirror of focal length, 161 mm (F/3.2). For the cleaned pulse, Fig. 4 shows the almost circular transverse profile in the focal plane where the diameters are 9 μm (horizontal) and 8 μm (vertical). This result suggests that there is no significant angular chirp or color aberration (notably with the 5 mm beam diameter in the Öffner stretcher). However, this beam size is larger than that without the cleaning module. This result suggests that there is a slight degradation of the pulse wavefront quality, the origin of which has not yet been investigated. However, the original superior wavefront can be recovered with a deformable mirror. Nonetheless present focusing for the cleaned pulse can achieve a maximum peak intensity near ∼ 4 × 1018 W/cm2 (with a compressed pulse energy of 370 mJ.) which we refer to as a relativistic intensity because the electron motion in the corresponding electromagnetic field reaches relativistic speeds.

Fig. 4 A focal image obtained with an off-axis parabolic mirror.

3.3. Application to proton acceleration

Laser-driven proton acceleration from thin foils can confirm the efficacy of laser pulse cleaning and high contrast target irradiation. In general, maximum proton energy is sensitive to laser parameters such as energy, intensity, contrast, pulse duration, focal profile and wavefront quality. Consequently, proton maximum energy can be a distinctive indicator for the stability or reproducibility of laser system performance.

For this diagnostic demonstration a cleaned p-polarized laser pulse of duration, 46 femtoseconds was focused with the OAP mirror for 45 degree incidence onto a thin polyimide target. A 450 mJ pulse energy (before compression) afforded a focused peak intensity on target near ∼ 3.5 × 1018 W/cm2 and an averaged intensity (over the 1/e2 focal spot) near 1.5 × 1018 W/cm2. A time-of-flight (TOF) spectrometer [18

18. S. Nakamura, Y. Iwashita, A. Noda, T. Shirai, H. Tongu, A. Fukumi, M. Kado, A. Yogo, M. Mori, S. Orimo, K. Ogura, A. Sagisaka, M. Nishiuchi, Y. Hayashi, Z. Li, H. Dadio, and Y. Wada, “Real-time optimization of proton production by intense short-pulse laser with time-of-flight measurement,” Jpn. J. Appl. Phys., Part 2 45, L913–L916 (2006). [CrossRef]

] and CR-39 ion track detectors monitored the energy spectra and angular divergence of accelerated protons emitted from the target rear (downstream) surface about the rear surface normal. Maximum proton energies obtained with TOF spectrometry in fifty successive laser shots are plotted in Fig. 5. Polyimide targets (5 μm and 7.5 μm-thicknesses) are fed with a servomotor providing a fresh target at 0.2 Hz [19

19. T. Nayuki, Y. Oishi, T. Fujii, K. Nemoto, T. Kayoiji, Y. Okano, Y. Hironaka, K. G. Nakamura, K. Kondo, and K. Ueda, “Thin tape target driver for laser ion accelerator,” Rev. Sci. Instrum. 74, 3293–3296 (2003). [CrossRef]

].This lower repetition rate is limited by the target feed and data acquisition rates. The figure reveals that maximum proton energies have high reproducibility. The average maximum energy is 1.71 ± 0.14 MeV for the 5 μm foil and 1.53 ± 0.09 MeV for the 7.5 μm foil (error bars correspond to standard deviation for 50 shots). For comparison, the maximum proton energy is also shown in the figure for pulses of the same intensity level without the cleaning module (i.e. with contrast that is about three orders of magnitude lower). In the low contrast case the average maximum proton energy is only 0.46 ± 0.04 MeV. Suppression of the pedestal intensity by about three orders of magnitude increases the maximum proton energy by a factor of about three. Furthermore, the standard deviations of the maximum energy obtained for the high contrast case (6.1% for 7.5-μm, 8.3% for 5-μm) are comparable to (or smaller than) that of the low-contrast case 9.3% for 7.5-μm). These results indicate that the laser system with the cleaning module is adequately reproducible for particle acceleration studies.

Fig. 5 Measurements of maximum proton energies over 50 successive shots using poly-imide targets of 5-μm (•) and 7.5-μm-thick (○) with IPCM (high contrast) and of 7.5-μm-thickness (▵) without IPCM (low contrast). Each point has a vertical error of ±0.25 MeV attributed to the rising time of the TOF signal.

Fig. 6 Ion-track detector (CR-39) images for (a) a 100-nm-thick silicon nitride and (b) a 5-μm-thick polyimide foil irradiated with the high-contrast laser pulses. Two dashed lines in each image show the horizontal and vertical sections in the detector plane that is parallel to the focal plane.

In addition, caustics or distortions, typical of insulator targets [22

22. J. Fuchs, T. E. Cowan, P. Audebert, H. Ruhl, L. Gremillet, A. Kemp, M. Allen, A. Blazevic, J.-C. Gauthier, M. Geissel, M. Hegelich, S. Karsch, P. Parks, M. Roth, Y. Sentoku, R. Stephens, and E. M. Campbell, “Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators,” Phys. Rev. Lett. 91, 255002 (2003). [CrossRef]

], can be observed in the CR-39 proton image both for the 100-nm silicon nitride and 5-μm polyimide foils. This insulator phenomenon can be understood in terms of electron behaviour in the target. Electrons from the front (upstream) surface are accelerated by the laser main pulse and pushed toward the rear surface. If the target material is an insulator, the electron flow can reveal filamentation due to mechanisms such as electrothermal instabilities, magnetic two-stream instabilities, ionization channels formed by avalanche breakdown, and anomalous resistivity at the laser-plasma interface. Subsequently, the ion acceleration field generated on the rear surface can be commensurately perturbed and caustics can be transferred to the ion spatial distribution. This filamentation of electron flow does not occur if the target encounters a significant preformed plasma so as to lose its original electric resistivity [23

23. A. Yogo, H. Kiriyama, M. Mori, T. Z. Esirkepov, K. Ogura, A. Sagisaka, S. Orimo, M. Nishiuchi, A. S. Pirozhkov, H. Nagatomo, Y. Nakai, T. Shimomura, M. Tanoue, A. Akutsu, H. Okada, T. Motomura, S. Kondo, S. Kanazawa, S. V. Bulanov, P. R. Bolton, and H. Daido, “Control of laser-accelerated proton beams by modifying the target density with ASE,” Eur. Phys. J. D 55, 421–425 (2009). [CrossRef]

]. From Fig. 6(a) we conclude that the 100-nm-silicon-nitride target has kept its electric resistivity as an insulator until the arrival time of the main ultrashort pulse. This observation further establishes that the pedestal intensity for high contrast laser pulses is adequately suppressed by the cleaning module to realize a preplasma-free condition in laser-solid interactions.

4. Conclusion

Acknowledgments

References and links

1.

D. Strickland and G. Mourou, “Comparison of amplified chirped optical pulses,” Opt. Commun. 56, 219–221 (1985). [CrossRef]

2.

A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys. 85, 751–793 (2013). [CrossRef]

3.

H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys. 75, 056401 (2012). [CrossRef] [PubMed]

4.

J. Itatani, J. Faure, M. Nantel, G. Mourou, and S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun. 148, 70–74 (1998). [CrossRef]

5.

A. Yogo, H. Daido, S. V. Bulanov, K. Nemoto, Y. Oishi, T. Nayuki, T. Fujii, K. Ogura, S. Orimo, A. Sagisaka, J.-L. Ma, T. Z. Esirkepov, M. Mori, M. Nishiuchi, A. S. Pirozhkov, S. Nakamura, A. Noda, H. Nagatomo, T. Kimura, and T. Tajima, “Laser ion acceleration via control of the near-critical density target,” Phys. Rev. E 77, 016401 (2008). [CrossRef]

6.

S. Fourmaux, S. Payeur, S. Buffechoux, P. Lassonde, C. St-Pierre, F. Martin, and J. C. Kieffer, “Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system,” Opt. Express 19, 8486–8497 (2011). [CrossRef] [PubMed]

7.

H. Kiriyama, T. Shimomura, H. Sasao, Y. Nakai, M. Tanoue, S. Kondo, S. Kanazawa, A. S. Pirozhkov, M. Mori, Y. Fukuda, M. Nishiuchi, M. Kando, S. V. Bulanov, K. Nagashima, M. Yamagiwa, K. Kondo, A. Sugiyama, P. R. Bolton, T. Tajima, and N. Miyanaga, “Temporal contrast enhancement of petawatt-class laser pulses,” Opt. Lett. 37, 3363–3366 (2012). [CrossRef]

8.

H. Kiriyama, M. Michiaki, Y. Nakai, T. Shimomura, H. Sasao, M. Tanaka, Y. Ochi, M. Tanoue, H. Okada, S. Kondo, S. Kanazawa, A. Sagisaka, I. Daito, D. Wakai, F. Sasao, M. Suzuki, H. Kotakai, K. Kondo, A. Sugiyama, S. Bulanov, P. R. Bolton, H. Daido, S. Kawanishi, J. L. Collier, C. Hernandez-Gomez, C. J. Hooker, K. Ertel, T. Kimura, and T. Tajima, “High-spatiotemporal-quality petawatt-class laser system,” Appl. Opt. 49, 2105–2115 (2010). [CrossRef] [PubMed]

9.

H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, M. Tanoue, A. Akutsu, H. Okada, T. Motomura, S. Kondo, S. Kanazawa, A. Sagisaka, J. Ma, I. Daito, H. Kotaki, H. Daido, S. Bulanov, T. Kimura, and T. Tajima, “Generation of high-contrast and high-intensity laser pulses using an OPCPA preamplifier in a double CPA, Ti:sapphire laser system,” Opt. Commun. 282, 625–628 (2009). [CrossRef]

10.

M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett. 30, 923–925 (2005). [CrossRef] [PubMed]

11.

G. I. Petrov, O. Albert, J. Etchepare, and S. M. Saltiel, “Cross-polarized wave generation by effective cubic nonlinear optical interaction,” Opt. Lett. 26, 355–357 (2001). [CrossRef]

12.

V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, and V. Yanovsky, “Generation of 1011 contrast 50 TW laser pulses,” Opt. Lett. 31, 1456–1458 (2006). [CrossRef] [PubMed]

13.

G. Doumy, F. Quéré, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, “Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses,” Phys. Rev. E 69, 026402 (2004) [CrossRef]

14.

C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Reau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys. 3, 424–429 (2007). [CrossRef]

15.

M. Mori, K. Kondo, Y. Mizuta, M. Kando, H. Kotaki, M. Nishiuchi, M. Kado, A. S. Pirozhkov, K. Ogura, H. Sugiyama, S. V. Bulanov, K. A. Tanaka, H. Nishimura, and H. Daido, “Generation of stable and low-divergence 10-MeV quasimonoenergetic electron bunch using argon gas jet,” Phys. Rev. ST Accel. Beams 12, 082801 (2009). [CrossRef]

16.

G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett. 21, 414–416 (1996). [CrossRef] [PubMed]

17.

C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett. 21, 668–670 (1996). [CrossRef] [PubMed]

18.

S. Nakamura, Y. Iwashita, A. Noda, T. Shirai, H. Tongu, A. Fukumi, M. Kado, A. Yogo, M. Mori, S. Orimo, K. Ogura, A. Sagisaka, M. Nishiuchi, Y. Hayashi, Z. Li, H. Dadio, and Y. Wada, “Real-time optimization of proton production by intense short-pulse laser with time-of-flight measurement,” Jpn. J. Appl. Phys., Part 2 45, L913–L916 (2006). [CrossRef]

19.

T. Nayuki, Y. Oishi, T. Fujii, K. Nemoto, T. Kayoiji, Y. Okano, Y. Hironaka, K. G. Nakamura, K. Kondo, and K. Ueda, “Thin tape target driver for laser ion accelerator,” Rev. Sci. Instrum. 74, 3293–3296 (2003). [CrossRef]

20.

F. Lindau, O. Lundh, A. Persson, P. McKenna, K. Osvay, D. Batani, and C.-G. Wählstrom, “Laser-accelerated protons with energy-dependent beam direction,” Phys. Rev. Lett. 95, 175002 (2005). [CrossRef] [PubMed]

21.

A. Flacco, T. Ceccotti, H. George, P. Monot, P. Martin, F. Réeau, O. Tcherbakoff, P. d’fOliveira, F. Sylla, M. Veltcheva, F. Burgy, A. Tafzi, V. Malka, and D. Batani, “Comparative study of laser ion acceleration with different contrast enhancement techniques,” Nucl. Instrum. Methods Phys. Res. A 620, 18–22 (2010). [CrossRef]

22.

J. Fuchs, T. E. Cowan, P. Audebert, H. Ruhl, L. Gremillet, A. Kemp, M. Allen, A. Blazevic, J.-C. Gauthier, M. Geissel, M. Hegelich, S. Karsch, P. Parks, M. Roth, Y. Sentoku, R. Stephens, and E. M. Campbell, “Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators,” Phys. Rev. Lett. 91, 255002 (2003). [CrossRef]

23.

A. Yogo, H. Kiriyama, M. Mori, T. Z. Esirkepov, K. Ogura, A. Sagisaka, S. Orimo, M. Nishiuchi, A. S. Pirozhkov, H. Nagatomo, Y. Nakai, T. Shimomura, M. Tanoue, A. Akutsu, H. Okada, T. Motomura, S. Kondo, S. Kanazawa, S. V. Bulanov, P. R. Bolton, and H. Daido, “Control of laser-accelerated proton beams by modifying the target density with ASE,” Eur. Phys. J. D 55, 421–425 (2009). [CrossRef]

OCIS Codes
(140.3590) Lasers and laser optics : Lasers, titanium
(140.7090) Lasers and laser optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: November 11, 2013
Revised Manuscript: January 2, 2014
Manuscript Accepted: January 6, 2014
Published: January 23, 2014

Citation
A. Yogo, K. Kondo, M. Mori, H. Kiriyama, K. Ogura, T. Shimomura, N. Inoue, Y. Fukuda, H. Sakaki, S. Jinno, M. Kanasaki, and P. R. Bolton, "Insertable pulse cleaning module with a saturable absorber pair and a compensating amplifier for high-intensity ultrashort-pulse lasers," Opt. Express 22, 2060-2069 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-2-2060


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Strickland and G. Mourou, “Comparison of amplified chirped optical pulses,” Opt. Commun.56, 219–221 (1985). [CrossRef]
  2. A. Macchi, M. Borghesi, and M. Passoni, “Ion acceleration by superintense laser-plasma interaction,” Rev. Mod. Phys.85, 751–793 (2013). [CrossRef]
  3. H. Daido, M. Nishiuchi, and A. S. Pirozhkov, “Review of laser-driven ion sources and their applications,” Rep. Prog. Phys.75, 056401 (2012). [CrossRef] [PubMed]
  4. J. Itatani, J. Faure, M. Nantel, G. Mourou, and S. Watanabe, “Suppression of the amplified spontaneous emission in chirped-pulse-amplification lasers by clean high-energy seed-pulse injection,” Opt. Commun.148, 70–74 (1998). [CrossRef]
  5. A. Yogo, H. Daido, S. V. Bulanov, K. Nemoto, Y. Oishi, T. Nayuki, T. Fujii, K. Ogura, S. Orimo, A. Sagisaka, J.-L. Ma, T. Z. Esirkepov, M. Mori, M. Nishiuchi, A. S. Pirozhkov, S. Nakamura, A. Noda, H. Nagatomo, T. Kimura, and T. Tajima, “Laser ion acceleration via control of the near-critical density target,” Phys. Rev. E77, 016401 (2008). [CrossRef]
  6. S. Fourmaux, S. Payeur, S. Buffechoux, P. Lassonde, C. St-Pierre, F. Martin, and J. C. Kieffer, “Pedestal cleaning for high laser pulse contrast ratio with a 100 TW class laser system,” Opt. Express19, 8486–8497 (2011). [CrossRef] [PubMed]
  7. H. Kiriyama, T. Shimomura, H. Sasao, Y. Nakai, M. Tanoue, S. Kondo, S. Kanazawa, A. S. Pirozhkov, M. Mori, Y. Fukuda, M. Nishiuchi, M. Kando, S. V. Bulanov, K. Nagashima, M. Yamagiwa, K. Kondo, A. Sugiyama, P. R. Bolton, T. Tajima, and N. Miyanaga, “Temporal contrast enhancement of petawatt-class laser pulses,” Opt. Lett.37, 3363–3366 (2012). [CrossRef]
  8. H. Kiriyama, M. Michiaki, Y. Nakai, T. Shimomura, H. Sasao, M. Tanaka, Y. Ochi, M. Tanoue, H. Okada, S. Kondo, S. Kanazawa, A. Sagisaka, I. Daito, D. Wakai, F. Sasao, M. Suzuki, H. Kotakai, K. Kondo, A. Sugiyama, S. Bulanov, P. R. Bolton, H. Daido, S. Kawanishi, J. L. Collier, C. Hernandez-Gomez, C. J. Hooker, K. Ertel, T. Kimura, and T. Tajima, “High-spatiotemporal-quality petawatt-class laser system,” Appl. Opt.49, 2105–2115 (2010). [CrossRef] [PubMed]
  9. H. Kiriyama, M. Mori, Y. Nakai, T. Shimomura, M. Tanoue, A. Akutsu, H. Okada, T. Motomura, S. Kondo, S. Kanazawa, A. Sagisaka, J. Ma, I. Daito, H. Kotaki, H. Daido, S. Bulanov, T. Kimura, and T. Tajima, “Generation of high-contrast and high-intensity laser pulses using an OPCPA preamplifier in a double CPA, Ti:sapphire laser system,” Opt. Commun.282, 625–628 (2009). [CrossRef]
  10. M. P. Kalashnikov, E. Risse, H. Schönnagel, and W. Sandner, “Double chirped-pulse-amplification laser: a way to clean pulses temporally,” Opt. Lett.30, 923–925 (2005). [CrossRef] [PubMed]
  11. G. I. Petrov, O. Albert, J. Etchepare, and S. M. Saltiel, “Cross-polarized wave generation by effective cubic nonlinear optical interaction,” Opt. Lett.26, 355–357 (2001). [CrossRef]
  12. V. Chvykov, P. Rousseau, S. Reed, G. Kalinchenko, and V. Yanovsky, “Generation of 1011 contrast 50 TW laser pulses,” Opt. Lett.31, 1456–1458 (2006). [CrossRef] [PubMed]
  13. G. Doumy, F. Quéré, O. Gobert, M. Perdrix, P. Martin, P. Audebert, J. C. Gauthier, J.-P. Geindre, and T. Wittmann, “Complete characterization of a plasma mirror for the production of high-contrast ultraintense laser pulses,” Phys. Rev. E69, 026402 (2004) [CrossRef]
  14. C. Thaury, F. Quéré, J.-P. Geindre, A. Levy, T. Ceccotti, P. Monot, M. Bougeard, F. Reau, P. d’Oliveira, P. Audebert, R. Marjoribanks, and P. Martin, “Plasma mirrors for ultrahigh-intensity optics,” Nat. Phys.3, 424–429 (2007). [CrossRef]
  15. M. Mori, K. Kondo, Y. Mizuta, M. Kando, H. Kotaki, M. Nishiuchi, M. Kado, A. S. Pirozhkov, K. Ogura, H. Sugiyama, S. V. Bulanov, K. A. Tanaka, H. Nishimura, and H. Daido, “Generation of stable and low-divergence 10-MeV quasimonoenergetic electron bunch using argon gas jet,” Phys. Rev. ST Accel. Beams12, 082801 (2009). [CrossRef]
  16. G. Cheriaux, P. Rousseau, F. Salin, J. P. Chambaret, B. Walker, and L. F. Dimauro, “Aberration-free stretcher design for ultrashort-pulse amplification,” Opt. Lett.21, 414–416 (1996). [CrossRef] [PubMed]
  17. C. P. J. Barty, T. Guo, C. Le Blanc, F. Raksi, C. Rose-Petruck, J. Squier, K. R. Wilson, V. V. Yakovlev, and K. Yamakawa, “Generation of 18-fs, multiterawatt pulses by regenerative pulse shaping and chirped-pulse amplification,” Opt. Lett.21, 668–670 (1996). [CrossRef] [PubMed]
  18. S. Nakamura, Y. Iwashita, A. Noda, T. Shirai, H. Tongu, A. Fukumi, M. Kado, A. Yogo, M. Mori, S. Orimo, K. Ogura, A. Sagisaka, M. Nishiuchi, Y. Hayashi, Z. Li, H. Dadio, and Y. Wada, “Real-time optimization of proton production by intense short-pulse laser with time-of-flight measurement,” Jpn. J. Appl. Phys., Part 245, L913–L916 (2006). [CrossRef]
  19. T. Nayuki, Y. Oishi, T. Fujii, K. Nemoto, T. Kayoiji, Y. Okano, Y. Hironaka, K. G. Nakamura, K. Kondo, and K. Ueda, “Thin tape target driver for laser ion accelerator,” Rev. Sci. Instrum.74, 3293–3296 (2003). [CrossRef]
  20. F. Lindau, O. Lundh, A. Persson, P. McKenna, K. Osvay, D. Batani, and C.-G. Wählstrom, “Laser-accelerated protons with energy-dependent beam direction,” Phys. Rev. Lett.95, 175002 (2005). [CrossRef] [PubMed]
  21. A. Flacco, T. Ceccotti, H. George, P. Monot, P. Martin, F. Réeau, O. Tcherbakoff, P. d’fOliveira, F. Sylla, M. Veltcheva, F. Burgy, A. Tafzi, V. Malka, and D. Batani, “Comparative study of laser ion acceleration with different contrast enhancement techniques,” Nucl. Instrum. Methods Phys. Res. A620, 18–22 (2010). [CrossRef]
  22. J. Fuchs, T. E. Cowan, P. Audebert, H. Ruhl, L. Gremillet, A. Kemp, M. Allen, A. Blazevic, J.-C. Gauthier, M. Geissel, M. Hegelich, S. Karsch, P. Parks, M. Roth, Y. Sentoku, R. Stephens, and E. M. Campbell, “Spatial uniformity of laser-accelerated ultrahigh-current MeV electron propagation in metals and insulators,” Phys. Rev. Lett.91, 255002 (2003). [CrossRef]
  23. A. Yogo, H. Kiriyama, M. Mori, T. Z. Esirkepov, K. Ogura, A. Sagisaka, S. Orimo, M. Nishiuchi, A. S. Pirozhkov, H. Nagatomo, Y. Nakai, T. Shimomura, M. Tanoue, A. Akutsu, H. Okada, T. Motomura, S. Kondo, S. Kanazawa, S. V. Bulanov, P. R. Bolton, and H. Daido, “Control of laser-accelerated proton beams by modifying the target density with ASE,” Eur. Phys. J. D55, 421–425 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited