OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 3 — Feb. 10, 2014
  • pp: 2228–2235
« Show journal navigation

Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO

Yongguang Zhao, Shidong Zhuang, Xiaodong Xu, Jun Xu, Haohai Yu, Zhengping Wang, and Xinguang Xu  »View Author Affiliations


Optics Express, Vol. 22, Issue 3, pp. 2228-2235 (2014)
http://dx.doi.org/10.1364/OE.22.002228


View Full Text Article

Acrobat PDF (1451 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Multi-wavelength emissions have been demonstrated in many disordered laser crystals. Improving the emission controllability is crucial for their practical applications. However, it is difficult because the closely adjacent laser components cannot be effectively adjusted by the traditional resonator design. In this paper, the anisotropy of laser emission in a monoclinic, disordered crystal Nd:LuYSiO5 (Nd:LYSO) is reported for the first time. By selecting crystal orientation, high power laser emission with different wavelengths and polarizations were obtained. For X-cut sample, 1076 nm single-wavelength laser output reached 7.56 W, which will be a useful light source for detecting carbonyl-hemoglobin and nitrite after frequency doubling. For Y- and Z-cut samples, 1076, 1079 nm dual-wavelength laser output reached 10.3 W and 7.61 W, with parallel and orthogonal polarizations, respectively, which are convenient to be used as the generation sources of 0.78 THz wave by type-I or type-II difference frequency. The output characteristic is well explained by a theoretical analysis on the stimulated emission cross-section. The present work reveals that the intrinsic anisotropy in disordered laser crystal can be utilized to elevate the emission controllability. Accordantly, the material’s application scopes can be extended.

© 2014 Optical Society of America

1. Introduction

For many well-known Nd-doped laser crystals such as Nd:YAG, Nd:YVO4 and Nd:YAP, single wavelength operation is performed in most occasions. In recent years, multi-wavelength solid-state lasers have drawn increasing attentions because of their applications in many fields, such as THz wave generation, color display, medical treatment, etc. To reach simultaneously multi-wavelength emissions, various frequency controlling methods have been utilized, including special designed cavity mirror [1

1. M. B. Danailov and I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61(7), 746–748 (1992). [CrossRef]

3

3. F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011). [CrossRef]

], saturable absorber [4

4. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009). [CrossRef]

, 5

5. H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express 18(4), 3352–3357 (2010). [CrossRef] [PubMed]

], polarization beam splitter (PBS) [6

6. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009). [CrossRef] [PubMed]

, 7

7. Y. F. Lü, P. Zhai, J. Xia, X. H. Fu, and S. T. Li, “Simultaneous orthogonal polarized dual-wavelength continuous-wave laser operation at 1079.5 nm and 1064.5 nm in Nd:YAlO3 and their sum-frequency mixing,” J. Opt. Soc. Am. B 29(9), 2352–2356 (2012).

], two-crystal linear cavity [8

8. F. Pallas, E. Herault, J. F. Roux, A. Kevorkian, J. L. Coutaz, and G. Vitrant, “Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066 nm,” Opt. Lett. 37(14), 2817–2819 (2012). [CrossRef] [PubMed]

] and intracavity etalon [9

9. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012). [CrossRef] [PubMed]

]. Besides, many disordered Nd-doped crystals were also developed as multi-wavelength laser materials, such as Nd:CNGG, Nd,Gd:YSGG, Nd:LuSGG and Nd:LaBO2MO4 [10

10. A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Ton-celli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37(2), 304–313 (2001). [CrossRef]

13

13. Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B 112(1), 55–60 (2013). [CrossRef]

]. Since their lattice structures include multiple inequivalent Nd3+ sites, multi-wavelength simultaneous operations are more liable to be realized in the disordered Nd-doped crystals compared with those traditional laser crystals. Nevertheless, the intensity and polarization of each wavelength component are often uncontrollable, at the same time single wavelength operation is difficult. These problems have plagued the practical applications of disordered laser crystals. For anisotropic laser mediums, i.e., with intermediate or lower symmetry, selecting orientation has been tried to solve these questions recently [14

14. Y. Wang, W. J. Han, J. H. Liu, L. H. Xia, X. Mateos, V. Petrov, H. J. Zhang, and J. Y. Wang, “Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 cystal,” Acta. Phys. Sin. 58(1), 278–284 (2009).

18

18. S. Q. Sun, H. H. Yu, Y. C. Wang, H. J. Zhang, and J. Y. Wang, “Thermal, spectroscopic and laser characterization of monoclinic vanadate Nd:LaVO4crystal,” Opt. Express 21(25), 31119–31129 (2013). [CrossRef]

]. Currently, the output power and conversion efficiency are still at low levels in this newly emerged area; the fully characterization of the emission anisotropy to low symmetric crystals is challenging [19

19. Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, J. Zaccaro, and G. Aka, “Absorption and fluorescence anisotropies of monoclinic crystals: the case of Nd:YCOB,” Opt. Express 16(11), 7997–8002 (2008). [CrossRef] [PubMed]

21

21. Y. Petit, S. Joly, P. Segonds, and B. Boulanger, “Recent advances in monoclinic crystal optics,” Laser Photonics Rev. 7(6), 920–937 (2013). [CrossRef]

].

2. Optical principal axes and refractive index

For Nd:LYSO crystal the angles between the crystallographic axes are: βab = 90°, βbc = 90° and βac = 102.8° [30

30. D. Z. Li, X. D. Xu, D. H. Zhou, S. D. Zhuang, Z. P. Wang, C. T. Xia, F. Wu, and J. Xu, “Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO,” Laser Phys. Lett. 7(11), 798–804 (2010). [CrossRef]

]. As a biaxial crystal, Nd:LYSO have three different principal axes of the optical indicatrix. In its monoclinic structure, one of the principal axes is collinear with the two fold axis of the crystal, i.e., the crystallographic axis b. The other two principle axes lie in (010) face at certain angles with the crystallographic axes a and c. With a XPT-6 type polarizing microscope we performed extinction experiment to a b-cut crystal sample (~2 mm thick), and found in (010) face the angle between a principal axis of the optical indicatrix and a-axis is 23.3°, and the angle between the other principal axis and c-axis is 10.5°. The definition of X, Y, and Z principal axes of the optical indicatrix follows the principle of nX<nY<nZ. Utilizing a prism coupling device (Model 2010, Metricon), the principle refractive indices at 632.8 nm were measured to be nX = 1.7915, nY = 1.7933, nZ = 1.8144. It indicates that Nd:LYSO is a positive biaxial crystal. At the same time, the relationship between the refractive principal axes and the crystallographic axes can be determined ultimately, as shown in Fig. 1(a), b-axis and X-axis are opposite, γaY = 23.3° and γcZ = 10.5°.
Fig. 1 (a) Relationship between the optical indicatrix frame (X, Y, Z) and the crystallographic frame (a, b, c); (b) Optical indicatrix in the YZ plane at 632.8 nm.
In (010) plane (i.e. YZ plane), the calculated results of the optical indicatrix at 632.8 nm was obtained and shown in Fig. 1(b), which exhibited a good agreement with the measured data.

3. Polarized absorption spectra and fluorescence spectra

With a 1 at.% Nd3+ doped LYSO crystal, we processed X, Y and Z-cut samples with dimensions of 3 × 3 × 10 mm3. The length at the transmission direction is 10 mm, and their arrises are kept along optical principal axes. At room temperature the polarized absorption spectra were recorded by a JASCO V570 model UV/VIS/NIR spectrophotometer. Based on the formula below:
σα(λ)=D(λ)/N0llge
Where D(λ) is the absorbance (optical density), N0 is the average Nd3+ density in the lattice structure, and l is the thickness of the sample. The polarized absorption cross section spectra from 300 to 1000 nm are shown in Fig. 2(a).
Fig. 2 (a) Polarized absorption cross section spectra; (b) Polarized emission cross-section spectra.
Here the three polarizations orientation was parallel to the principal axes in the XYZ-frame; the propagation direction (k-vector) was perpendicular to the plane which composed by any two orientations in the X-, Y- or Z-polarization. It can be seen that the absorption peak of X or Z polarized light is at ~810 nm. For Y polarized light the absorption peak is at 815 nm, at the same time its absorption coefficient and absorption cross-section are much smaller than those of other two polarizations. The detailed optical parameters of polarized absorption spectra for 4F5/2 + 2H9/2 excited state are listed in Table 1.

Table 1. Optical parameters of polarized absorption spectra for 4F5/2 + 2H9/2 excited state

table-icon
View This Table
| View All Tables

Using the crystal samples mentioned above, we measured the polarized fluorescence spectra with an Edinburgh FS920 High Sensitive Fluorescence Spectrometer (<0.09 nm resolution, 1200 g/mm grating). Then, the stimulated emission cross section can be calculated with the method used by A. Brenier [16

16. A. Brenier, Y. Wu, J. Zhang, and Y. Wu, “Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19,” Appl. Phys. B 107(1), 59–65 (2012). [CrossRef]

]. The polarized emission cross section spectra are shown in Fig. 2(b), and the peak information for 4F3/24I11/2 transition around 1.08 μm is also listed in Table 2: the maximum emission peak is at 1079 nm for X polarization, while at 1076 nm for Y and Z polarizations.

Table 2. Polarized emission cross section for 4F3/24I11/2 transition around 1.08 μm

table-icon
View This Table
| View All Tables

4. Laser emission performance

The laser experiment was carried out in a concave-plane resonator and the resonator length was ~1.5 cm. The pump source is a commercial fiber-coupled laser-diode (LD) with the central wavelength around 809 nm. The core size of the fiber is 100 μm in radius with a numerical aperture of 0.22. As the pump power increased from 0.3 to 29 W, the peak wavelength shifted from 808.17 to 809.91 nm, and the spectral width exhibited a small variation, i.e. 2.4 to 3 nm. As seen from Fig. 2(a), the FWHM (full width at half maximum) of absorption peak are ~7 nm for X- and Z-polarization and ~10 nm for Y-polarization, which is much broader than the pump spectral width. Thus the dominated effect on the absorption efficiency is mainly caused by the peak shift, rather than the changing of the diode spectrum width. The absorption peak of X and Z polarization is at ~810 nm and the peak of Y polarization is at 815 nm, yet for all of the three polarizations the left bottom of the absorption peak locates at ~805 nm. Thus, when the incident pump power increased and the center pump wavelength changed from 808.17 to 809.91 nm, the absorption coefficients for all of the three polarizations will increase. Three Nd:LYSO crystals cut along X, Y, and Z optical axes were used as the laser medium. All samples were processed in dimensions of 3 × 3 × 10 mm3, and their two end faces were anti-reflective (AR) coated at 808 & 1080 nm. The input concave mirror was high transmission (HT) coated at 808 nm and high reflective (HR) coated at 1080 nm, with a curvature radius of 200 mm. Three plane mirrors with different transmissions T of 2%, 10% and 24% at 1080 nm were used as the output couplers successively. To remove the heat generated under high pump power levels, the laser crystal was wrapped with indium foil and mounted in a water-cooled copper block, and the temperature of cooling water was controlled to be 20 °C.

5. Conclusion

In conclusion, we have determined the orientation of the dielectric frame in the monoclinic crystal, Nd:LYSO. The anisotropy of laser performance along different dielectric principal axes was examined, which exhibited good agreements with the measured polarized absorption and fluorescence characterizations. By using the samples processed along different dielectric principal axes, we have obtained high power and high efficiency 1.08 μm emissions with different components and polarizations. The 1076 nm single-wavelength laser will be particularly useful for detecting carbonyl-hemoglobin and nitrite by frequency doubling, and the 1076, 1079 nm dual-wavelength lasers with parallel or orthogonal polarizations have potential application for generating 0.78 THz wave. The output power, conversion efficiency, and the controllability of wavelength and polarization have achieved significant breakthroughs. The present work has set an excellent example for controlling laser emission with selecting crystal orientations, which will enlighten the exploitation and utilization of disordered laser materials.

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61178060), Program for New Century Excellent Talents in University (NCET-10-0552), Natural Science Foundation for Distinguished Young Scholar of Shandong Province (2012JQ18), and Independent Innovation Foundation of Shandong University (2012TS215).

References and links

1.

M. B. Danailov and I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett. 61(7), 746–748 (1992). [CrossRef]

2.

Y. F. Chen, M. L. Ku, and K. W. Su, “High-power efficient tunable Nd:GdVO4 laser at 1083 nm,” Opt. Lett. 30(16), 2107–2109 (2005). [CrossRef] [PubMed]

3.

F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett. 99(24), 241113 (2011). [CrossRef]

4.

H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett. 94(4), 041126 (2009). [CrossRef]

5.

H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express 18(4), 3352–3357 (2010). [CrossRef] [PubMed]

6.

B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express 17(8), 6004–6009 (2009). [CrossRef] [PubMed]

7.

Y. F. Lü, P. Zhai, J. Xia, X. H. Fu, and S. T. Li, “Simultaneous orthogonal polarized dual-wavelength continuous-wave laser operation at 1079.5 nm and 1064.5 nm in Nd:YAlO3 and their sum-frequency mixing,” J. Opt. Soc. Am. B 29(9), 2352–2356 (2012).

8.

F. Pallas, E. Herault, J. F. Roux, A. Kevorkian, J. L. Coutaz, and G. Vitrant, “Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066 nm,” Opt. Lett. 37(14), 2817–2819 (2012). [CrossRef] [PubMed]

9.

Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express 20(5), 5644–5651 (2012). [CrossRef] [PubMed]

10.

A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Ton-celli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron. 37(2), 304–313 (2001). [CrossRef]

11.

K. Zhong, J. Q. Yao, C. L. Sun, C. G. Zhang, Y. Y. Miao, R. Wang, D. G. Xu, F. Zhang, Q. G. Zhang, D. L. Sun, and S. T. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett. 36(19), 3813–3815 (2011). [CrossRef] [PubMed]

12.

K. Wu, L. Z. Hao, H. H. Yu, Z. P. Wang, J. Y. Wang, and H. J. Zhang, “Thermal and laser properties of Nd:Lu₃Sc₁.₅Ga₃.₅O₁₂ for high power dual-wavelength laser,” Opt. Express 20(7), 6944–6951 (2012). [CrossRef] [PubMed]

13.

Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B 112(1), 55–60 (2013). [CrossRef]

14.

Y. Wang, W. J. Han, J. H. Liu, L. H. Xia, X. Mateos, V. Petrov, H. J. Zhang, and J. Y. Wang, “Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 cystal,” Acta. Phys. Sin. 58(1), 278–284 (2009).

15.

A. Brenier, Y. Wu, J. Zhang, Y. Wu, and P. Fu, “Laser properties of the diode-pumped Nd3+-doped La2CaB10O19 crystal,” J. Appl. Phys. 108(9), 093101 (2010). [CrossRef]

16.

A. Brenier, Y. Wu, J. Zhang, and Y. Wu, “Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19,” Appl. Phys. B 107(1), 59–65 (2012). [CrossRef]

17.

L. Chen, S. Han, Z. Wang, J. Wang, H. Zhang, H. Yu, S. Han, and X. Xu, “Controlling laser emission by selecting crystal orientation,” Appl. Phys. Lett. 102(1), 011137 (2013). [CrossRef]

18.

S. Q. Sun, H. H. Yu, Y. C. Wang, H. J. Zhang, and J. Y. Wang, “Thermal, spectroscopic and laser characterization of monoclinic vanadate Nd:LaVO4crystal,” Opt. Express 21(25), 31119–31129 (2013). [CrossRef]

19.

Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, J. Zaccaro, and G. Aka, “Absorption and fluorescence anisotropies of monoclinic crystals: the case of Nd:YCOB,” Opt. Express 16(11), 7997–8002 (2008). [CrossRef] [PubMed]

20.

S. Joly, Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, and G. Aka, “Singular topology of optical absorption in biaxial crystals,” Opt. Express 17(22), 19868–19873 (2009). [CrossRef] [PubMed]

21.

Y. Petit, S. Joly, P. Segonds, and B. Boulanger, “Recent advances in monoclinic crystal optics,” Laser Photonics Rev. 7(6), 920–937 (2013). [CrossRef]

22.

A. M. Tkachuk, A. K. Przhevusskii, L. G. Morozova, A. V. Poletimova, M. V. Petrov, and A. M. Korovkin, “Nd3+ optical centers in lutecium, yttrium, and scandium silicate crystals and their spontaneous and stimulated emission,” Opt. Spectrosc. 60(2), 176–181 (1986).

23.

T. Kimble, M. Chou, and B. H. T. Chai, “Scintillation Properties of LYSO Crystals,” IEEE Nucl. Sci. Symp. Conf. Record 3(10–16), 1434–1437 (2002).

24.

D. W. Cooke, K. J. McClellan, B. L. Bennett, J. M. Roper, M. T. Whittaker, R. E. Muenchausen, and R. C. Sze, “Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5,” J. Appl. Phys. 88(12), 7360–7362 (2000). [CrossRef]

25.

L. Qin, H. Li, S. Lu, D. Ding, and G. Ren, “Growth and characteristics of LYSO (Lu2(1-x-y)Y2xSiO5:Cey) scintillation crystals,” J. Cryst. Growth 281(2–4), 518–524 (2005). [CrossRef]

26.

W. Li, S. Xu, H. Pan, L. Ding, H. Zeng, W. Lu, C. Guo, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient tunable diode-pumped Yb:LYSO laser,” Opt. Express 14(15), 6681–6686 (2006). [CrossRef] [PubMed]

27.

L. Su, D. Zhang, H. Li, J. Du, Y. Xu, X. Liang, G. Zhao, and J. Xu, “Passively Q-switched Yb3+ laser with Yb3+-doped CaF2 crystal as saturable absorber,” Opt. Express 15(5), 2375–2379 (2007). [CrossRef] [PubMed]

28.

B. K. Brickeen and E. Geathers, “Laser performance of Yb3+ doped oxyorthosilicates LYSO and GYSO,” Opt. Express 17(10), 8461–8466 (2009). [CrossRef] [PubMed]

29.

J. Liu, W. W. Wang, C. C. Liu, X. W. Fan, L. H. Zheng, L. B. Su, and J. Xu, “Efficient diode-pumped self-mode-locking Yb:LYSO laser,” Laser Phys. Lett. 7(2), 104–107 (2010).

30.

D. Z. Li, X. D. Xu, D. H. Zhou, S. D. Zhuang, Z. P. Wang, C. T. Xia, F. Wu, and J. Xu, “Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO,” Laser Phys. Lett. 7(11), 798–804 (2010). [CrossRef]

31.

L. J. Chen, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, S. D. Zhuang, L. Guo, Y. G. Zhao, and X. G. Xu, “Efficient dual-wavelength operation of Nd:LYSO laser by diode pumping aimed toward the absorption peak,” Chin. Opt. Lett. 9(7), 071403 (2011). [CrossRef]

32.

S. D. Zhang, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, L. Guo, L. J. Chen, Y. G. Zhao, and X. G. Xu, “Contunuous-wave and passively Q-switched Nd:LYSO laser,” Laser Phys. 21(4), 684–689 (2011). [CrossRef]

33.

Z. H. Cong, D. Y. Tang, W. De Tan, J. Zhang, C. W. Xu, D. Luo, X. D. Xu, D. Z. Li, J. Xu, X. Y. Zhang, and Q. P. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express 19(5), 3984–3989 (2011). [CrossRef] [PubMed]

34.

Y. G. Zhao, X. L. Li, M. M. Xu, H. H. Yu, Y. Z. Wu, Z. P. Wang, X. P. Hao, and X. G. Xu, “Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber,” Opt. Express 21(3), 3516–3522 (2013). [CrossRef] [PubMed]

35.

K. M. Yun, J. Y. Wang, Y. J. Wang, Z. W. Wei, X. H. Zhang, and L. B. Gao, “Rapid diagnosis of carbon monoxide poisoning by 4300 spectrophotometer,” Chin. J. Integr. Med. Cardio 4(4), 292–293 (2006).

OCIS Codes
(140.3580) Lasers and laser optics : Lasers, solid-state
(160.3380) Materials : Laser materials
(300.6170) Spectroscopy : Spectra

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 4, 2013
Revised Manuscript: January 12, 2014
Manuscript Accepted: January 16, 2014
Published: January 27, 2014

Citation
Yongguang Zhao, Shidong Zhuang, Xiaodong Xu, Jun Xu, Haohai Yu, Zhengping Wang, and Xinguang Xu, "Anisotropy of laser emission in monoclinic, disordered crystal Nd:LYSO," Opt. Express 22, 2228-2235 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-3-2228


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. M. B. Danailov and I. Y. Milev, “Simultaneous multiwavelength operation of Nd:YAG laser,” Appl. Phys. Lett.61(7), 746–748 (1992). [CrossRef]
  2. Y. F. Chen, M. L. Ku, and K. W. Su, “High-power efficient tunable Nd:GdVO4 laser at 1083 nm,” Opt. Lett.30(16), 2107–2109 (2005). [CrossRef] [PubMed]
  3. F. Pallas, E. Herault, J. Zhou, J.-F. Roux, and G. Vitrant, “Stable dual-wavelength microlaser controlled by the output mirror tilt angle,” Appl. Phys. Lett.99(24), 241113 (2011). [CrossRef]
  4. H. H. Yu, H. J. Zhang, Z. P. Wang, J. Y. Wang, Y. G. Yu, X. Y. Zhang, R. J. Lan, and M. H. Jiang, “Dual-wavelength neodymium-doped yttrium aluminum garnet laser with chromium-doped yttrium aluminum garnet as frequency selector,” Appl. Phys. Lett.94(4), 041126 (2009). [CrossRef]
  5. H. T. Huang, J. L. He, B. T. Zhang, J. F. Yang, J. L. Xu, C. H. Zuo, and X. T. Tao, “V3+:YAG as the saturable absorber for a diode-pumped quasi-three-level dual-wavelength Nd:GGG laser,” Opt. Express18(4), 3352–3357 (2010). [CrossRef] [PubMed]
  6. B. Wu, P. P. Jiang, D. Z. Yang, T. Chen, J. Kong, and Y. H. Shen, “Compact dual-wavelength Nd:GdVO4 laser working at 1063 and 1065 nm,” Opt. Express17(8), 6004–6009 (2009). [CrossRef] [PubMed]
  7. Y. F. Lü, P. Zhai, J. Xia, X. H. Fu, and S. T. Li, “Simultaneous orthogonal polarized dual-wavelength continuous-wave laser operation at 1079.5 nm and 1064.5 nm in Nd:YAlO3 and their sum-frequency mixing,” J. Opt. Soc. Am. B29(9), 2352–2356 (2012).
  8. F. Pallas, E. Herault, J. F. Roux, A. Kevorkian, J. L. Coutaz, and G. Vitrant, “Simultaneous passively Q-switched dual-wavelength solid-state laser working at 1065 and 1066 nm,” Opt. Lett.37(14), 2817–2819 (2012). [CrossRef] [PubMed]
  9. Y. P. Huang, C. Y. Cho, Y. J. Huang, and Y. F. Chen, “Orthogonally polarized dual-wavelength Nd:LuVO4 laser at 1086 nm and 1089 nm,” Opt. Express20(5), 5644–5651 (2012). [CrossRef] [PubMed]
  10. A. Agnesi, S. Dell’Acqua, A. Guandalini, G. Reali, F. Cornacchia, A. Ton-celli, M. Tonelli, K. Shimamura, and T. Fukuda, “Optical spectroscopy and diode-pumped laser performance of Nd3+ in the CNGG crystal,” IEEE J. Quantum Electron.37(2), 304–313 (2001). [CrossRef]
  11. K. Zhong, J. Q. Yao, C. L. Sun, C. G. Zhang, Y. Y. Miao, R. Wang, D. G. Xu, F. Zhang, Q. G. Zhang, D. L. Sun, and S. T. Yin, “Efficient diode-end-pumped dual-wavelength Nd, Gd:YSGG laser,” Opt. Lett.36(19), 3813–3815 (2011). [CrossRef] [PubMed]
  12. K. Wu, L. Z. Hao, H. H. Yu, Z. P. Wang, J. Y. Wang, and H. J. Zhang, “Thermal and laser properties of Nd:Lu₃Sc₁.₅Ga₃.₅O₁₂ for high power dual-wavelength laser,” Opt. Express20(7), 6944–6951 (2012). [CrossRef] [PubMed]
  13. Y. J. Chen, X. H. Gong, Y. F. Lin, J. H. Huang, Z. D. Luo, and Y. D. Huang, “Diode-pumped orthogonally polarized dual-wavelength Nd3+:LaBO2MoO4 laser,” Appl. Phys. B112(1), 55–60 (2013). [CrossRef]
  14. Y. Wang, W. J. Han, J. H. Liu, L. H. Xia, X. Mateos, V. Petrov, H. J. Zhang, and J. Y. Wang, “Anisotropy in spectroscopic and laser properties of monoclinic Yb:KLu(WO4)2 cystal,” Acta. Phys. Sin.58(1), 278–284 (2009).
  15. A. Brenier, Y. Wu, J. Zhang, Y. Wu, and P. Fu, “Laser properties of the diode-pumped Nd3+-doped La2CaB10O19 crystal,” J. Appl. Phys.108(9), 093101 (2010). [CrossRef]
  16. A. Brenier, Y. Wu, J. Zhang, and Y. Wu, “Lasing Yb3+ in crystals with a wavelength dependence anisotropy displayed from La2CaB10O19,” Appl. Phys. B107(1), 59–65 (2012). [CrossRef]
  17. L. Chen, S. Han, Z. Wang, J. Wang, H. Zhang, H. Yu, S. Han, and X. Xu, “Controlling laser emission by selecting crystal orientation,” Appl. Phys. Lett.102(1), 011137 (2013). [CrossRef]
  18. S. Q. Sun, H. H. Yu, Y. C. Wang, H. J. Zhang, and J. Y. Wang, “Thermal, spectroscopic and laser characterization of monoclinic vanadate Nd:LaVO4crystal,” Opt. Express21(25), 31119–31129 (2013). [CrossRef]
  19. Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, J. Zaccaro, and G. Aka, “Absorption and fluorescence anisotropies of monoclinic crystals: the case of Nd:YCOB,” Opt. Express16(11), 7997–8002 (2008). [CrossRef] [PubMed]
  20. S. Joly, Y. Petit, B. Boulanger, P. Segonds, C. Félix, B. Ménaert, and G. Aka, “Singular topology of optical absorption in biaxial crystals,” Opt. Express17(22), 19868–19873 (2009). [CrossRef] [PubMed]
  21. Y. Petit, S. Joly, P. Segonds, and B. Boulanger, “Recent advances in monoclinic crystal optics,” Laser Photonics Rev.7(6), 920–937 (2013). [CrossRef]
  22. A. M. Tkachuk, A. K. Przhevusskii, L. G. Morozova, A. V. Poletimova, M. V. Petrov, and A. M. Korovkin, “Nd3+ optical centers in lutecium, yttrium, and scandium silicate crystals and their spontaneous and stimulated emission,” Opt. Spectrosc.60(2), 176–181 (1986).
  23. T. Kimble, M. Chou, and B. H. T. Chai, “Scintillation Properties of LYSO Crystals,” IEEE Nucl. Sci. Symp. Conf. Record3(10–16), 1434–1437 (2002).
  24. D. W. Cooke, K. J. McClellan, B. L. Bennett, J. M. Roper, M. T. Whittaker, R. E. Muenchausen, and R. C. Sze, “Crystal growth and optical characterization of cerium-doped Lu1.8Y0.2SiO5,” J. Appl. Phys.88(12), 7360–7362 (2000). [CrossRef]
  25. L. Qin, H. Li, S. Lu, D. Ding, and G. Ren, “Growth and characteristics of LYSO (Lu2(1-x-y)Y2xSiO5:Cey) scintillation crystals,” J. Cryst. Growth281(2–4), 518–524 (2005). [CrossRef]
  26. W. Li, S. Xu, H. Pan, L. Ding, H. Zeng, W. Lu, C. Guo, G. Zhao, C. Yan, L. Su, and J. Xu, “Efficient tunable diode-pumped Yb:LYSO laser,” Opt. Express14(15), 6681–6686 (2006). [CrossRef] [PubMed]
  27. L. Su, D. Zhang, H. Li, J. Du, Y. Xu, X. Liang, G. Zhao, and J. Xu, “Passively Q-switched Yb3+ laser with Yb3+-doped CaF2 crystal as saturable absorber,” Opt. Express15(5), 2375–2379 (2007). [CrossRef] [PubMed]
  28. B. K. Brickeen and E. Geathers, “Laser performance of Yb3+ doped oxyorthosilicates LYSO and GYSO,” Opt. Express17(10), 8461–8466 (2009). [CrossRef] [PubMed]
  29. J. Liu, W. W. Wang, C. C. Liu, X. W. Fan, L. H. Zheng, L. B. Su, and J. Xu, “Efficient diode-pumped self-mode-locking Yb:LYSO laser,” Laser Phys. Lett.7(2), 104–107 (2010).
  30. D. Z. Li, X. D. Xu, D. H. Zhou, S. D. Zhuang, Z. P. Wang, C. T. Xia, F. Wu, and J. Xu, “Crystal growth, spectral properties, and laser demonstration of laser crystal Nd:LYSO,” Laser Phys. Lett.7(11), 798–804 (2010). [CrossRef]
  31. L. J. Chen, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, S. D. Zhuang, L. Guo, Y. G. Zhao, and X. G. Xu, “Efficient dual-wavelength operation of Nd:LYSO laser by diode pumping aimed toward the absorption peak,” Chin. Opt. Lett.9(7), 071403 (2011). [CrossRef]
  32. S. D. Zhang, X. D. Xu, Z. P. Wang, D. Z. Li, H. H. Yu, J. Xu, L. Guo, L. J. Chen, Y. G. Zhao, and X. G. Xu, “Contunuous-wave and passively Q-switched Nd:LYSO laser,” Laser Phys.21(4), 684–689 (2011). [CrossRef]
  33. Z. H. Cong, D. Y. Tang, W. De Tan, J. Zhang, C. W. Xu, D. Luo, X. D. Xu, D. Z. Li, J. Xu, X. Y. Zhang, and Q. P. Wang, “Dual-wavelength passively mode-locked Nd:LuYSiO5 laser with SESAM,” Opt. Express19(5), 3984–3989 (2011). [CrossRef] [PubMed]
  34. Y. G. Zhao, X. L. Li, M. M. Xu, H. H. Yu, Y. Z. Wu, Z. P. Wang, X. P. Hao, and X. G. Xu, “Dual-wavelength synchronously Q-switched solid-state laser with multi-layered graphene as saturable absorber,” Opt. Express21(3), 3516–3522 (2013). [CrossRef] [PubMed]
  35. K. M. Yun, J. Y. Wang, Y. J. Wang, Z. W. Wei, X. H. Zhang, and L. B. Gao, “Rapid diagnosis of carbon monoxide poisoning by 4300 spectrophotometer,” Chin. J. Integr. Med. Cardio4(4), 292–293 (2006).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited